JPS61164645A - Preparation of catalyst for purifying exhaust gas - Google Patents

Preparation of catalyst for purifying exhaust gas

Info

Publication number
JPS61164645A
JPS61164645A JP60005569A JP556985A JPS61164645A JP S61164645 A JPS61164645 A JP S61164645A JP 60005569 A JP60005569 A JP 60005569A JP 556985 A JP556985 A JP 556985A JP S61164645 A JPS61164645 A JP S61164645A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
activated alumina
alumina particles
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60005569A
Other languages
Japanese (ja)
Inventor
Akiko Naito
明子 内藤
Shinichi Matsumoto
伸一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP60005569A priority Critical patent/JPS61164645A/en
Publication of JPS61164645A publication Critical patent/JPS61164645A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To enhance catalytic activity and to reduce manufacturing cost, by forming an exhaust gas purification catalyst by supporting either one of Pt and Rh or both of them as a catalytic metal along with Pd by the surface of activated alumina particles. CONSTITUTION:Fine particles of Pd being a catalytic metal are mixed with a slurry having activated alumina particles suspended therein to be deposited on and supported by the surface of activated alumina particles. Subsequently, either one of Pt and Rh being catalytic metals or both of them are immersed in either one of an aqueous platinum compound solution and an aqueous rhodium compound solution or both of them to support either one of Pt and Rh or both of them as the catalytic metals. By this method, a catalyst for purifying exhaust gas, wherein Pd and Pt or Rh were supported by the surfaces of activated alumina particles in a separated state, is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、排気ガス浄化用触媒の製造方法に関し、詳し
くは、内燃機関用の排気ガス浄化用触媒の製造において
、触媒金属であるPdに加えて、PtとRhのいずれか
もしくは両方の触媒金属を分離させた状態となして担持
させることによって、触媒としての活性を向上させるこ
とのできる排気ガス浄化用触媒の製造方法にかかる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing an exhaust gas purifying catalyst, and more specifically, in producing an exhaust gas purifying catalyst for an internal combustion engine, Pd, which is a catalyst metal, is used. In addition, the present invention relates to a method for producing an exhaust gas purifying catalyst whose activity as a catalyst can be improved by supporting catalyst metals such as Pt and Rh or both in a separated state.

〔従来の技術〕[Conventional technology]

自動車用内燃機関等に用いる排気ガス浄化用触媒として
は、触媒金属の微細粒子を保持するとともに触媒活性を
向上させる作用を有する担体として活性アルミナ粒子を
用いて、その粒子表面にCu、Ni、Fe、Mn、Co
、Pd、Pt、Rh等の触媒金属を担持させた触媒が採
用されるのが通常である。
Exhaust gas purification catalysts used in internal combustion engines for automobiles use activated alumina particles as a carrier that holds fine particles of catalytic metal and improves catalytic activity.Cu, Ni, and Fe are added to the particle surface. , Mn, Co
, Pd, Pt, Rh, or other catalytic metals are usually used.

そして、自動車用の排気ガス浄化用触媒においては、耐
久性、浄化性能等といった極めて高度な触媒性能が要求
されている。
Exhaust gas purifying catalysts for automobiles are required to have extremely high catalyst performance such as durability and purification performance.

そのため、従来における自動車の排気ガス中に含有され
ているCo、HC,NOx等の有害成分を同時に除去す
るために有効な触媒金属としては、白金(Pt)、パラ
ジウム(Pd)、  ロジウム(Rh)等の白金族金属
を単独もしくは組合せて担持させた触媒が比較的価れた
浄化性能を有するものとされ、なかでも、総合性能の優
れたPt−Rh系触媒が広く採用されている。
Therefore, platinum (Pt), palladium (Pd), and rhodium (Rh) are effective catalyst metals for simultaneously removing harmful components such as Co, HC, and NOx contained in conventional automobile exhaust gas. Catalysts supporting platinum group metals such as Pt-Rh, singly or in combination, are said to have relatively good purification performance, and among them, Pt-Rh catalysts, which have excellent overall performance, are widely used.

しかし、これらPt−Rh系触媒は高価であることから
、価格的に1/2〜1/3と安価なPdをPtの代わり
に用いた、Pt−Pd−Rh系触媒もしくはPd−Rh
系触媒の開発検討が近年積極的に進められている。
However, these Pt-Rh based catalysts are expensive, so Pt-Pd-Rh based catalysts using Pd, which is 1/2 to 1/3 cheaper in place of Pt, or Pd-Rh based catalysts are used instead of Pt.
The development of catalysts has been actively investigated in recent years.

ところで、Pt−Pd−Rh系触媒もしくはPd−Rh
系触媒は、Pt−Rh系触媒に比較して酸化性雰囲気に
おける劣化が少ない、浄化開始温度が低い等といった長
所を有する反面、還元雰囲気における劣化が著しい、p
、pb等による被毒作用に弱い、PdはPtやRhに対
して相互作用があることからPt及びRhの浄化性能を
阻害するような挙動を示すことがある等の欠点があり、
これらの欠点を改善した触媒の開発が強く望まれていた
By the way, Pt-Pd-Rh based catalyst or Pd-Rh
Compared to Pt-Rh based catalysts, Pt-Rh based catalysts have advantages such as less deterioration in an oxidizing atmosphere and a lower purification start temperature, but on the other hand, they deteriorate significantly in a reducing atmosphere.
Pd has disadvantages such as being susceptible to poisoning effects by PB, etc., and since Pd interacts with Pt and Rh, it may exhibit behavior that inhibits the purification performance of Pt and Rh.
There has been a strong desire to develop a catalyst that improves these drawbacks.

そこで、触媒の表層部をPdにより担持させた活性アル
ミナ層と、PtもしくはRhのいずれかもしくは両方の
触媒金属を担持させた活性アルミナ層とを各々別の層と
して分離させた状態に担持させて、PdとPtもしくは
Rhとの共存することによる相互作用を防止し、Pt−
Pd−Rh系触媒もしくはPd−Rh系触媒の浄化性能
を向上させた排気ガス浄化用触媒が提案されている(特
開昭58−146441号等)。
Therefore, an activated alumina layer in which the surface layer of the catalyst is supported by Pd and an activated alumina layer in which catalyst metals such as Pt and/or Rh are supported are separated into separate layers. , prevent interaction between Pd and Pt or Rh due to their coexistence, and prevent Pt-
A Pd-Rh-based catalyst or an exhaust gas purifying catalyst with improved purification performance of a Pd-Rh-based catalyst has been proposed (Japanese Patent Application Laid-Open No. 146441/1989, etc.).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述のような従来の技術の現状に1み、本発明が解決し
ようとする問題点は、上述のような従来の排気ガス浄化
用触媒の製造方法においては、触媒の表層部をPdによ
り担持させた活性アルミナ層と、PtもしくはRhのい
ずれかもしくは両方の触媒金属を担持させた活性アルミ
ナ層とを各々別の層として分離させた状態に担持させる
こととしていることから、触媒の浄化性能を向上させる
ことができるものの、排気ガス浄化用触媒の製造工程が
複雑となり、従って、製造された排気ガス浄化用触媒も
高価なものとなっていたということである。
In view of the current state of the conventional technology as described above, the problem that the present invention seeks to solve is that in the conventional method for manufacturing an exhaust gas purifying catalyst as described above, the surface layer of the catalyst is supported by Pd. The activated alumina layer supporting catalyst metals such as Pt and/or Rh and the active alumina layer supporting catalyst metals such as Pt and/or Rh are separated and supported as separate layers, improving the purification performance of the catalyst. However, the manufacturing process for the exhaust gas purifying catalyst is complicated, and the manufactured exhaust gas purifying catalyst is therefore expensive.

従って、本発明の技術的課題とするところは、内燃機関
用の排気ガス浄化用触媒の製造において、活性アルミナ
の粒子を懸濁させたスラリー中に、触媒金属であるPd
の微細粒子を混合させ、活性アルミナの粒子表面にPd
の微細粒子を被覆して担持させた後、PtとRhのいず
れかもしくは両方の触媒金属を浸漬法により担持させる
ことによって、触媒金属であるPdに加えて、PtとR
hのいずれかもしくは両方の触媒金属とを分離させた状
態となして担持させることによって、触媒としての活性
を向上させるとともに、低価格な排気ガス浄化用触媒の
製造を可能とすることにある。
Therefore, the technical problem of the present invention is that in the production of an exhaust gas purifying catalyst for internal combustion engines, Pd, which is a catalyst metal, is added to a slurry in which activated alumina particles are suspended.
Pd is mixed on the surface of activated alumina particles.
After coating and supporting fine particles, one or both of Pt and Rh catalyst metals are supported by a dipping method.
By supporting one or both of the catalytic metals in a separated state, the activity as a catalyst can be improved, and an exhaust gas purifying catalyst can be produced at a low cost.

〔問題点を解決するための手段〕[Means for solving problems]

このような従来の技術における問題点に鑑み、本発明に
おける従来の技術の問題点を解決するための手段は、活
性アルミナの粒子表面に触媒金属であるPdに加えて、
PtとRhのいずれかもしくは両方の触媒金属を担持さ
せる排気ガス浄化用触媒の製造方法であって、 まず、活性アルミナの粒子を懸濁させたスラリー中に触
媒金属であるPdの微細粒子を混合させて、活性アルミ
ナの粒子表面にPdの微細粒子を被覆して担持し、 その後、PtとRhのいずれがもしくは両方の触媒金属
を、白金化合物の水溶液とロジウム化合物の水溶液のい
ずれかもしくは両方に浸漬して、PtとRhのいずれか
もしくは両方の触媒金属を担持させることによって、P
dとPtもしくはRhとを分離させた状態となして活性
アルミナの粒子表面に担持させることを特徴とする排気
ガス浄化用触媒の製造方法からなっている。
In view of these problems in the conventional technology, the present invention provides means for solving the problems in the conventional technology by adding Pd, which is a catalytic metal, to the surface of activated alumina particles.
A method for manufacturing an exhaust gas purification catalyst that supports either or both of Pt and Rh as a catalytic metal. First, fine particles of Pd, which is a catalytic metal, are mixed into a slurry in which activated alumina particles are suspended. Then, Pd fine particles are coated and supported on the surface of activated alumina particles, and then Pt and/or Rh catalyst metals are added to an aqueous solution of a platinum compound, an aqueous solution of a rhodium compound, or both. By immersing Pt and/or Rh to support catalyst metals, P
The present invention is comprised of a method for producing an exhaust gas purifying catalyst characterized in that d and Pt or Rh are separated and supported on the surface of activated alumina particles.

〔作用〕[Effect]

以下、本発明の作用について説明する。 Hereinafter, the effects of the present invention will be explained.

本発明の排気ガス浄化用触媒の製造方法を上述のような
構成としているのは、触媒金属であるPdの微細粒子を
混合法により活性アルミナの粒子表面に担持させた後、
PtとRhのいずれかもしくは両方の触媒金属を浸漬法
により活性アルミナの粒子表面に担持させることによっ
て、触媒金属であるPdに加えて、PtとRhのいずれ
かもしくは両方の触媒金属を分離させた状態となして担
持させることによって、触媒としての活性を向上させる
とともに、低価格な排気ガス浄化用触媒の製造を可能と
するためである。
The method for producing an exhaust gas purifying catalyst of the present invention has the above-described structure because fine particles of Pd, which is a catalyst metal, are supported on the surface of activated alumina particles by a mixing method, and then
By supporting one or both of Pt and Rh on the surface of activated alumina particles by a dipping method, in addition to the catalyst metal Pd, one or both of Pt and Rh was separated. This is because by supporting the catalyst in the form of a catalyst, the activity as a catalyst can be improved, and an exhaust gas purifying catalyst can be produced at a low cost.

〔実施例〕〔Example〕

以下、添付図面に基づいて、本発明の排気ガス浄化用触
媒の製造方法の1実施例を説明する。
EMBODIMENT OF THE INVENTION Hereinafter, one embodiment of the method for manufacturing an exhaust gas purifying catalyst of the present invention will be described based on the accompanying drawings.

なお、この実施例における触媒担体としては活性アルミ
ナ粒子を用い、触媒金属としてはPdに加えて、Pt及
びRhを共に担持させた排気ガス浄化用触媒の製造方法
の例について説明する。
In this example, an example of a method for manufacturing an exhaust gas purifying catalyst using activated alumina particles as a catalyst carrier and carrying Pt and Rh in addition to Pd as catalyst metals will be described.

本発明法による排気ガス浄化用触媒の製造方法において
、まず、アルミナ含有量が10重量%のアルミナシルア
00g、40重量%の硝酸アルミニウム水溶液150g
を添加し、さらに、蒸留水450 mlを加えて攪拌し
て混合懸濁液を調製した。
In the method for producing an exhaust gas purification catalyst according to the method of the present invention, first, 00 g of alumina silua with an alumina content of 10% by weight, and 150 g of an aqueous aluminum nitrate solution with an alumina content of 10% by weight.
was added, and further 450 ml of distilled water was added and stirred to prepare a mixed suspension.

その後、上述の混合懸濁液の中にアルミナ粒子を900
gと、触媒金属であるPdの微細粒子(粒径;約30μ
)100gを加えて攪拌し、活性アルミナ粒子と触媒金
属であるPdの微細粒子とを懸濁させたスラリーを調製
した。
Then, 900% of alumina particles were added to the above mixed suspension.
g and fine particles of Pd, which is a catalyst metal (particle size: approximately 30μ
) was added and stirred to prepare a slurry in which activated alumina particles and fine particles of Pd, which is a catalyst metal, were suspended.

この活性アルミナと触媒金属としてのPdの微細粒子を
懸濁させたスラリー中に、直径10cw+。
A diameter of 10 cw+ was placed in a slurry in which fine particles of activated alumina and Pd as a catalyst metal were suspended.

長さ15cmの円筒状モノリス担体用基材を1分間浸漬
し、空気の吹き付けにより円筒状モノリス担体用基材の
セル内のスラリーを吹き飛ばした後、200℃×1時間
の乾燥処理を行ない、ついで、700℃×2時間の焼成
処理を行った。
A cylindrical monolith carrier base material with a length of 15 cm was immersed for 1 minute, and after blowing off the slurry in the cells of the cylindrical monolith carrier base material by blowing air, a drying process was performed at 200°C for 1 hour, and then A firing treatment was performed at 700° C. for 2 hours.

このようにして触媒金属を担持させた円筒状モノリス担
体用基材を、再び、上述の活性アルミナと触媒金属の微
細粒子を懸濁させたスラリー中に151潰して、同様の
操作を縛り返した。
The cylindrical monolith carrier base material on which the catalytic metal was supported in this way was crushed again into the slurry in which the above-mentioned activated alumina and fine particles of the catalytic metal were suspended, and the same operation was repeated. .

その後、この活性アルミナ層を形成させた円筒状モノリ
ス担体用基材を蒸留水に浸漬して充分に吸水させた後、
引き上げて余剰の水分を空気により吹き飛ばし、ついで
、ジニトロジアンミン白金水溶液[Pt (NH,)2
  (No、)2)io、5g1l中に1時間浸漬した
後、引き上げて余剰の水分を空気により吹き飛ばし、さ
らに、200℃×1時間の乾燥処理を行い、同様にして
塩化ロジウム水溶液(RhCI 、);0.1g/l中
にてRhを担持させて触媒aを製造した。
After that, the cylindrical monolith carrier base material on which this activated alumina layer was formed was immersed in distilled water to absorb sufficient water, and then
The excess moisture was blown off with air, and then dinitrodiammine platinum aqueous solution [Pt (NH,)2
(No,) 2) After immersing in 5 g 1 liter of io for 1 hour, pull it out and blow off the excess water with air, and then dry it at 200°C for 1 hour, and do the same in the same way as rhodium chloride aqueous solution (RhCI). ;Catalyst a was produced by supporting Rh in 0.1 g/l.

次に、比較としての従来法による排気ガス浄化用触媒の
製造方法により製造した触媒においては、まず、アルミ
ナ含有量10重量%のアルミナシルア00g、40重量
%の硝酸アルミニウム水溶液150gを加え、さらに、
蒸留水450m1を加えて攪拌して混合懸濁液を調製し
た。
Next, for a catalyst manufactured by a conventional method for manufacturing an exhaust gas purifying catalyst as a comparison, 00 g of alumina silica with an alumina content of 10% by weight and 150 g of an aluminum nitrate aqueous solution with a 40% by weight alumina content were added, and further,
450 ml of distilled water was added and stirred to prepare a mixed suspension.

その混合懸濁液中に、活性アルミナ粒子1000gを添
加して攪拌してスラリーを調製した。
1000 g of activated alumina particles were added to the mixed suspension and stirred to prepare a slurry.

この活性アルミナ粒子を懸濁させたスラリー中に、直径
10cm、長さ15cmの円筒状モノリス担体用基材を
1分間浸漬して、空気の吹き付けにより円筒状モノリス
担体用基材のセル内のスラリーを吹き飛ばした後、20
0℃×1時間の乾燥処理を行ない、ついで、700℃×
2時間の焼成処理を行った。
A cylindrical monolith carrier base material with a diameter of 10 cm and a length of 15 cm was immersed in the slurry in which activated alumina particles were suspended for 1 minute, and air was blown to remove the slurry in the cells of the cylindrical monolith carrier base material. After blowing away, 20
Dry at 0°C for 1 hour, then dry at 700°C.
A firing process was performed for 2 hours.

このようにして活性アルミナ層を形成させた円筒状モノ
リス担体用基材を、再び、上述の活性アルミナを懸濁さ
せたスラリー中に浸漬して、同様の操作を繰り返した。
The cylindrical monolithic carrier base material on which the activated alumina layer had been formed in this way was again immersed in the slurry in which activated alumina was suspended, and the same operation was repeated.

その後、この活性アルミナ層を形成させた円筒状モノリ
ス担体用基材を蒸留水に浸漬して充分に吸水させた後、
引き上げて余剰の水分を空気により吹き飛ばし、ついで
、ジニトロジアンミン白金水溶液(Pt  (NH,)
2  (No2)  2);0.5g1l中に1時間浸
漬した後、引き上げて余剰の水分を空気により吹き飛ば
し、さらに、200℃×1時間の乾燥処理を行い同様に
して塩化ロジウム水溶液(Rh CI r )  ; 
0.1 g / 1と塩化パラジウム水溶液(Pde 
l 2)  i 0.5 g/lを担持させて触媒すを
製造した。
After that, the cylindrical monolith carrier base material on which this activated alumina layer was formed was immersed in distilled water to absorb sufficient water, and then
The excess moisture was blown off with air, and then dinitrodiammine platinum aqueous solution (Pt (NH,)
2 (No. 2) 2); After immersing in 0.5 g 1 liter for 1 hour, it was pulled out and the excess moisture was blown off with air. Further, it was dried at 200° C. for 1 hour, and in the same manner, rhodium chloride aqueous solution (Rh CI r ) ;
0.1 g/1 and palladium chloride aqueous solution (Pde
12) A catalyst was prepared by supporting 0.5 g/l of i.

その後、a、bの2種類の触媒を、以下の方法により耐
久試験を実施した後における浄化性能を評価した。
Thereafter, the two types of catalysts a and b were subjected to a durability test using the following method, and their purification performance was then evaluated.

耐久試験条件は、エンジンを空燃比(A/F);14.
6.空間速度(SV):60000h、触媒床温度;7
20℃として運転し、300時間運転した後各触媒を使
用して触媒床への大ガス温度を変化させて浄化率を測定
した。
The durability test conditions were: engine air fuel ratio (A/F); 14.
6. Space velocity (SV): 60000h, catalyst bed temperature: 7
After operating at 20°C for 300 hours, the purification rate was measured using each catalyst and varying the temperature of the large gas to the catalyst bed.

この浄化率の測定は、空燃比(A/F); 14゜6と
して触媒の浄化率の温度特性を評価する方法により実施
した。
The purification rate was measured using a method of evaluating the temperature characteristics of the catalyst purification rate at an air-fuel ratio (A/F) of 14°6.

その測定結果を第1図に示す。The measurement results are shown in FIG.

なお、この図における浄化率としては、浄化対象をCo
、HC,NOxのいずれとしても同様の傾向を示した。
Note that the purification rate in this figure is based on Co
, HC, and NOx showed similar trends.

第1図から明らかなように、本発明の排気ガス浄化用触
媒の製造方法により製造した触媒aは、従来の排気ガス
浄化用触媒の製造方法により製造した触媒すと比較して
、300時間の長時間耐久試験後においても低温浄化性
能に優れており、本発明の排気ガス浄化用触媒の製造方
法により製造した触媒の浄化性能における優れた耐久性
を示していることがわかる。
As is clear from FIG. 1, the catalyst a produced by the method for producing an exhaust gas purifying catalyst of the present invention has a longer lifespan of 300 hours than the catalyst A produced by the conventional method for producing an exhaust gas purifying catalyst. It can be seen that the catalyst has excellent low-temperature purification performance even after a long-term durability test, and shows excellent durability in purification performance of the catalyst manufactured by the method for manufacturing an exhaust gas purification catalyst of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上により明らかなように、本発明にかかる排気ガス浄
化用触媒の製造方法によれば、内燃機関用の排気ガス浄
化用触媒の製造において、活性アルミナの粒子を懸濁さ
せたスラリー中に、触媒金属であるPdの微細粒子を混
合させ、活性アルミナの粒子表面にPdの微細粒子を被
覆して担持させた後、PtとRhのいずれかもしくは両
方の触媒金属を浸漬法により担持させることによって、
触媒金属であるPdに加えて、PtとRhのいずれかも
しくは両方の触媒金属を分離させた状態となして担持さ
せることによって、触媒としての活性を向上させるとと
もに、低価格な排気ガス浄化用触媒の製造を可能とする
ことができる利点がある。
As is clear from the above, according to the method for producing an exhaust gas purification catalyst according to the present invention, in the production of an exhaust gas purification catalyst for an internal combustion engine, a catalyst is added to a slurry in which activated alumina particles are suspended. By mixing fine particles of the metal Pd, coating and supporting the surface of activated alumina particles with the fine particles of Pd, and then supporting either or both of Pt and Rh as a catalytic metal by a dipping method.
In addition to the catalytic metal Pd, the catalytic metals Pt and/or Rh are supported in a separated state, thereby improving the activity of the catalyst and creating a low-cost exhaust gas purification catalyst. It has the advantage of being able to manufacture

【図面の簡単な説明】[Brief explanation of drawings]

第1図は触媒活性の評価結果を示す図である。 a−−−−−一本発明法により製造した触媒。 b−−一−・−従来法により製造した触媒。 FIG. 1 is a diagram showing the evaluation results of catalytic activity. a-----1 Catalyst produced by the method of the present invention. b--1-.-Catalyst produced by conventional method.

Claims (1)

【特許請求の範囲】 1、活性アルミナの粒子表面に触媒金属であるPdに加
えて、PtとRhのいずれかもしくは両方の触媒金属を
担持させる排気ガス浄化用触媒の製造方法であって、 まず、活性アルミナの粒子を懸濁させたスラリー中に触
媒金属であるPdの微細粒子を混合させて、活性アルミ
ナの粒子表面にPdの微細粒子を被覆して担持し、 その後、PtとRhのいずれかもしくは両方の触媒金属
を、白金化合物の水溶液とロジウム化合物の水溶液のい
ずれかもしくは両方に浸漬して、PtとRhのいずれか
もしくは両方の触媒金属を担持させることによって、P
dとPtもしくはRhとを分離させた状態となして活性
アルミナの粒子表面に担持させることを特徴とする排気
ガス浄化用触媒の製造方法。
[Scope of Claims] 1. A method for producing an exhaust gas purification catalyst in which, in addition to Pd as a catalyst metal, one or both of Pt and Rh is supported on the surface of activated alumina particles, comprising: , fine particles of Pd, which is a catalyst metal, are mixed in a slurry in which activated alumina particles are suspended, and the fine particles of Pd are coated and supported on the surface of the activated alumina particles. By immersing either or both of the catalytic metals in an aqueous solution of a platinum compound and/or an aqueous solution of a rhodium compound to support either or both of the catalytic metals of Pt and Rh, P
A method for producing an exhaust gas purifying catalyst, characterized in that d and Pt or Rh are separated and supported on the surface of activated alumina particles.
JP60005569A 1985-01-15 1985-01-15 Preparation of catalyst for purifying exhaust gas Pending JPS61164645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60005569A JPS61164645A (en) 1985-01-15 1985-01-15 Preparation of catalyst for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60005569A JPS61164645A (en) 1985-01-15 1985-01-15 Preparation of catalyst for purifying exhaust gas

Publications (1)

Publication Number Publication Date
JPS61164645A true JPS61164645A (en) 1986-07-25

Family

ID=11614842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60005569A Pending JPS61164645A (en) 1985-01-15 1985-01-15 Preparation of catalyst for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPS61164645A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012120949A (en) * 2010-12-06 2012-06-28 Toyota Motor Corp Method for producing platinum/palladium core-shell catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012120949A (en) * 2010-12-06 2012-06-28 Toyota Motor Corp Method for producing platinum/palladium core-shell catalyst

Similar Documents

Publication Publication Date Title
JP3956437B2 (en) Exhaust gas purification catalyst
EP0832688B1 (en) Exhaust gas purifying catalyst and exhaust gas purifying method
JPH0760117A (en) Exhaust gas purifying catalyst
JPH04250851A (en) Catalyst for purifying exhaust gas from diesel engine
JPH11276907A (en) Catalyst for purifying exhaust gas and its production
JPH05220403A (en) Exhaust gas purifying catalyst
JPH07108172A (en) Exhaust gas purifying catalyst and production therefor
JPS6384635A (en) Catalyst for purifying exhaust gas
JPS62282641A (en) Production of catalyst for purifying exhaust gas
JP4459346B2 (en) Exhaust gas purification catalyst
JPS6031828A (en) Catalyst for purifying exhaust gas and its preparation
JPS61164645A (en) Preparation of catalyst for purifying exhaust gas
JP3956158B2 (en) Nitrogen oxide removal catalyst
JPS5820307B2 (en) Catalyst for vehicle exhaust gas purification
JP3551346B2 (en) Exhaust gas purification equipment
JPS63236541A (en) Catalyst for purifying exhaust gas
JP3447513B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH0331396Y2 (en)
JPH02218439A (en) Manufacture of gaseous emission cleanup catalyst
JP4624598B2 (en) Exhaust gas purification catalyst and production method thereof
JP2001058131A (en) Catalyst for exhaust gas treatment
JPH05285391A (en) Catalyst for purification of exhaust gas
JPS6268545A (en) Monolithic catalyst for purifying exhaust gas
JP3766984B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3538214B2 (en) Nitrogen oxide reduction catalyst and method of using the same