JP3538214B2 - Nitrogen oxide reduction catalyst and method of using the same - Google Patents

Nitrogen oxide reduction catalyst and method of using the same

Info

Publication number
JP3538214B2
JP3538214B2 JP34064393A JP34064393A JP3538214B2 JP 3538214 B2 JP3538214 B2 JP 3538214B2 JP 34064393 A JP34064393 A JP 34064393A JP 34064393 A JP34064393 A JP 34064393A JP 3538214 B2 JP3538214 B2 JP 3538214B2
Authority
JP
Japan
Prior art keywords
catalyst
nitrogen oxide
supported
purification
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34064393A
Other languages
Japanese (ja)
Other versions
JPH07155602A (en
Inventor
寿幸 田中
幸治 横田
伸一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP34064393A priority Critical patent/JP3538214B2/en
Publication of JPH07155602A publication Critical patent/JPH07155602A/en
Application granted granted Critical
Publication of JP3538214B2 publication Critical patent/JP3538214B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、自動車などの内燃機関
から排出される排ガス中の窒素酸化物(NOX )を、酸
素過剰雰囲気下、すなわち空燃比が理論空燃比(14.
7)より大である燃焼雰囲気において、広い温度範囲に
わたり還元浄化できる窒素酸化物還元触媒およびその使
用方法に関する。
The present invention relates to a nitrogen oxide in an exhaust gas discharged from an internal combustion engine such as an automobile (NO X) under an oxygen-rich atmosphere, i.e. air-fuel ratio is the stoichiometric air-fuel ratio (14.
7) A nitrogen oxide reduction catalyst capable of reducing and purifying over a wide temperature range in a larger combustion atmosphere and a method for using the same.

【0002】[0002]

【従来の技術】近年、地球環境保護の観点から、自動車
などの内燃機関から排出される排ガス中の二酸化炭素
(CO2 )が問題とされ、その解決策として酸素過剰雰
囲気下において希薄燃焼させるいわゆるリーンバーンが
有望視されている。このリーンバーンにおいては、燃費
が向上するために燃料の使用が低減され、その燃焼排ガ
スであるCO2 の発生を抑制することができる。
2. Description of the Related Art In recent years, carbon dioxide (CO 2 ) in exhaust gas discharged from internal combustion engines such as automobiles has become a problem from the viewpoint of protection of the global environment. Lean burn is promising. In this lean burn, the use of fuel is reduced to improve fuel efficiency, and the generation of CO 2 , which is the combustion exhaust gas, can be suppressed.

【0003】ところで、従来の三元触媒は、空燃比が理
論空燃比(ストイキ)において排ガス中の一酸化炭素
(CO)、炭化水素(HC)、窒素酸化物(NOX )を
同時に酸化・還元し、浄化するものである。しかし、前
記三元触媒はリーンバーン時の排ガスの酸素過剰雰囲気
下においてはNOX の還元除去に対しては十分な浄化能
力を示さないために、酸素過剰雰囲気下においてもNO
X を浄化し得る触媒および浄化システムの開発が望まれ
ている。
Conventional three-way catalysts simultaneously oxidize and reduce carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxides (NO x ) in exhaust gas at a stoichiometric air-fuel ratio. And purify it. However, since the three-way catalyst does not exhibit sufficient purification ability for the reduction and removal of the NO X in an oxygen excess atmosphere in the exhaust gas during the lean-burn, NO even under an oxygen rich atmosphere
Development of a catalyst and a purification system capable of purifying X is desired.

【0004】酸素過剰下においても窒素酸化物に対し比
較的高い浄化能力を示す触媒として、例えば特開平1−
139145号公報に開示されているような銅(Cu)
等の遷移金属をイオン交換によりゼオライトに担持させ
たゼオライト系触媒や、白金等の貴金属をアルミナに担
持させた白金系触媒がある(特開平5−168860号
公報)。
As a catalyst exhibiting a relatively high purification ability for nitrogen oxides even under an excess of oxygen, for example, Japanese Patent Application Laid-Open No.
Copper (Cu) as disclosed in 139145
There is a zeolite catalyst in which a transition metal such as is supported on zeolite by ion exchange, and a platinum catalyst in which a noble metal such as platinum is supported on alumina (Japanese Patent Application Laid-Open No. 5-168860).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、ゼオラ
イト系触媒では、耐熱性に乏しい、理論空燃比から
酸素希薄雰囲気における窒素酸化物浄化活性が低い、
HC、COの酸化活性が低いという問題点を有する。一
方、白金系触媒では、ゼオライト系触媒の有する前記問
題点は改善できるが、窒素酸化物浄化開始温度は200
℃程度と低く、かつ窒素酸化物を浄化し得る温度域が2
50〜350℃の100℃程度という狭い範囲であるた
め、実排気(100〜700℃)での使用に際しては実
排気の温度を浄化活性温度域にするための正確な温度制
御が必要となるという問題点がある。
However, zeolite-based catalysts have poor heat resistance and low nitrogen oxide purifying activity in an oxygen-lean atmosphere because of their stoichiometric air-fuel ratio.
There is a problem that the oxidation activity of HC and CO is low. On the other hand, in the case of a platinum-based catalyst, the above problems of the zeolite-based catalyst can be improved, but the nitrogen oxide purification start temperature is 200
The temperature range which is as low as about ℃ and which can purify nitrogen oxides is 2
Since it is a narrow range of about 100 ° C. from 50 ° C. to 350 ° C., it is necessary to accurately control the temperature of the actual exhaust gas to be within the purification activation temperature range when using the actual exhaust gas (100 ° C. to 700 ° C.). There is a problem.

【0006】本発明者らは、上記問題点を解決すべく鋭
意研究し、各種の系統的実験を重ねた結果、本発明を成
すに至ったものである。
The inventors of the present invention have conducted intensive studies to solve the above problems, and have conducted various systematic experiments. As a result, the present invention has been accomplished.

【0007】本発明は、窒素酸化物浄化開始温度が28
0℃以上という高温で、活性を示す温度範囲(浄化率が
10%以上である温度範囲)が100℃以上と広範囲で
ある窒素酸化物還元触媒の提供を目的とする。また、本
発明は、浄化開始温度が200℃付近で、活性を示す温
度範囲が200℃以上の広範囲にわたり窒素酸化物の浄
化を可能とする窒素酸化物還元触媒の使用方法の提供を
目的とする。
According to the present invention, the nitrogen oxide purification starting temperature is 28
It is an object of the present invention to provide a nitrogen oxide reduction catalyst in which a temperature range (a temperature range in which a purification rate is 10% or more) showing activity at a high temperature of 0 ° C. or more is as wide as 100 ° C. or more. Another object of the present invention is to provide a method for using a nitrogen oxide reduction catalyst which enables purification of nitrogen oxides over a wide range in which the purification start temperature is around 200 ° C. and the temperature range showing activity is 200 ° C. or more. .

【0008】[0008]

【課題を解決するための手段】(第1発明の構成)本第
1発明の窒素酸化物還元触媒は、シリカよりなる多孔質
担体と、該多孔質担体に担持した、アルカリ金属から選
ばれる1種以上の金属と、該多孔質担体に担持した白金
およびモリブデンと、からなり、前記モリブデンの担持
量は白金の担持量に対しモル比で3以上、前記アルカリ
金属の担持量は白金の担持量に対しモル比で0.001
〜3.8であることを特徴とする。
Means for Solving the Problems (Constitution of the First Invention) The nitrogen oxide reduction catalyst of the first invention is a porous carrier made of silica and an alkali metal supported on the porous carrier. At least three kinds of metals, platinum and molybdenum supported on the porous carrier, and the amount of molybdenum supported is at least 3 in molar ratio with respect to the amount of platinum supported, and the amount of supported alkali metal is the amount of platinum supported 0.001 in molar ratio to
33.8 .

【0009】本発明において、多孔質担体としては酸化
珪素(シリカ;SiO 2 )を用いることができる。ま
た、白金の担持量はとくに限定しない。通常担持される
量であればよい。白金に対するモリブデンの担持量がモ
ル比で3未満、または白金に対するアルカリ金属の担持
量がモル比で0.001未満のときは、白金、モリブデ
ン、アルカリ金属の相互作用が弱く、このため窒素酸化
物浄化開始温度が280℃未満に低下するか、もしくは
活性を示す温度範囲(浄化率が10%以上である温度範
囲)が100℃より狭くなるために好ましくない。
In the present invention, the porous carrier may be oxidized
Silicon (silica; SiO 2 ) can be used. The amount of platinum carried is not particularly limited. Any amount that is normally carried may be used. When the supported amount of molybdenum to platinum is less than 3 in a molar ratio or the supported amount of alkali metal to platinum is less than 0.001 in a molar ratio, the interaction between platinum, molybdenum, and the alkali metal is weak, so that the nitrogen oxide It is not preferable because the purification start temperature drops below 280 ° C. or the temperature range showing the activity (temperature range where the purification rate is 10% or more) becomes narrower than 100 ° C.

【0010】白金に対するモリブデンの担持量がモル比
で3以上、白金に対するアルカリ金属の担持量がモル比
で0.001以上のときは、触媒表面にPt−Mo−ア
ルカリ金属の相互作用サイトが多量に存在するため、窒
素酸化物浄化開始温度が280℃以上という高温で、活
性を示す温度範囲も100℃以上の広範囲にわたって活
性を呈することができる。
When the amount of molybdenum supported on platinum is 3 or more in molar ratio and the amount of alkali metal supported on platinum is 0.001 or more in molar ratio, a large amount of Pt-Mo-alkali metal interaction sites on the catalyst surface. Therefore, the activity can be exhibited over a wide range of temperature, at which the nitrogen oxide purification starting temperature is as high as 280 ° C. or more, and the activity is as high as 100 ° C. or more.

【0011】アルカリ金属の担持量が15を越えると、
該アルカリ金属によりSiO2 の構造が破壊され、比表
面積が低下すると推定されるために好ましくない。モリ
ブデンの担持量は、白金に対してモル比で50以上でも
効果はあるが、効果の増大はほとんどない。
When the amount of alkali metal carried exceeds 15,
It is not preferable because the structure of SiO 2 is destroyed by the alkali metal and the specific surface area is estimated to be reduced. Although the molybdenum loading is effective even if the molar ratio with respect to platinum is 50 or more, the effect is hardly increased.

【0012】(第2発明の構成)本第2発明の窒素酸化
物還元触媒の使用方法は、本第1発明の窒素酸化物還元
触媒を浄化活性温度域が250〜350℃である窒素酸
化物浄化用触媒(補助触媒)の上流側または下流側に配
置して窒素酸化物と接触させることを特徴とする(図
1)。
(Constitution of the Second Invention) The method for using the nitrogen oxide reduction catalyst of the second invention is characterized in that the nitrogen oxide reduction catalyst of the first invention has a purifying active temperature range of 250 to 350 ° C. It is arranged upstream or downstream of a purification catalyst (auxiliary catalyst) and is brought into contact with nitrogen oxides (FIG. 1).

【0013】補助触媒としては、浄化活性温度域が25
0〜350℃であれば限定はなく、例えば、アルミナ、
シリカ系の多孔質担体に白金、ロジウム(Rh)、パラ
ジウム(Pd)などの貴金属を担持したものを使用する
ことができる。補助触媒として使用する多孔質担体の種
類、物性値についてとくに限定はなく、従来から触媒用
として使用されている任意の担体を用いることができ
る。
As the auxiliary catalyst, the purifying active temperature range is 25
There is no limitation as long as it is 0 to 350 ° C., for example, alumina,
A carrier in which a noble metal such as platinum, rhodium (Rh) or palladium (Pd) is supported on a silica-based porous carrier can be used. The type and physical properties of the porous carrier used as the auxiliary catalyst are not particularly limited, and any carrier conventionally used for a catalyst can be used.

【0014】[0014]

【作用】[Action]

(第1発明の作用)本発明の窒素酸化物還元触媒が、高
温域で広い温度範囲にわたり優れた浄化活性を発揮する
理由は明確ではないが、以下の如くであると推定され
る。
(Operation of the First Invention) The reason why the nitrogen oxide reduction catalyst of the present invention exhibits excellent purification activity over a wide temperature range in a high temperature range is not clear, but is presumed to be as follows.

【0015】多孔質担体上で、PtはMo粒子の中に取
り込まれた形で安定化し、Pt近傍のMoは低い原子価
状態あるいは0価となり、Ptとバイメタル化した状態
で存在する。ここで、Moの働きは、化1に示す相互作
用を通じて、Ptの電子密度を変化させることである。
On the porous carrier, Pt is stabilized by being incorporated into Mo particles, and Mo near Pt is in a low valence state or zero valence, and exists in a bimetallic state with Pt. Here, the function of Mo is to change the electron density of Pt through the interaction shown in Chemical formula 1.

【0016】[0016]

【化1】 Embedded image

【0017】この相互作用により、Mo上での還元剤
であるHCの吸着および活性化、Pt上での活性化さ
れたHCとNOとの反応によるNOの還元、の2つのス
テップに対してMo、Ptそれぞれのサイトが効果的に
機能するものと考えられる。このような分割化された機
能のサイクルにより、Pt単独の場合とは異なる触媒活
性を発現するものと推定される。
By this interaction, Mo is adsorbed and activated on Mo as a reducing agent, and NO is reduced by the reaction between activated HC and NO on Pt. , Pt are considered to function effectively. It is presumed that such a cycle of the divided functions expresses a different catalytic activity from that of Pt alone.

【0018】また、アルカリ金属の働きは、多孔質担体
上の水酸基とイオン交換することによりPtとMoの相
互作用を密接にさせること、あるいは、Pt−Mo相互
作用体に対して電子的影響を及ぼすことである。このよ
うな相互作用により、NOからNO2 への酸化は抑制さ
れ、HCとの反応選択性が高まるため、高温でのNOX
浄化活性に寄与するものと推定される。
The function of the alkali metal is to make the interaction between Pt and Mo close by ion exchange with the hydroxyl group on the porous carrier, or to reduce the electronic influence on the Pt-Mo interactant. Is to exert. Such interaction, oxidation of NO to NO 2 is suppressed, since the reaction selectivity with HC is increased, NO X at a high temperature
It is presumed to contribute to purification activity.

【0019】担持されるMoの量がPtの担持量に対し
モル比で3以上であり、かつ、アルカリ金属の担持量が
Ptの担持量に対しモル比で0.001〜15の範囲で
あるとき、PtはMo粒子の中に取り囲まれた形で安定
化することができ、上記のようなPt、Mo、アルカリ
金属の効果が発揮される。このとき、形成されるPt−
Moバイメタル体による前記2元反応が効果的に進行
し、窒素酸化物浄化開始温度が280℃以上という高温
で、活性を示す温度域が100℃以上と広範囲で優れた
還元浄化作用を示すものと推定される。
The amount of Mo to be supported is 3 or more in molar ratio with respect to the amount of Pt supported, and the amount of alkali metal supported is in the range of 0.001 to 15 in molar ratio to the amount of Pt supported. At this time, Pt can be stabilized in a form surrounded by Mo particles, and the effects of Pt, Mo, and alkali metal as described above are exerted. At this time, the formed Pt-
The binary reaction by the Mo bimetallic body proceeds effectively, and the nitrogen oxide purification start temperature is as high as 280 ° C. or higher, and the temperature range showing the activity is 100 ° C. or more, which shows excellent reduction purification action in a wide range. Presumed.

【0020】(第2発明の作用)本第1発明の窒素酸化
物還元触媒は、窒素酸化物浄化開始温度が280℃とい
う高温で、活性を示す温度範囲が100℃以上と広範囲
であるために、浄化活性温度域が250〜350℃であ
る従来の窒素酸化物浄化用触媒と組み合わせて使用すれ
ば、広い温度範囲にわたって窒素酸化物を還元浄化でき
る。この場合、温度範囲が250〜350℃においては
窒素酸化物の浄化活性は従来の窒素酸化物浄化用触媒と
変わらない。
(Operation of the Second Invention) Since the nitrogen oxide reduction catalyst of the first invention has a high temperature of starting nitrogen oxide purification of 280 ° C. and has a wide temperature range of 100 ° C. or higher, it exhibits activity. When used in combination with a conventional nitrogen oxide purifying catalyst having a purifying activity temperature range of 250 to 350 ° C., nitrogen oxides can be reduced and purified over a wide temperature range. In this case, in the temperature range of 250 to 350 ° C., the activity of purifying nitrogen oxides is not different from that of the conventional nitrogen oxide purifying catalyst.

【0021】[0021]

【発明の効果】本第1発明の窒素酸化物還元触媒によれ
ば、窒素酸化物浄化開始温度が280℃以上という高温
で、活性を示す温度範囲が100℃以上にわたって窒素
酸化物を効果的に還元浄化することができる。また、本
第2発明の窒素酸化物還元触媒の使用方法によれば、浄
化開始温度が200℃付近で、活性を示す温度範囲が2
00℃以上の広範囲にわたり窒素酸化物を効果的に還元
浄化することができる。
According to the nitrogen oxide reduction catalyst of the first aspect of the present invention, the nitrogen oxide purification starting temperature is as high as 280 ° C. or higher, and the temperature range in which the activity is exhibited is 100 ° C. or higher. It can be reduced and purified. Further, according to the method for using the nitrogen oxide reduction catalyst of the second invention, the purification start temperature is around 200 ° C., and the temperature range showing the activity is 2
Nitrogen oxides can be effectively reduced and purified over a wide range of 00 ° C or higher.

【0022】[0022]

【実施例】以下、実施例により本発明を詳しく説明す
る。
The present invention will be described below in detail with reference to examples.

【0023】(Pt−Mo−アルカリ金属/SiO2
媒の調製)アルカリ金属の担持量が表1に示した値にな
るように調製した所定濃度の硝酸リチウム、酢酸ナトリ
ウム、酢酸カリウム水溶液を準備し、これに粉末状のS
iO2 担体を浸漬し、蒸発乾固させた後、500℃で5
時間焼成し、リチウム(Li)、ナトリウム(Na)、
カリウム(K)担持量が表1中、No.1〜No.10
に示す値であるアルカリ金属担持触媒を得た。
(Preparation of Pt-Mo-alkali metal / SiO 2 catalyst) An aqueous solution of lithium nitrate, sodium acetate, and potassium acetate was prepared at a predetermined concentration so that the amount of alkali metal supported was as shown in Table 1. , With powdered S
After immersing the iO 2 carrier and evaporating it to dryness,
Firing for hours, lithium (Li), sodium (Na),
The amount of potassium (K) supported in Table 1 was No. 1 to No. 10
An alkali metal-supported catalyst having the following values was obtained.

【0024】次に、モリブデンの担持量が表1に示した
値になるように調製した所定濃度のモリブデン酸アンモ
ニウム水溶液を準備し、これに上記アルカリ金属担持触
媒を浸漬し、蒸発乾固させた後、700℃で3時間焼成
し、モリブデンの担持量が白金に対しモル比で表1中、
No.1〜No.10に示す3〜50であるMo−アル
カリ金属担持触媒を調製した。
Next, an aqueous solution of ammonium molybdate having a predetermined concentration was prepared so that the amount of molybdenum supported was as shown in Table 1, and the above-mentioned alkali metal supported catalyst was immersed in the aqueous solution and evaporated to dryness. After that, the mixture was calcined at 700 ° C. for 3 hours.
No. 1 to No. A Mo-alkali metal-supported catalyst of 3 to 50 shown in No. 10 was prepared.

【0025】[0025]

【表1】 [Table 1]

【0026】次に、上記Mo−アルカリ金属担持触媒
を、1.7wt%の白金が担持されるように調製した所
定濃度のジニトロジアミノ白金の水溶液200ccに浸
漬し、蒸発乾固させた後、500℃で5時間焼成して白
金を担持させ、Pt−Mo−アルカリ金属/SiO2
らなる本実施例の触媒No.1〜No.10を得た。
Next, the Mo-alkali metal-supported catalyst is immersed in 200 cc of an aqueous solution of dinitrodiaminoplatinum having a predetermined concentration prepared so that 1.7 wt% of platinum is supported, and evaporated to dryness. Baked at 5 ° C. for 5 hours to support platinum, and the catalyst No. of the present example composed of Pt—Mo—alkali metal / SiO 2 . 1 to No. 10 was obtained.

【0027】白金に対するモリブデンの担持量がモル比
で表1中に示す0、1、2であること以外は上記実施例
と同様の方法により、比較例の触媒No.11、No.
12、No.13を調製した。
The catalyst No. of the comparative example was prepared in the same manner as in the above example except that the amount of molybdenum supported on platinum was 0, 1, and 2 shown in Table 1 in molar ratio. 11, No.
12, No. 13 was prepared.

【0028】アルカリ金属を担持させないこと以外は上
記実施例と同様の方法により、比較例の触媒No.14
を調製した。
Except that no alkali metal is supported, the catalyst of Comparative Example was prepared in the same manner as in the above example. 14
Was prepared.

【0029】白金に対するアルカリ金属の担持量がモル
比で18.9であること以外は上記実施例と同様の方法
により、比較例の触媒No.15を調製した。
The catalyst No. of the comparative example was prepared in the same manner as in the above example except that the amount of alkali metal supported on platinum was 18.9 in molar ratio. 15 were prepared.

【0030】(Pt/Al2 3 触媒の調製)白金担持
量が1.7wt%となるように調製した所定濃度のジニ
トロジアミノ白金の水溶液に粉末状のアルミナ(Al2
3 )を浸漬し、蒸発乾固させた後、500℃で5時間
焼成し、Pt/Al2 3 からなる比較例の触媒No.
16を得た。
(Preparation of Pt / Al 2 O 3 catalyst) Powdered alumina (Al 2 O 3 ) was added to an aqueous solution of dinitrodiaminoplatinum having a predetermined concentration prepared so that the amount of supported platinum was 1.7 wt%.
O 3) was immersed and allowed to dryness, and calcined 5 hours at 500 ° C., the catalyst of Comparative Example consisting of Pt / Al 2 O 3 No.
16 was obtained.

【0031】(Pt−Mo/Al2 3 触媒の調製)担
体をAl2 3 に変えたこと以外は前記したNo.14
の触媒の調製法に準じ、Pt−Mo/Al2 3 からな
る比較例の触媒No.17を調製した。
(Preparation of Pt-Mo / Al 2 O 3 catalyst) The above-mentioned No. 2 was prepared except that the carrier was changed to Al 2 O 3 . 14
According to the method of preparing the catalyst No. 3 , the catalyst No. of Comparative Example composed of Pt-Mo / Al 2 O 3 was used. 17 was prepared.

【0032】(Pt−Mo−Na/Al2 3 触媒の調
製)担体をAl2 3 に変えたこと以外は前記したPt
−Mo−アルカリ金属/SiO2 触媒の調製法に準じ、
Pt−Mo−Na/Al2 3 からなる比較例の触媒N
o.18を調製した。
(Preparation of Pt-Mo-Na / Al 2 O 3 catalyst) The above-described Pt was used except that the carrier was changed to Al 2 O 3.
-Mo- analogously to preparation of alkali metal / SiO 2 catalyst,
Pt-Mo-Na / Al 2 O consists of 3 Comparative example catalyst N
o. 18 was prepared.

【0033】(性能評価試験1)表1に示した触媒を圧
粉成形により直径が300〜700μmのペレット状に
し、このペレット状の触媒0.5gを石英製の反応管に
詰めた。この反応管に、表2に示す、空燃比(A/F)
18相当の排気組成を有するモデルガスを流速3.3l
/minで流し、窒素酸化物(NO)の還元浄化活性を
排気ガス分析計により調査した。
(Performance Evaluation Test 1) The catalysts shown in Table 1 were formed into a pellet having a diameter of 300 to 700 μm by powder compaction, and 0.5 g of the pelletized catalyst was packed in a quartz reaction tube. The air-fuel ratio (A / F) shown in Table 2 was added to this reaction tube.
A flow rate of 3.3 l of model gas having an exhaust composition equivalent to 18
/ Min, and the activity of reducing and purifying nitrogen oxides (NO) was examined by an exhaust gas analyzer.

【0034】[0034]

【表2】 [Table 2]

【0035】(性能評価試験2)表1に示した触媒を圧
粉成形により直径が300〜700μmのペレット状に
し、このペレット状の触媒0.5gを石英製の反応管に
詰めた。この反応管に、表3に示す、空燃比が理論空燃
比14.7近傍の排気組成を有するモデルガスを流速
3.3l/minで流し、窒素酸化物(NO)を排気ガ
ス分析計により調査し、NO浄化活性の空燃比特性を調
査した。
(Performance Evaluation Test 2) The catalysts shown in Table 1 were formed into a pellet having a diameter of 300 to 700 μm by powder compaction, and 0.5 g of the pelletized catalyst was packed in a quartz reaction tube. A model gas having an exhaust gas composition having an air-fuel ratio close to the stoichiometric air-fuel ratio shown in Table 3 at a flow rate of 3.3 l / min shown in Table 3 was flown at 3.3 l / min, and nitrogen oxides (NO) were investigated by an exhaust gas analyzer. Then, the air-fuel ratio characteristics of the NO purification activity were investigated.

【0036】[0036]

【表3】 [Table 3]

【0037】(性能評価試験1の結果)図2は、Pt−
Mo−Na/SiO2 からなる本実施例の触媒(No.
4)、ならびに比較例の触媒である、Pt−Na/Si
2 (No.11)、Pt/Al2 3 (No.1
6)、およびPt−Mo/Al2 3 (No.17)触
媒についての性能評価試験結果を示す。横軸は入りガス
温度、縦軸は窒素酸化物浄化率を示す。この結果より、
Pt−Mo−Na/SiO2 からなる本実施例の触媒
は、350〜600℃の範囲の温度域にわたって窒素酸
化物を還元浄化できることがわかる。
(Results of Performance Evaluation Test 1) FIG.
The catalyst of this example composed of Mo—Na / SiO 2 (No.
4) and Pt-Na / Si, which is a catalyst of a comparative example
O 2 (No. 11), Pt / Al 2 O 3 (No. 1)
6) and the results of performance evaluation tests on Pt-Mo / Al 2 O 3 (No. 17) catalyst. The horizontal axis shows the incoming gas temperature and the vertical axis shows the nitrogen oxide purification rate. From this result,
The catalyst of this embodiment having the Pt-Mo-Na / SiO 2 is found to be capable of reducing purify nitrogen oxides over a temperature range in the range of 350 to 600 ° C..

【0038】図3は、Pt−Mo−Na/SiO2 から
なり、Ptに対するMoの担持量がモル比で3以上であ
る本実施例の触媒(No.1〜No.6)、ならびに、
Pt−Mo−Na/SiO2 からなり、Ptに対するM
oの担持量がモル比で3未満である比較例の触媒(N
o.12、No.13)、ならびにPt−Na/SiO
2 からなる比較例の触媒(No.11)についての性能
評価試験結果を示す。この結果より、本実施例の触媒は
窒素酸化物浄化開始温度が280℃以上という高温で、
活性を示す温度範囲が100℃以上にわたって窒素酸化
物に対して優れた浄化能力を有していることがわかる。
なお、本実施例では、Ptに対するMoの担持量はモル
比で最大50までであるが、50以上の場合でも窒素酸
化物に対してなお高い浄化活性を示した。
FIG. 3 shows the catalysts of this example (No. 1 to No. 6) which consist of Pt--Mo--Na / SiO 2 and in which the amount of Mo supported on Pt is 3 or more in molar ratio, and
It is composed of Pt-Mo-Na / SiO 2 and has an M
The catalyst of Comparative Example (N
o. 12, No. 13), and Pt-Na / SiO
The results of a performance evaluation test on the catalyst of Comparative Example No. 2 (No. 11) are shown. From this result, the catalyst of the present embodiment has a high nitrogen oxide purification start temperature of 280 ° C. or higher,
It can be seen that the catalyst has excellent purification ability for nitrogen oxides over a temperature range of 100 ° C. or more in which the activity is exhibited.
In this example, the supported amount of Mo with respect to Pt was up to 50 in molar ratio, but even when it was 50 or more, still higher purification activity for nitrogen oxides was exhibited.

【0039】図4は、Pt−Mo−Na/SiO2 から
なり、Ptに対するNaの担持量がモル比で0.41、
0.19、3.8である本実施例の触媒(順に、No.
4、No.7、No.8)、並びにPtに対するNaの
担持量がモル比で0、18.9である比較例の触媒(N
o.14、No.15)についての性能評価試験結果を
示す。この結果より、本実施例の触媒は、窒素酸化物浄
化開始温度が280℃以上という高温で、活性を示す温
度範囲が200℃以上にわたって窒素酸化物に対して優
れた浄化能力を有していることがわかる。
FIG. 4 shows that Pt-Mo-Na / SiO 2 was used, and the amount of Na supported on Pt was 0.41 in molar ratio,
The catalysts of this example, which are 0.19 and 3.8 (in order, No.
4, no. 7, no. 8), and a catalyst (N) in which the supported amount of Na with respect to Pt is 0,18.9 in molar ratio.
o. 14, No. 15 shows the performance evaluation test results for 15). From these results, the catalyst of the present example has an excellent purification ability for nitrogen oxides at a high temperature of starting nitrogen oxide purification of 280 ° C. or more, and over a temperature range of 200 ° C. or more showing activity. You can see that.

【0040】表4は、本実施例の触媒(No.1〜1
0)および比較例の触媒(No.11〜18)について
の性能評価試験結果を示す。なお、本評価試験におい
て、測定は最高600℃まで行った。
Table 4 shows the catalysts of this example (Nos. 1 to 1).
0) and the performance evaluation test results for the catalysts of Comparative Examples (Nos. 11 to 18). In this evaluation test, the measurement was performed up to a maximum of 600 ° C.

【0041】[0041]

【表4】 [Table 4]

【0042】この結果より、本実施例の触媒は、窒素酸
化物浄化開始温度が280℃以上という高温で、活性を
示す温度範囲が100℃以上にわたって窒素酸化物に対
して優れた浄化能力を有していることがわかる。
From these results, it can be seen that the catalyst of this embodiment has an excellent nitrogen oxide purifying ability over a temperature range of 100 ° C. or higher at a starting temperature of 280 ° C. or higher. You can see that it is doing.

【0043】(性能評価試験2の結果)図5は、Pt−
Mo−Na/SiO2 からなる本実施例の触媒(No.
4、No.7、No.8)、ならびに比較例の触媒であ
る、Pt−Na/SiO2 (No.11)、Pt−Mo
/SiO2 (No.14)触媒についての性能評価試験
結果を示す(入りガス温度:450℃)。図中、横軸L
ambdaは、理論空燃比14.7に対する空燃比の比
率(Lambda=(空燃比)/14.7)、縦軸はN
O浄化率を示す。
(Results of Performance Evaluation Test 2) FIG.
The catalyst of this example composed of Mo—Na / SiO 2 (No.
4, no. 7, no. 8) and Pt-Na / SiO 2 (No. 11), Pt-Mo
The results of a performance evaluation test on the / SiO 2 (No. 14) catalyst are shown (inlet gas temperature: 450 ° C.). In the figure, the horizontal axis L
ambda is the ratio of the air-fuel ratio to the stoichiometric air-fuel ratio of 14.7 (Lambda = (air-fuel ratio) /14.7), and the vertical axis is N
Shows the O purification rate.

【0044】この結果より、Pt−Mo−Na/SiO
2 からなる本実施例の触媒は、比較例の触媒に比べ、広
い空燃比範囲において優れた浄化活性を示すことがわか
る。
From these results, it was found that Pt-Mo-Na / SiO
It can be seen that the catalyst of Example 2 composed of No. 2 exhibits excellent purification activity in a wide air-fuel ratio range as compared with the catalyst of Comparative Example.

【0045】図6は、Pt−Mo−Na/SiO2 から
なる本実施例の触媒(No.4)を上流側に、Pt−A
2 3 からなる比較例の触媒(No.16)を補助触
媒として下流側に配置して評価試験を行った結果を示
す。この結果より、本実施例の触媒と、比較例の従来の
触媒とをそれぞれ上流、下流側に配置して使用すること
により、窒素酸化物浄化開始温度が200℃付近で、活
性を示す温度範囲が350℃以上の広範囲にわたり窒素
酸化物に対して優れた浄化能力を有する触媒となること
がわかる。
FIG. 6 shows that the catalyst (No. 4) of the present embodiment composed of Pt—Mo—Na / SiO 2 was placed upstream of Pt—A
The result of an evaluation test performed by arranging a catalyst (No. 16) of Comparative Example made of l 2 O 3 on the downstream side as an auxiliary catalyst is shown. From these results, by using the catalyst of the present example and the conventional catalyst of the comparative example on the upstream and downstream sides, respectively, the temperature range where the nitrogen oxide purification start temperature is around 200 ° C. and the activity is exhibited. It can be seen that the catalyst has excellent purification ability for nitrogen oxides over a wide range of 350 ° C. or more.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本第2発明を示す模式図である。FIG. 1 is a schematic view showing the second invention.

【図2】本第1発明に係る実施例の触媒と、比較例の触
媒の性能評価試験1についての結果を示す図である。
FIG. 2 is a diagram showing the results of a performance evaluation test 1 of a catalyst of an example according to the first invention and a catalyst of a comparative example.

【図3】本第1発明に係る実施例の触媒と、比較例の触
媒の性能評価試験1についての結果を示す図である。
FIG. 3 is a diagram showing the results of a performance evaluation test 1 of a catalyst of an example according to the first invention and a catalyst of a comparative example.

【図4】本第1発明に係る実施例の触媒と、比較例の触
媒の性能評価試験1についての結果を示す図である。
FIG. 4 is a view showing the results of a performance evaluation test 1 of a catalyst of an example according to the first invention and a catalyst of a comparative example.

【図5】本第1発明に係る実施例の触媒と、比較例の触
媒の性能評価試験2についての結果を示す図である。
FIG. 5 is a diagram showing the results of a performance evaluation test 2 of a catalyst of an example according to the first invention and a catalyst of a comparative example.

【図6】本第2発明に係る実施例の触媒の性能評価試験
1についての結果を示す図である。
FIG. 6 is a diagram showing the results of a performance evaluation test 1 of the catalyst of the example according to the second invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松本 伸一 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (56)参考文献 特開 平2−122831(JP,A)   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Shinichi Matsumoto               1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor               Dosha Co., Ltd.                (56) References JP-A-2-122831 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 シリカよりなる多孔質担体と、 該多孔質担体に担持した、アルカリ金属から選ばれる1
種以上の金属と、 該多孔質担体に担持した白金およびモリブデンと、から
なり、 前記モリブデンの担持量は白金の担持量に対しモル比で
3以上、前記アルカリ金属の担持量は白金の担持量に対
しモル比で0.001〜3.8であることを特徴とする
窒素酸化物還元触媒。
1. A porous carrier made of silica, and one selected from alkali metals supported on the porous carrier.
At least three kinds of metals, and platinum and molybdenum supported on the porous carrier, wherein the supported amount of molybdenum is 3 or more in molar ratio with respect to the supported amount of platinum, and the supported amount of the alkali metal is the supported amount of platinum. A nitrogen oxide reduction catalyst having a molar ratio of from 0.001 to 3.8 with respect to
【請求項2】 請求項1記載の窒素酸化物還元触媒を酸
素過剰雰囲気下で、浄化活性温度域が250〜350℃
である窒素酸化物浄化用触媒の上流側または下流側に配
置して窒素酸化物と接触させることを特徴とする窒素酸
化物還元触媒の使用方法。
2. The purification activity temperature range of the nitrogen oxide reduction catalyst according to claim 1 in an oxygen-excess atmosphere is from 250 to 350 ° C.
A method for using a nitrogen oxide reduction catalyst, wherein the catalyst is disposed upstream or downstream of the nitrogen oxide purification catalyst and brought into contact with nitrogen oxide.
JP34064393A 1993-12-07 1993-12-07 Nitrogen oxide reduction catalyst and method of using the same Expired - Fee Related JP3538214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34064393A JP3538214B2 (en) 1993-12-07 1993-12-07 Nitrogen oxide reduction catalyst and method of using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34064393A JP3538214B2 (en) 1993-12-07 1993-12-07 Nitrogen oxide reduction catalyst and method of using the same

Publications (2)

Publication Number Publication Date
JPH07155602A JPH07155602A (en) 1995-06-20
JP3538214B2 true JP3538214B2 (en) 2004-06-14

Family

ID=18338941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34064393A Expired - Fee Related JP3538214B2 (en) 1993-12-07 1993-12-07 Nitrogen oxide reduction catalyst and method of using the same

Country Status (1)

Country Link
JP (1) JP3538214B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4144174B2 (en) * 2000-10-25 2008-09-03 トヨタ自動車株式会社 Exhaust gas purification device

Also Published As

Publication number Publication date
JPH07155602A (en) 1995-06-20

Similar Documents

Publication Publication Date Title
JPH0810575A (en) Nitrogen oxides reducing method
JPS6135897B2 (en)
JP2773428B2 (en) Exhaust gas purification method
JP3952617B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JP3409894B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3685463B2 (en) Exhaust gas purification catalyst
JP3789231B2 (en) Exhaust gas purification catalyst
JP3555694B2 (en) Exhaust gas purification device
JP3488487B2 (en) Exhaust gas purification method
JPH07155601A (en) Exhaust gas purifying catalyst
JP3446915B2 (en) Exhaust gas purification catalyst
JP3538214B2 (en) Nitrogen oxide reduction catalyst and method of using the same
JP5094199B2 (en) Exhaust gas purification device
JPH07171349A (en) Exhaust gas purification
JP3551346B2 (en) Exhaust gas purification equipment
JP3626999B2 (en) Exhaust gas purification material and exhaust gas purification method
JP3965793B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JPS5820307B2 (en) Catalyst for vehicle exhaust gas purification
JP2598817B2 (en) Exhaust gas purification catalyst
JP4135698B2 (en) Method for producing sulfur oxide absorbent
JPH0924247A (en) Catalyst for purifying exhaust gas
JP2700386B2 (en) Exhaust gas purifying material and exhaust gas purifying method
JP3839860B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH0871424A (en) Catalyst for purification of exhaust gas
JP2000140644A (en) Catalyst for purifying exhaust gas and purification of exhaust gas

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040319

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080326

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees