JP4144174B2 - Exhaust gas purification device - Google Patents

Exhaust gas purification device Download PDF

Info

Publication number
JP4144174B2
JP4144174B2 JP2000325039A JP2000325039A JP4144174B2 JP 4144174 B2 JP4144174 B2 JP 4144174B2 JP 2000325039 A JP2000325039 A JP 2000325039A JP 2000325039 A JP2000325039 A JP 2000325039A JP 4144174 B2 JP4144174 B2 JP 4144174B2
Authority
JP
Japan
Prior art keywords
storage
reduction catalyst
temperature
exhaust gas
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000325039A
Other languages
Japanese (ja)
Other versions
JP2002126453A (en
Inventor
一伸 石橋
教夫 石川
優一 祖父江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2000325039A priority Critical patent/JP4144174B2/en
Publication of JP2002126453A publication Critical patent/JP2002126453A/en
Application granted granted Critical
Publication of JP4144174B2 publication Critical patent/JP4144174B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は自動車の排気系などに用いられる排ガス浄化装置に関し、詳しくは幅広い温度域で排ガス中のNOx を吸蔵還元して浄化できる排ガス浄化装置に関する。
【0002】
【従来の技術】
従来より自動車の排ガス浄化用触媒として、理論空燃比(ストイキ)において排ガス中のCO及びHCの酸化とNOx の還元とを同時に行って浄化する三元触媒が用いられている。このような三元触媒としては、例えばコーディエライトなどからなる耐熱性基材にγ−アルミナからなる多孔質担体層を形成し、その多孔質担体層に白金(Pt)、ロジウム(Rh)などの貴金属を担持させたものが広く知られている。
【0003】
一方、近年、地球環境保護の観点から、自動車などの内燃機関から排出される排ガス中の二酸化炭素(CO2 )が問題とされ、その解決策として酸素過剰雰囲気において希薄燃焼させるいわゆるリーンバーンが有望視されている。このリーンバーンにおいては、燃料の使用量が低減され、その燃焼排ガスであるCO2 の発生を抑制することができる。
【0004】
これに対し、従来の三元触媒は、空燃比が理論空燃比(ストイキ)において排ガス中のCO,HC,NOx を同時に酸化・還元し浄化するものであって、リーンバーン時の排ガスの酸素過剰雰囲気下においては、NOx の還元除去に対して充分な浄化性能を示さない。このため、酸素過剰雰囲気下においてもNOx を効率よく浄化しうる触媒及び浄化システムの開発が望まれていた。
【0005】
そこでリーンバーンにおいて、常時は酸素過剰のリーン条件で燃焼させ、一時的にストイキ〜リッチ条件とすることにより排ガスを還元雰囲気としてNOx を還元浄化するシステムが開発された。そしてこのシステムに最適な、リーン雰囲気でNOx を吸蔵し、ストイキ〜リッチ雰囲気で吸蔵されたNOx を放出するNOx 吸蔵材を用いたNOx 吸蔵還元型の排ガス浄化用触媒が開発されている。
【0006】
このNOx の吸蔵・放出作用をもつNOx 吸蔵材としては、アルカリ土類金属、アルカリ金属及び希土類元素が知られ、例えば特開平5-317652号公報には、Baなどのアルカリ土類金属とPtをアルミナなどの多孔質担体に担持したNOx 吸蔵還元型触媒が提案されている。また特開平 6-31139号公報には、Kなどのアルカリ金属とPtをアルミナなどの多孔質担体に担持したNOx 吸蔵還元型触媒が提案されている。さらに特開平5-168860号公報には、Laなどの希土類元素とPtをアルミナなどの多孔質担体に担持したNOx 吸蔵還元型触媒が提案されている。
【0007】
これらのNOx 吸蔵還元型触媒を用いれば、空燃比をリーン側からパルス状にストイキ〜リッチ側となるように制御することにより、リーン側ではNOx がNOx 吸蔵材に吸蔵され、それがストイキ又はリッチ側で放出されてHCやCOなどの還元性成分と反応して浄化されるため、リーンバーンエンジンからの排ガスであってもNOx を効率良く浄化することができる。
【0008】
ところがNOx 吸蔵還元型触媒は、排ガス温度が特に 300℃〜 400℃の低温域におけるNOx 吸蔵能が不充分であり、低温域になるほどNOx 吸蔵能が低下するという不具合がある。そのため始動時や冷間時などの排ガスが低温域にある場合には、 400〜 500℃の中温域に比べてNOx 浄化能が低下するという問題があった。また排ガス温度が 500℃を超える高温域においてもNOx 吸蔵能が低下し、400〜 500℃の中温域に比べてNOx 浄化能が低下するという問題がある。
【0009】
そこで特開2000−167356号公報には、低温域におけるNOx 吸蔵能が高い低温型NOx 吸蔵還元触媒と、高温域におけるNOx 吸蔵能が高い高温型NOx 吸蔵還元触媒とを、排ガス流路に直列に並べて用いることが提案されている。この排ガス浄化装置によれば、低温域から高温域まで安定して高いNOx 吸蔵能を確保できるため、10−15モード走行時におけるNOx 浄化率が格段に向上する。
【0010】
【発明が解決しようとする課題】
NOx 及びSOx は共に酸性質である。そのためNOx を吸蔵しやすい触媒は、SOx も吸収しやすいという性質がある。また高温型NOx 吸蔵還元触媒においては、高温域でNOx を吸蔵できるようにするために、特に塩基性の強いアルカリ金属などがNOx 吸蔵材として用いられている。そのためNOx とともにSOx も吸収される。
【0011】
ところがNOx が吸蔵されて形成される硝酸塩とSOx が吸収されて形成されて形成される硫酸塩を比べると、硫酸塩の方が硝酸塩より安定であり高温域でも分解せず硫酸塩の状態を保っている。そのため高温型NOx 吸蔵還元触媒においては、NOx 吸蔵材が硫酸塩となって安定化されてしまうために、NOx 吸蔵能が回復せず高温耐久性に劣るという不具合があった。このような不具合は硫黄被毒と称されている。
【0012】
本発明はこのような事情に鑑みてなされたものであり、低温域から高温域まで安定して高いNOx 浄化能を有し、かつ耐硫黄被毒性にも優れた排ガス浄化装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
上記課題を解決する請求項1に記載の排ガス浄化装置の特徴は、Nb 2 O 5 SnO 2 Nb 2 O 5 -ZrO 2 及び Nb 2 O 5 -TiO 2 から選ばれる少なくとも一種からなる粉末とアルミナ粉末との混合物よりなる第1酸化物担体にアルカリ土類金属及びリチウムから選ばれる少なくとも一種を含むNOx 吸蔵材と貴金属とを担持してなり低温域でNOx を吸蔵還元する低温型NOx 吸蔵還元触媒と、
塩基性酸化物からなる第2酸化物担体に貴金属と少なくともアルカリ金属を含むNOx 吸蔵材とを担持してなる下層と該下層表面に形成された硫黄捕捉層とをもち高温域でNOx を吸蔵還元する高温型NOx 吸蔵還元触媒と、からなり、
排ガス流の上流側に低温型NOx 吸蔵還元触媒を配置しその下流側に高温型NOx 吸蔵還元触媒を配置してなることにある。
【0014】
【発明の実施の形態】
NOx 吸蔵材の種類によってNOx を吸蔵する温度ウィンドウが異なることがわかっている。例えばK,Naなどのアルカリ金属は 400〜 600℃の酸素過剰(リーン)雰囲気下においてNOx を効率よく吸蔵し、例えばBa,Srなどのアルカリ土類金属やLaあるいはLiは 250〜 400℃のリーン雰囲気下においてNOx を効率よく吸蔵する。なおNOx 吸蔵材の種類によってNOx 吸蔵の温度ウィンドウが異なる理由は明らかではないが、多孔質担体の酸塩基度や貴金属の種類との組合せの影響によるものであろうと考えられている。
【0015】
そして本発明の排ガス浄化装置では、低温型NOx 吸蔵還元触媒と高温型NOx 吸蔵還元触媒とを用い、排ガス流の上流側に低温型NOx 吸蔵還元触媒を配置しその下流側に高温型NOx 吸蔵還元触媒を配置している。したがってリーン雰囲気にある低温域の排ガスがこの排ガス浄化装置を通過する際には、NOx は主として低温型NOx 吸蔵還元触媒に吸蔵されるので、低温域におけるNOx 吸蔵能に優れている。
【0016】
一方、リーン雰囲気にある高温域の排ガスがこの排ガス浄化装置を通過すると、NOx は主として高温型NOx 吸蔵還元触媒に吸蔵される。したがって、低温域から高温域まで幅広い温度ウィンドウでNOx を吸蔵還元することができ、NOx 浄化性能が大幅に向上する。
【0017】
さらに高温型NOx 吸蔵還元触媒では、第2酸化物担体として塩基性酸化物を用いている。この塩基性の尺度は、担体として一般に用いられているアルミナを基準とし、アルミナより塩基性が強ければ塩基性酸化物として用いることができる。この塩基性酸化物は、NOx を化学吸着しやすいので、高温域におけるNOx 吸蔵能が一層向上する。
【0018】
そして高温型NOx 吸蔵還元型触媒は、表層に硫黄捕捉層を備えている。したがってリーン雰囲気の高温域では、SOx は硫黄捕捉層に捕捉され、下層にまで到達するのが規制される。硫黄捕捉層に捕捉されたSOx は、リッチ雰囲気とすることで還元されて放出され、硫黄捕捉層は硫黄捕捉能を回復する。これにより下層のNOx 吸蔵材の硫黄被毒が防止され、高温域におけるNOx 吸蔵能が高く維持される。
【0019】
低温型NOx 吸蔵還元触媒は、第1酸化物担体と、第1酸化物担体に担持された貴金属及びNOx 吸蔵材とから構成される。第1酸化物担体としては SO x を脱離しやすいものが望ましく、 Nb 2 O 5 及び SnO 2 の少なくとも一種を含む粉末とアルミナ粉末との混合物が用いられる。
【0020】
この第1酸化物担体は、コーディエライトあるいは金属箔などから形成されたハニカム形状の基材にコートして用いられるのが一般的であるが、ペレット状に形成してペレット触媒としてもよい。
【0021】
また貴金属としては、Pt、Rh、Pd、Irなどが例示される。この貴金属の担持量は、ハニカム形状の基材1リットル当たり 0.1〜10gとすることが好ましい。これより少ないと浄化活性が不足し、これより多く担持しても効果が飽和するとともに高価となる。
【0022】
低温型NOx 吸蔵還元触媒において、第1酸化物担体に担持されるNOx 吸蔵材としては、Ba,Be,Mg,Ca,Srなどのアルカリ土類金属から選ばれる少なくとも一種又はランタンあるいはLiを用いることが望ましい。これにより 300〜 400℃の低温域の酸素過剰雰囲気の排ガス中のNOx を効率よく吸蔵することができ、低温域のNOx 浄化能が向上する。このNOx 吸蔵材の担持量としては、ハニカム形状の基材1リットル当たり 0.1〜 0.5モルの範囲とするのが好ましい。これより少ないとNOx 吸蔵能が得られず、これより多く担持すると貴金属がNOx 吸蔵材で覆われて活性が低下する場合がある。
【0023】
高温型NOx 吸蔵還元触媒は、第2酸化物担体に貴金属と少なくともアルカリ金属を含むNOx 吸蔵材とを担持してなる下層と、下層表面に形成された硫黄捕捉層とを備えている。
【0024】
下層の塩基性酸化物からなる第2酸化物担体としては、ジルコニア、アルミナとジルコニアの混合物などを用いることができる。
【0025】
この第2酸化物担体を、コーディエライトあるいは金属箔などから形成されたハニカム形状の基材にコートし、それに貴金属とNOx 吸蔵材を担持することで下層を形成することができる。貴金属としては、Pt、Rh、Pd、Irなどが例示される。この貴金属の担持量は、ハニカム形状の基材1リットル当たり 0.1〜10gとすることが好ましい。これより少ないと浄化活性が不足し、これより多く担持しても効果が飽和するとともに高価となる。
【0026】
高温型NOx 吸蔵還元触媒の下層におけるNOx 吸蔵材としては、Na,K,Li,Rb,Cs,Frから選ばれるアルカリ金属の少なくとも一種を用いることが望ましい。これにより 400〜 600℃の高温域の酸素過剰雰囲気の排ガス中のNOx を効率よく吸蔵することができ、高温域におけるNOx 浄化能が向上する。このNOx 吸蔵材の担持量としては、ハニカム形状の基材1リットル当たり 0.1〜 0.5モルの範囲とするのが好ましい。これより少ないとNOx 吸蔵能が得られず、これより多く担持すると貴金属がNOx 吸蔵材で覆われて活性が低下する場合がある。
【0027】
下層は高温域でNOx を吸蔵できるが、SOx も吸蔵されて硫黄被毒が生じる恐れがある。そこで本発明では、下層の表面に硫黄捕捉層を形成し、SOx を捕捉して下層の硫黄被毒を防止している。この硫黄捕捉層としては、 Nb2O5、SnO2、Nb2O5-SnO2複合酸化物などSOx を物理吸着可能なものが例示される。
【0028】
硫黄捕捉層の厚さは特に制限されないが、5〜20μmの範囲が望ましい。硫黄捕捉層の厚さがこの範囲より薄くなるとSOx が下層に到達して硫黄被毒が生じる場合があり、この範囲より厚くなるとNOx が下層に到達するのが困難となって高温域におけるNOx 浄化能が低下してしまう。なお、この硫黄捕捉層には、貴金属もNOx 吸蔵材も担持しないことが望ましい。
【0029】
低温型NOx 吸蔵還元触媒及び高温型NOx 吸蔵還元触媒の少なくとも一方の担体には、セリアなどの酸素吸蔵放出材を含むことも好ましい。これによりリーン雰囲気とストイキ〜リッチ雰囲気との酸素濃度差が縮小されるため、三元活性が発現し浄化性能が一層向上する。
【0030】
本発明の排ガス浄化装置において、低温型NOx 吸蔵還元触媒と高温型NOx 吸蔵還元触媒との構成比率は特に制限されないが、それぞれの容積比で、低温型NOx 吸蔵還元触媒:高温型NOx 吸蔵還元触媒=1:20〜20:1の範囲とするのが好ましい。またコストの増大を防ぐためには、排ガス浄化装置全体として従来のNOx 吸蔵還元触媒とほぼ同量の貴金属担持量となるように構成するのが好ましい。
【0031】
低温型NOx 吸蔵還元触媒と高温型NOx 吸蔵還元触媒とは、間隔を隔てて直列に配置してもよいし、間隔がないように接して配置してもよいが、どちらかといえば間隔を隔てて配置することが好ましい。両触媒の間で排ガスの流れが乱れるため、下流側のNOx 吸蔵還元触媒に流入する排ガスの温度分布が中心部から外周部にかけて均一となり、安定した浄化性能が得られるからである。また一つのモノリス触媒に、低温型NOx 吸蔵還元触媒と高温型NOx 吸蔵還元触媒を分けて形成することもできる。
【0032】
また低温型NOx 吸蔵還元触媒の上流側に、あるいは高温型NOx 吸蔵還元触媒の下流側に、さらに三元触媒を配置してもよい。低温型NOx 吸蔵還元触媒の上流側に三元触媒を配置すれば、三元触媒における反応熱で排ガス温度が上昇するので、低温型NOx 吸蔵還元触媒又は高温型NOx 吸蔵還元触媒におけるNOx 吸蔵能が向上する場合がある。また高温型NOx 吸蔵還元触媒の下流側に三元触媒を配置すれば、高温型NOx 吸蔵還元触媒で浄化しきれなかったHC,CO及びNOx を三元触媒で浄化することができ浄化性能が一層向上する。
【0033】
【実施例】
以下、実施例及び比較例により本発明を具体的に説明する。
【0034】
(実施例1)
図1に本実施例の排ガス浄化装置を示す。この排ガス浄化装置は、一つの触媒コンバータ内の排ガス流の上流側に低温型NOx 吸蔵還元触媒1が配置され、その下流側に高温型NOx 吸蔵還元触媒2が配置されている。低温型NOx 吸蔵還元触媒1と高温型NOx 吸蔵還元触媒2とは、約10mmの間隔を隔てて直列に配置されている。
【0035】
低温型NOx 吸蔵還元触媒1は、コージェライト製のハニカム基材10と、ハニカム基材10の表面に形成された Al2O3及び Nb2O5の混合粉からなるコート層11と、コート層11に担持されPt及びRhよりなる貴金属12と、コート層11に担持されBa及びSrよりなるNOx 吸蔵材13とから構成されている。
【0036】
また高温型NOx 吸蔵還元触媒2は、コージェライト製のハニカム基材20と、ハニカム基材20の表面に形成された下層21と、下層21の表面に形成された硫黄捕捉層22とから構成されている。下層21は、ZrO2にPt及びRhよりなる貴金属23とBa及びKよりなるNOx 吸蔵材24が担持されて形成されている。また硫黄捕捉層22は Nb2O5から形成されている。
【0037】
以下、低温型NOx 吸蔵還元触媒1と高温型NOx 吸蔵還元触媒2の製造方法を説明し、それぞれの触媒の構成の詳細な説明に代える。
【0038】
<低温型NOx 吸蔵還元触媒1の調製>
Al2O3粉末と Nb2O5粉末を重量比で Al2O3: Nb2O5=5:1となるように混合し、アルミナゾル及び水と混合してスラリーを調製した。次に直径 129mm、長さ60mm、セル数 400(六角セル)のコージェライト製のハニカム基材10を用意し、上記スラリーを用いたウェットコート法によってコート層11を形成した。コート層11は、ハニカム基材1リットル当たり 200g形成された。
【0039】
コート層11が形成されたハニカム基材10に、所定濃度の酢酸バリウム水溶液の所定量を吸水させ、 250℃で1時間乾燥後 500℃で1時間焼成してBaを担持した。次いで所定濃度の酢酸ストロンチウム水溶液の所定量を吸水させ、 250℃で1時間乾燥後 500℃で1時間焼成してSrを担持した。そして重炭酸アンモニウム水溶液で処理し、担持されたBa及びSrを炭酸塩化した。Ba及びSrは、ハニカム基材10の1リットル当たりそれぞれ 0.2モル担持された。
【0040】
その後、所定濃度のジニトロジアンミン白金硝酸水溶液と硝酸ロジウム水溶液を用い、それぞれ所定量吸水後同様にしてPt及びRhを担持した。ハニカム基材10の1リットル当たりPtは 2.0g担持され、Rhは 0.5g担持された。
【0041】
<高温型NOx 吸蔵還元触媒2の調製>
ZrO2粉末とジルコニアゾル及び水を混合してスラリーを調製した。次に直径 129mm、長さ90mm、セル数 400(六角セル)のコージェライト製のハニカム基材20を用意し、上記スラリーを用いたウェットコート法によって下層21を形成した。下層21は、ハニカム基材20の1リットル当たり 180g形成された。
【0042】
下層21が形成されたハニカム基材20に、所定濃度のジニトロジアンミン白金硝酸水溶液と硝酸ロジウム水溶液を用い、それぞれ所定量吸水後同様にしてPt及びRhを担持した。ハニカム基材20の1リットル当たりPtは 2.0g担持され、Rhは 0.5g担持された。
その後所定濃度の酢酸バリウム水溶液と硝酸カリウム水溶液を用いてBaとKを担持した。Ba及びKは、ハニカム基材20の1リットル当たりそれぞれ 0.2モル担持された。
【0043】
次に、 貴金属とNOx 吸蔵材とが担持された下層21をもつハニカム基材2を Nb2O5ゾル溶液に浸漬し、引き上げて乾燥・焼成して硫黄捕捉層22を形成した。硫黄捕捉層22は、ハニカム基材2の1リットル当たり50g形成された。
【0044】
<排ガス浄化装置の形成>
上記低温型NOx 吸蔵還元触媒1と高温型NOx 吸蔵還元触媒2を、低温型NOx 吸蔵還元触媒1が排ガス流の上流側に、高温型NOx 吸蔵還元触媒2がその下流側になるように、約5mmの間隔を開けて触媒コンバータ内に配置し、本実施例の排ガス浄化装置を形成した。
【0045】
<試験>
この排ガス浄化装置を評価装置に取り付け、硫黄を500ppm含む燃料を用いてA/F=22の条件で燃焼させた排ガスを、空間速度80000h-1、入りガス温度 550℃の条件で50時間流通させる硫黄被毒処理を行った。その後、硫黄を 30ppm含む燃料を用いA/F=14の条件で燃焼させた排ガスを、空間速度80000h-1、入りガス温度 600℃の条件で10分間流通させる硫黄被毒回復処理を行った。
【0046】
硫黄被毒処理後、及び硫黄被毒回復処理後の排ガス浄化装置について、A/F=22の条件で燃焼させた排ガスを、空間速度8000h-1、入りガス温度 300℃、 400℃、 500℃及び 600℃の条件でそれぞれ流通させ、それぞれNOx 飽和吸蔵量を測定した。結果を表1に示す。
【0047】
(実施例2)
Al2O3粉末と Nb2O5粉末を重量比で Al2O3: Nb2O5=5:1となるように混合した粉末に代えて、重量比で Al2O3:SnO2=2:1となるように混合した粉末を用いたこと以外は実施例1と同様にしてコート層を形成し、実施例1と同様にして低温型NOx 吸蔵還元触媒を調製した。そして実施例1と同様の高温型NOx 吸蔵還元触媒2を用い、同様にして排ガス浄化装置を形成して同様にNOx 飽和吸蔵量を測定した。結果を表1に示す。
【0048】
(実施例3)
Al2O3粉末と Nb2O5粉末を重量比で Al2O3: Nb2O5=5:1となるように混合した粉末に代えて、重量比で Al2O3:Nb2O5-ZrO2複合酸化物=1:1となるように混合した粉末を用いたこと以外は実施例1と同様にしてコート層を形成し、実施例1と同様にして低温型NOx 吸蔵還元触媒を調製した。そして実施例1と同様の高温型NOx 吸蔵還元触媒2を用い、同様にして排ガス浄化装置を形成して同様にNOx 飽和吸蔵量を測定した。結果を表1に示す。
【0049】
(実施例4)
Al2O3粉末と Nb2O5粉末を重量比で Al2O3: Nb2O5=5:1となるように混合した粉末に代えて、重量比で Al2O3:Nb2O5-TiO2複合酸化物=1:1となるように混合した粉末を用いたこと以外は実施例1と同様にしてコート層を形成し、実施例1と同様にして低温型NOx 吸蔵還元触媒を調製した。そして実施例1と同様の高温型NOx 吸蔵還元触媒2を用い、同様にして排ガス浄化装置を形成して同様にNOx 飽和吸蔵量を測定した。結果を表1に示す。
【0050】
(実施例5)
ZrO2粉末に代えて、重量比で Al2O3:ZrO2=1:1の混合粉末を用いたこと以外は実施例1と同様にして下層を形成し、その他は実施例1と同様にして高温型NOx 吸蔵還元触媒を調製した。そして実施例1と同様の低温型NOx 吸蔵還元触媒1を用い、同様にして排ガス浄化装置を形成して同様にNOx 飽和吸蔵量を測定した。結果を表1に示す。
【0051】
(実施例6)
Al2O3粉末と Nb2O5粉末を重量比で Al2O3: Nb2O5=5:1となるように混合した粉末に代えて、重量比で Al2O3:SnO2=2:1となるように混合した粉末を用いたこと以外は実施例1と同様にしてコート層を形成し、実施例1と同様にして低温型NOx 吸蔵還元触媒を調製した。
【0052】
一方、ZrO2粉末に代えて、重量比で Al2O3:ZrO2=1:1の混合粉末を用いたこと以外は実施例1と同様にして下層を形成し、実施例1と同様にして高温型NOx 吸蔵還元触媒を調製した。
【0053】
この低温型NOx 吸蔵還元触媒と高温型NOx 吸蔵還元触媒を用いたこと以外は実施例1と同様にして排ガス浄化装置を形成し、同様にNOx 飽和吸蔵量を測定した。結果を表1に示す。
【0054】
(比較例1)
Al2O3粉末からなるコート層に貴金属とNOx 吸蔵材が実施例1の低温型NOx 吸蔵還元触媒1と同様に担持された触媒を低温型NOx 吸蔵還元触媒とし、 Al2O3粉末からなるコート層に貴金属とNOx 吸蔵材が実施例1の高温型NOx 吸蔵還元触媒2と同様に担持され硫黄捕捉層22をもたない触媒を高温型NOx 吸蔵還元触媒として、実施例1と同様に排ガス浄化装置を形成し、同様にNOx 飽和吸蔵量を測定した。結果を表1に示す。
【0055】
(比較例2)
ZrO2粉末からなるコート層に貴金属とNOx 吸蔵材が実施例1の低温型NOx 吸蔵還元触媒1と同様に担持された触媒を低温型NOx 吸蔵還元触媒とし、ZrO2粉末からなるコート層に貴金属とNOx 吸蔵材が実施例1の高温型NOx 吸蔵還元触媒2と同様に担持され硫黄捕捉層22をもたない触媒を高温型NOx 吸蔵還元触媒として、実施例1と同様に排ガス浄化装置を形成し、同様にNOx 飽和吸蔵量を測定した。結果を表1に示す。
【0056】
(比較例3)
重量比で Al2O3:ZrO2=1:1となる混合粉末からなるコート層に貴金属とNOx 吸蔵材が実施例1の低温型NOx 吸蔵還元触媒1と同様に担持された触媒を低温型NOx 吸蔵還元触媒とし、重量比で Al2O3:ZrO2=1:1となる混合粉末からなるコート層に貴金属とNOx 吸蔵材が実施例1の高温型NOx 吸蔵還元触媒2と同様に担持され硫黄捕捉層22をもたない触媒を高温型NOx 吸蔵還元触媒として、実施例1と同様に排ガス浄化装置を形成し、同様にNOx 飽和吸蔵量を測定した。結果を表1に示す。
【0057】
(比較例4)
重量比で Al2O3: Nb2O5=5:1となる混合粉末からなるコート層に貴金属とNOx 吸蔵材が実施例1の低温型NOx 吸蔵還元触媒1と同様に担持された触媒を低温型NOx 吸蔵還元触媒とし、ZrO2粉末からなるコート層に貴金属とNOx 吸蔵材が実施例1の高温型NOx 吸蔵還元触媒2と同様に担持され硫黄捕捉層22をもたない触媒を高温型NOx 吸蔵還元触媒として、実施例1と同様に排ガス浄化装置を形成し、同様にNOx 飽和吸蔵量を測定した。結果を表1に示す。
【0058】
(比較例5)
重量比で Al2O3:ZrO2=1:1となる混合粉末からなるコート層に貴金属とNOx 吸蔵材が実施例1の低温型NOx 吸蔵還元触媒1と同様に担持された触媒を低温型NOx 吸蔵還元触媒とし、実施例1の高温型NOx 吸蔵還元触媒2を高温型NOx 吸蔵還元触媒として、実施例1と同様に排ガス浄化装置を形成し、同様にNOx 飽和吸蔵量を測定した。結果を表1に示す。
【0059】
(評価)
【0060】
【表1】

Figure 0004144174
【0061】
表1より、各実施例の排ガス浄化装置は比較例に比べて硫黄被毒回復処理後のNOx 吸蔵能が大幅に向上していることがわかる。これは硫黄脱離性の高い酸化物担体からなる低温型NOx 吸蔵還元触媒を排ガス流の上流側に配置し、硫黄捕捉層をもつ高温型NOx 吸蔵還元触媒をその下流側に配置したことに起因していることが明らかである。
【0062】
例えば比較例4の浄化装置は、本発明にいう低温型NOx 吸蔵還元触媒を備えているため低温域では比較的高いNOx 吸蔵能を示すが、硫黄捕捉層をもたないため高温域におけるNOx 吸蔵能が低い。また比較例5の浄化装置では、硫黄捕捉層をもつため高温域では比較的高いNOx 吸蔵能を示すが、上流側の触媒の担体にZrO2が含まれるために塩基性酸化物となり、SOx を吸着しやすく低温域におけるNOx 吸蔵能が低い。
【0063】
しかし各実施例の浄化装置では、本発明の構成としているため、硫黄被毒処理後はNOx 吸蔵能が低いものの、硫黄被毒回復処理を行うことによりNOx 吸蔵能が容易に回復して、低温から高温まで幅広い温度域で高いNOx 吸蔵能を示している。すなわち本実施例の排ガス浄化装置によれば、空燃比をリーン側からパルス状にストイキ〜リッチ側となるように制御して用いることにより、低温から高温まで幅広い温度域でNOx を効率よく浄化することができる。
【0064】
なお、上記実施例では、低温型NOx 吸蔵還元触媒と高温型NOx 吸蔵還元触媒とを一つの触媒コンバータ内に間隔を隔てて配置したが、間隔がなく両触媒が接した構造としてもよい。また、低温型NOx 吸蔵還元触媒と高温型NOx 吸蔵還元触媒とをそれぞれ触媒コンバータ内に配置して、その二つの触媒コンバータを直列に連結することもできる。
【0065】
【発明の効果】
すなわち本発明の排ガス浄化装置によれば、低温域から高温域まで安定して高いNOx 吸蔵能を確保でき、かつ耐硫黄被毒性に優れているため長期間安定したNOx 浄化性能が得られる。
【図面の簡単な説明】
【図1】本発明の一実施例の排ガス浄化装置の構成を示す説明断面図である。
【符号の説明】
1:低温型NOx 吸蔵還元触媒 2:高温型NOx 吸蔵還元触媒
11:コート層 21:下層 22:硫黄捕捉層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purification device used for an exhaust system of an automobile, and more particularly to an exhaust gas purification device that can store and reduce NO x in exhaust gas in a wide temperature range and purify it.
[0002]
[Prior art]
Conventionally, as a catalyst for exhaust gas purification of automobiles, a three-way catalyst that purifies by performing CO and HC oxidation and NO x reduction simultaneously in exhaust gas at a stoichiometric air-fuel ratio (stoichiometric) has been used. As such a three-way catalyst, for example, a porous carrier layer made of γ-alumina is formed on a heat-resistant substrate made of cordierite or the like, and platinum (Pt), rhodium (Rh) or the like is formed on the porous carrier layer. Those carrying a noble metal are widely known.
[0003]
On the other hand, in recent years, from the viewpoint of protecting the global environment, carbon dioxide (CO 2 ) in exhaust gas discharged from internal combustion engines such as automobiles has become a problem, and so-called lean burn that makes lean combustion in an oxygen-rich atmosphere is promising as a solution. Is being viewed. In this lean burn, the amount of fuel used is reduced, and the generation of CO 2 as the combustion exhaust gas can be suppressed.
[0004]
In contrast, conventional three-way catalysts are those that simultaneously oxidize, reduce, and purify CO, HC, and NO x in exhaust gas when the air-fuel ratio is the stoichiometric air-fuel ratio (stoichiometric). In an excess atmosphere, it does not show sufficient purification performance for NO x reduction and removal. Therefore, it has been desired to develop a catalyst and a purification system that can efficiently purify NO x even in an oxygen-excess atmosphere.
[0005]
Therefore, in lean burn, a system has been developed in which NO x is reduced and purified by using exhaust gas as a reducing atmosphere by always burning under lean conditions with excess oxygen and temporarily changing to stoichiometric or rich conditions. The ideal for this system, occludes NO x in lean atmosphere, and the NO x storage-reduction type exhaust gas purifying catalyst using the NO x storage material that releases NO x occluded in the stoichiometric-rich atmosphere has been developed Yes.
[0006]
As the NO x storage material with absorbing and releasing action of the NO x, the alkaline earth metals, known alkali metal and rare earth elements, for example, JP-A-5-317652, an alkaline earth metal such as Ba Pt was supported on a porous carrier such as alumina NO x storage-and-reduction type catalyst has been proposed. Also JP-A-6-31139, NO x storage reduction catalysts of the alkali metal and Pt, such as carrying on a porous support such as alumina K has been proposed. More Hei 5-168860 discloses, NO x storage-reduction catalyst carrying a rare earth element and Pt, such as La on a porous support such as alumina have been proposed.
[0007]
By using these NO x storage reduction type catalysts, by controlling the air-fuel ratio from the lean side to the stoichiometric to rich side from the lean side, NO x is occluded by the NO x storage material on the lean side. since released in the stoichiometric or rich side are purified by reacting with reducing components such as HC and CO, it can be purified efficiently NO x even exhaust gas from a lean burn engine.
[0008]
However the NO x storage reduction catalyst is insufficient the NO x storage ability in low-temperature region of the exhaust gas temperature is particularly 300 ° C. ~ 400 ° C., there is a problem that the more the NO x storage ability becomes low temperature region is lowered. Therefore, when the exhaust gas at the time of start-up or cold time is in a low temperature range, there is a problem that the NO x purification ability is lowered as compared with the middle temperature range of 400 to 500 ° C. Further, there is a problem that the NO x storage ability is lowered even in a high temperature range where the exhaust gas temperature exceeds 500 ° C., and the NO x purification ability is lowered as compared with the middle temperature range of 400 to 500 ° C.
[0009]
Therefore JP-A-2000-167356 discloses a the NO x storage ability is high low-temperature NO x storage-and-reduction catalyst in low-temperature region, and the NO x storage ability is high high-temperature NO x storage-and-reduction catalyst in a high temperature range, the exhaust gas stream It has been proposed to use them side by side in series. According to this exhaust gas purification device, a high NO x storage capacity can be secured stably from a low temperature range to a high temperature range, and therefore the NO x purification rate during 10-15 mode traveling is significantly improved.
[0010]
[Problems to be solved by the invention]
Both NO x and SO x are acid in nature. Therefore, a catalyst that easily stores NO x has a property of easily absorbing SO x . In the high-temperature NO x storage-reduction catalyst, a particularly basic alkali metal or the like is used as the NO x storage material so that NO x can be stored in a high temperature range. Therefore, SO x is absorbed together with NO x .
[0011]
However, when the nitrate formed by occlusion of NO x and the sulfate formed by absorption of SO x are compared, the sulfate is more stable than the nitrate and does not decompose even at high temperatures. Keep. In Therefore high-temperature NO x storage-and-reduction catalysts, for the NO x storage material from being stabilized become sulfate, the NO x storage ability was a problem of poor high-temperature durability without recovery. Such a defect is called sulfur poisoning.
[0012]
The present invention has been made in view of such circumstances, and provides an exhaust gas purifying apparatus having a stable and high NO x purification ability from a low temperature range to a high temperature range and excellent in sulfur poisoning resistance. With the goal.
[0013]
[Means for Solving the Problems]
The feature of the exhaust gas purifying apparatus according to claim 1 for solving the above problem is that Nb 2 O 5 , SnO 2 , Nb 2 O 5 —ZrO 2 and Nb 2 O 5 —TiO 2 selected from an alkaline earth metal and lithium as the first oxide support made of a mixture of at least one powder and alumina powder and a low temperature type the NO x storage reduction catalyst occludes reducing NO x in low-temperature region becomes carries the the NO x storage material and the noble metal containing at least one,
The second oxide carrier in the precious metal and NO x at high temperatures has a the NO x storage material and the sulfur trapping layer formed on the carrying lower and lower layer surface comprising a comprising at least alkali metal consisting of basic oxide A high-temperature NO x storage-reduction catalyst that stores and reduces,
The low-temperature NO x storage reduction catalyst is disposed upstream of the exhaust gas flow, and the high-temperature NO x storage reduction catalyst is disposed downstream thereof.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
It is known that the temperature window for storing NO x varies depending on the type of NO x storage material. For example K, alkali metals such as Na is efficiently occluding NO x in an oxygen excess (lean) atmosphere of 400 to 600 ° C., for example Ba, alkaline earth metal or La or Li such as Sr is the 250 to 400 ° C. Efficiently occludes NO x under a lean atmosphere. Although the reason why the temperature window of NO x storage differs depending on the type of NO x storage material is not clear, it is thought to be due to the effect of the combination with the acid basicity of the porous support and the type of noble metal.
[0015]
In the exhaust gas purifying apparatus of the present invention, the low temperature type NO x storage reduction catalyst and the high temperature type NO x storage reduction catalyst are used, the low temperature type NO x storage reduction catalyst is arranged upstream of the exhaust gas flow, and the high temperature type NO x storage reduction catalyst is arranged downstream thereof. NO x storage reduction catalyst is arranged. Therefore, when the exhaust gas in the low temperature region in the lean atmosphere passes through the exhaust gas purification device, NO x is mainly stored in the low temperature type NO x storage reduction catalyst, so that the NO x storage ability in the low temperature region is excellent.
[0016]
On the other hand, when exhaust gas in a high temperature region in a lean atmosphere passes through the exhaust gas purification device, NO x is mainly stored in the high temperature NO x storage reduction catalyst. Therefore, NO x can be occluded and reduced in a wide temperature window from a low temperature range to a high temperature range, and the NO x purification performance is greatly improved.
[0017]
Further, in the high-temperature NO x storage reduction catalyst, a basic oxide is used as the second oxide support. This basic measure is based on alumina, which is generally used as a carrier, and can be used as a basic oxide if it is more basic than alumina. Since this basic oxide easily adsorbs NO x , the NO x occlusion ability at a high temperature region is further improved.
[0018]
The high-temperature NO x storage reduction catalyst has a sulfur trapping layer on the surface layer. Therefore, in the high temperature range of the lean atmosphere, SO x is trapped in the sulfur trapping layer and is restricted from reaching the lower layer. SO x trapped in the sulfur capture layer is emitted is reduced by a rich atmosphere, the sulfur trapping layer recovers sulfur trapping ability. Thus is prevented the sulfur poisoning of the underlying NO x storage material, the NO x storage ability in a high temperature region is kept high.
[0019]
The low-temperature NO x storage reduction catalyst includes a first oxide support, a noble metal supported on the first oxide support, and a NO x storage material. As the first oxide carrier, SO x It is desirable to remove Nb 2 O 5 In addition , a mixture of powder containing at least one of SnO 2 and alumina powder is used.
[0020]
The first oxide carrier is generally used by coating a honeycomb-shaped substrate formed of cordierite or metal foil, but it may be formed into a pellet to form a pellet catalyst.
[0021]
Examples of the noble metal include Pt, Rh, Pd, and Ir. The amount of the noble metal supported is preferably 0.1 to 10 g per liter of honeycomb-shaped substrate. If it is less than this, the purification activity will be insufficient, and even if it is supported more than this, the effect will be saturated and it will be expensive.
[0022]
In the low temperature NO x storage reduction catalyst, the NO x storage material supported on the first oxide support is at least one selected from alkaline earth metals such as Ba, Be, Mg, Ca, Sr, lanthanum or Li. It is desirable to use it. As a result, NO x in the exhaust gas in the oxygen-excess atmosphere in the low temperature range of 300 to 400 ° C. can be efficiently stored, and the NO x purification ability in the low temperature range is improved. The supported amount of the NO x storage material is preferably in the range of 0.1 to 0.5 mol per liter of honeycomb-shaped substrate. If it is less than this, the NO x storage ability cannot be obtained, and if it is supported more than this, the precious metal may be covered with the NO x storage material and the activity may decrease.
[0023]
The high-temperature NO x storage-reduction catalyst includes a lower layer formed by supporting a noble metal and an NO x storage material containing at least an alkali metal on a second oxide support, and a sulfur trapping layer formed on the lower surface.
[0024]
As the second oxide carrier composed of the basic oxide in the lower layer, zirconia, a mixture of alumina and zirconia, or the like can be used.
[0025]
The lower oxide layer can be formed by coating the second oxide carrier on a honeycomb-shaped substrate formed of cordierite or metal foil, and supporting a noble metal and NO x storage material thereon. Examples of the noble metal include Pt, Rh, Pd, and Ir. The amount of the noble metal supported is preferably 0.1 to 10 g per liter of honeycomb-shaped substrate. If it is less than this, the purification activity will be insufficient, and even if it is supported more than this, the effect will be saturated and it will be expensive.
[0026]
It is desirable to use at least one alkali metal selected from Na, K, Li, Rb, Cs, and Fr as the NO x storage material in the lower layer of the high-temperature NO x storage reduction catalyst. As a result, NO x in the exhaust gas in an oxygen-excess atmosphere in a high temperature range of 400 to 600 ° C. can be efficiently stored, and the NO x purification ability in the high temperature range is improved. The supported amount of the NO x storage material is preferably in the range of 0.1 to 0.5 mol per liter of honeycomb-shaped substrate. If it is less than this, the NO x storage ability cannot be obtained, and if it is supported more than this, the precious metal may be covered with the NO x storage material and the activity may decrease.
[0027]
The lower layer can occlude NO x at high temperatures, but SO x can also be occluded, resulting in sulfur poisoning. Therefore, in the present invention, a sulfur capturing layer is formed on the surface of the lower layer, and SO x is captured to prevent sulfur poisoning of the lower layer. Examples of the sulfur trapping layer include those capable of physically adsorbing SO x such as Nb 2 O 5 , SnO 2 , Nb 2 O 5 —SnO 2 composite oxide.
[0028]
The thickness of the sulfur capturing layer is not particularly limited, but is preferably in the range of 5 to 20 μm. If the thickness of the sulfur trapping layer is less than this range, SO x may reach the lower layer and sulfur poisoning may occur, and if it is thicker than this range, it will be difficult for NO x to reach the lower layer. NO x purification ability will be reduced. In addition, it is desirable that this sulfur trapping layer does not carry any precious metal or NO x storage material.
[0029]
It is also preferable that at least one carrier of the low temperature type NO x storage reduction catalyst and the high temperature type NO x storage reduction catalyst contains an oxygen storage / release material such as ceria. As a result, the difference in oxygen concentration between the lean atmosphere and the stoichiometric to rich atmosphere is reduced, so that the three-way activity is exhibited and the purification performance is further improved.
[0030]
In the exhaust gas purifying apparatus of the present invention, the constituent ratio of the low temperature type NO x storage reduction catalyst and the high temperature type NO x storage reduction catalyst is not particularly limited, but at each volume ratio, the low temperature type NO x storage reduction catalyst: high temperature type NO x storage-reduction catalyst = 1: 20 to 20: preferably 1 range. In order to prevent an increase in cost, it is preferable that the exhaust gas purification apparatus as a whole is configured to have a noble metal loading amount that is substantially the same as that of a conventional NO x storage reduction catalyst.
[0031]
The low temperature type NO x storage reduction catalyst and the high temperature type NO x storage reduction catalyst may be arranged in series with an interval therebetween, or may be arranged in contact with each other without any interval. It is preferable to arrange them at a distance. This is because the flow of exhaust gas is disturbed between the two catalysts, so that the temperature distribution of the exhaust gas flowing into the downstream NO x storage reduction catalyst becomes uniform from the center to the outer periphery, and a stable purification performance is obtained. Also, a low temperature type NO x storage reduction catalyst and a high temperature type NO x storage reduction catalyst can be formed separately in one monolith catalyst.
[0032]
Further, a three-way catalyst may be further arranged on the upstream side of the low temperature type NO x storage reduction catalyst or on the downstream side of the high temperature type NO x storage reduction catalyst. If a three-way catalyst is placed upstream of the low-temperature NO x storage reduction catalyst, the exhaust gas temperature rises due to the heat of reaction in the three-way catalyst, so NO in the low-temperature NO x storage reduction catalyst or the high-temperature NO x storage reduction catalyst xThe occlusion ability may be improved. Further, by disposing the three-way catalyst on the downstream side of the high temperature NO x storage-and-reduction catalyst, HC has not been purified by the high-temperature NO x storage-and-reduction catalysts, the CO and NO x can be purified by the three-way catalyst purification The performance is further improved.
[0033]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
[0034]
(Example 1)
FIG. 1 shows an exhaust gas purification apparatus of this embodiment. In this exhaust gas purifying device, a low temperature type NO x storage reduction catalyst 1 is arranged upstream of an exhaust gas flow in one catalytic converter, and a high temperature type NO x storage reduction catalyst 2 is arranged downstream thereof. The low temperature type NO x storage reduction catalyst 1 and the high temperature type NO x storage reduction catalyst 2 are arranged in series at an interval of about 10 mm.
[0035]
The low-temperature NO x storage reduction catalyst 1 includes a cordierite honeycomb substrate 10, a coat layer 11 made of a mixed powder of Al 2 O 3 and Nb 2 O 5 formed on the surface of the honeycomb substrate 10, and a coat The noble metal 12 made of Pt and Rh supported on the layer 11 and the NO x storage material 13 made of Ba and Sr supported on the coat layer 11 are formed.
[0036]
The high-temperature NO x storage reduction catalyst 2 includes a cordierite-made honeycomb substrate 20, a lower layer 21 formed on the surface of the honeycomb substrate 20, and a sulfur trapping layer 22 formed on the surface of the lower layer 21. Has been. The lower layer 21 is formed by supporting a noble metal 23 made of Pt and Rh and a NO x storage material 24 made of Ba and K on ZrO 2 . The sulfur capturing layer 22 is made of Nb 2 O 5 .
[0037]
Hereinafter, a method for producing the low temperature type NO x storage reduction catalyst 1 and the high temperature type NO x storage reduction catalyst 2 will be described, and a detailed description of the configuration of each catalyst will be given.
[0038]
<Preparation of low-temperature NO x storage reduction catalyst 1>
Al 2 O 3 powder and Nb 2 O 5 powder were mixed at a weight ratio of Al 2 O 3 : Nb 2 O 5 = 5: 1 and mixed with alumina sol and water to prepare a slurry. Next, a cordierite-made honeycomb substrate 10 having a diameter of 129 mm, a length of 60 mm, and a cell number of 400 (hexagonal cells) was prepared, and a coat layer 11 was formed by a wet coating method using the slurry. The coating layer 11 was formed in an amount of 200 g per liter of honeycomb substrate.
[0039]
A predetermined amount of a barium acetate aqueous solution having a predetermined concentration was absorbed into the honeycomb substrate 10 on which the coat layer 11 was formed, dried at 250 ° C. for 1 hour, and then fired at 500 ° C. for 1 hour to carry Ba. Next, a predetermined amount of a strontium acetate aqueous solution having a predetermined concentration was absorbed, dried at 250 ° C. for 1 hour, and then fired at 500 ° C. for 1 hour to carry Sr. Then, it was treated with an aqueous ammonium bicarbonate solution, and the supported Ba and Sr were carbonated. Ba and Sr were each supported at 0.2 mol per liter of the honeycomb substrate 10.
[0040]
Thereafter, Pt and Rh were supported in the same manner using a dinitrodiammine platinum nitric acid aqueous solution and a rhodium nitrate aqueous solution having predetermined concentrations, respectively, after absorbing a predetermined amount of water. 2.0 g of Pt was supported per liter of the honeycomb substrate 10 and 0.5 g of Rh was supported.
[0041]
<Preparation of high-temperature NO x storage reduction catalyst 2>
A slurry was prepared by mixing ZrO 2 powder, zirconia sol and water. Next, a cordierite honeycomb substrate 20 having a diameter of 129 mm, a length of 90 mm, and a number of cells of 400 (hexagonal cells) was prepared, and a lower layer 21 was formed by a wet coating method using the slurry. The lower layer 21 was formed in an amount of 180 g per liter of the honeycomb substrate 20.
[0042]
The honeycomb substrate 20 on which the lower layer 21 was formed was loaded with Pt and Rh in the same manner after absorbing a predetermined amount of water using a dinitrodiammine platinum nitric acid aqueous solution and a rhodium nitrate aqueous solution having predetermined concentrations. 2.0 g of Pt was supported per liter of the honeycomb substrate 20 and 0.5 g of Rh was supported.
Thereafter, Ba and K were supported using a barium acetate aqueous solution and a potassium nitrate aqueous solution having a predetermined concentration. Ba and K were each supported at 0.2 mol per liter of the honeycomb substrate 20.
[0043]
Next, the honeycomb substrate 2 having the lower layer 21 carrying the noble metal and the NO x storage material was dipped in the Nb 2 O 5 sol solution, pulled up, dried and fired to form the sulfur capturing layer 22. 50 g of sulfur capturing layer 22 was formed per liter of honeycomb substrate 2.
[0044]
<Formation of exhaust gas purification device>
The low temperature type NO x storage reduction catalyst 1 and the high temperature type NO x storage reduction catalyst 2 are arranged such that the low temperature type NO x storage reduction catalyst 1 is on the upstream side of the exhaust gas flow and the high temperature type NO x storage reduction catalyst 2 is on the downstream side thereof. As described above, the exhaust gas purifying apparatus of this example was formed by placing the catalyst converter in the catalytic converter with an interval of about 5 mm.
[0045]
<Test>
This exhaust gas purification device is attached to the evaluation device, and the exhaust gas burned under a condition of A / F = 22 using a fuel containing 500 ppm of sulfur is circulated for 50 hours under the condition of a space velocity of 80000 h −1 and an inlet gas temperature of 550 ° C. Sulfur poisoning treatment was performed. Subsequently, sulfur poisoning recovery treatment was performed by circulating exhaust gas burned under a condition of A / F = 14 using a fuel containing 30 ppm of sulfur at a space velocity of 80000 h −1 and an inlet gas temperature of 600 ° C. for 10 minutes.
[0046]
About exhaust gas purification equipment after sulfur poisoning treatment and after sulfur poisoning recovery treatment, exhaust gas burned under the condition of A / F = 22, space velocity 8000h -1 , entering gas temperature 300 ℃, 400 ℃, 500 ℃ And 600 ° C., respectively, and NO x saturated occlusion amount was measured. The results are shown in Table 1.
[0047]
(Example 2)
Instead of powder in which Al 2 O 3 powder and Nb 2 O 5 powder are mixed so that the weight ratio is Al 2 O 3 : Nb 2 O 5 = 5: 1, the weight ratio is Al 2 O 3 : SnO 2 = A coating layer was formed in the same manner as in Example 1 except that powder mixed to 2: 1 was used, and a low-temperature NO x storage reduction catalyst was prepared in the same manner as in Example 1. Then, using the same high-temperature NO x storage reduction catalyst 2 as in Example 1, an exhaust gas purification device was formed in the same manner, and the NO x saturated storage amount was measured in the same manner. The results are shown in Table 1.
[0048]
(Example 3)
Instead of powder in which Al 2 O 3 powder and Nb 2 O 5 powder are mixed in a weight ratio of Al 2 O 3 : Nb 2 O 5 = 5: 1, Al 2 O 3 : Nb 2 O by weight ratio A coating layer was formed in the same manner as in Example 1 except that powder mixed so that 5- ZrO 2 composite oxide = 1: 1 was used, and low-temperature NO x storage reduction was performed in the same manner as in Example 1. A catalyst was prepared. Then, using the same high-temperature NO x storage reduction catalyst 2 as in Example 1, an exhaust gas purification device was formed in the same manner, and the NO x saturated storage amount was measured in the same manner. The results are shown in Table 1.
[0049]
Example 4
Instead of powder in which Al 2 O 3 powder and Nb 2 O 5 powder are mixed in a weight ratio of Al 2 O 3 : Nb 2 O 5 = 5: 1, Al 2 O 3 : Nb 2 O by weight ratio A coating layer was formed in the same manner as in Example 1 except that powder mixed so that 5- TiO 2 composite oxide = 1: 1 was used, and low-temperature NO x storage reduction was performed in the same manner as in Example 1. A catalyst was prepared. Then, using the same high-temperature NO x storage reduction catalyst 2 as in Example 1, an exhaust gas purification device was formed in the same manner, and the NO x saturated storage amount was measured in the same manner. The results are shown in Table 1.
[0050]
(Example 5)
A lower layer is formed in the same manner as in Example 1 except that a mixed powder of Al 2 O 3 : ZrO 2 = 1: 1 is used instead of the ZrO 2 powder, and the other processes are the same as in Example 1. Thus, a high-temperature NO x storage reduction catalyst was prepared. Then, using the same low-temperature NO x storage reduction catalyst 1 as in Example 1, an exhaust gas purification device was formed in the same manner, and the NO x saturated storage amount was measured in the same manner. The results are shown in Table 1.
[0051]
(Example 6)
Instead of powder in which Al 2 O 3 powder and Nb 2 O 5 powder are mixed so that the weight ratio is Al 2 O 3 : Nb 2 O 5 = 5: 1, the weight ratio is Al 2 O 3 : SnO 2 = A coating layer was formed in the same manner as in Example 1 except that powder mixed to 2: 1 was used, and a low-temperature NO x storage reduction catalyst was prepared in the same manner as in Example 1.
[0052]
On the other hand, a lower layer was formed in the same manner as in Example 1 except that a mixed powder of Al 2 O 3 : ZrO 2 = 1: 1 by weight was used instead of the ZrO 2 powder. Thus, a high-temperature NO x storage reduction catalyst was prepared.
[0053]
Exhaust gas purification apparatus was formed in the same manner as in Example 1 except that this low temperature type NO x storage reduction catalyst and high temperature type NO x storage reduction catalyst were used, and the NO x saturated storage amount was similarly measured. The results are shown in Table 1.
[0054]
(Comparative Example 1)
A catalyst in which a noble metal and an NO x storage material are supported on a coat layer made of Al 2 O 3 powder in the same manner as the low temperature type NO x storage reduction catalyst 1 of Example 1 is used as a low temperature type NO x storage reduction catalyst, and Al 2 O 3 Precious metal and NO x storage material are supported on the powder coating layer in the same manner as the high temperature type NO x storage reduction catalyst 2 of Example 1, and a catalyst having no sulfur capture layer 22 is used as the high temperature type NO x storage reduction catalyst. An exhaust gas purification device was formed in the same manner as in Example 1, and the NO x saturated occlusion amount was measured in the same manner. The results are shown in Table 1.
[0055]
(Comparative Example 2)
The precious metal and the NO x storage material is supported in the same manner as low-temperature NO x storage-and-reduction catalyst 1 of Example 1 catalyst and low temperature NO x storage-and-reduction catalyst coat layer made of ZrO 2 powder, coating consisting of ZrO 2 powder a catalyst noble metal and the nO x storage material has no high-temperature nO x storage-and-reduction catalyst 2 is supported in the same manner as the sulfur trapping layer 22 of example 1 as a high-temperature type the nO x storage reduction catalyst layer, as in example 1 An exhaust gas purification device was formed in the same manner, and the NO x saturated occlusion amount was measured in the same manner. The results are shown in Table 1.
[0056]
(Comparative Example 3)
Al 2 O weight ratio of 3: ZrO 2 = 1: 1 to become noble metal and the NO x storage material in the coating layer made of the mixed powder is carried in the same manner as low-temperature NO x storage-and-reduction catalyst 1 of Example 1 catalyzes a low-temperature NOx storage reduction catalyst, Al 2 O weight ratio of 3: ZrO 2 = 1: 1 and consisting of a mixed powder and a noble metal coating layer NO x high temperature of storage material is example 1 NO x storage-reduction catalyst 2 As in Example 1, an exhaust gas purification device was formed in the same manner as in Example 1 using the catalyst supported and not having the sulfur capturing layer 22 as a high-temperature NO x storage reduction catalyst, and the NO x saturated storage amount was measured in the same manner. The results are shown in Table 1.
[0057]
(Comparative Example 4)
In the same manner as the low-temperature NO x storage reduction catalyst 1 of Example 1, a noble metal and a NO x storage material were supported on a coating layer made of a mixed powder having a weight ratio of Al 2 O 3 : Nb 2 O 5 = 5: 1. The catalyst is a low-temperature type NO x storage reduction catalyst, and a noble metal and NO x storage material are supported on the coating layer made of ZrO 2 powder in the same manner as the high temperature type NO x storage reduction catalyst 2 of Example 1 and have a sulfur capturing layer 22. An exhaust gas purifying apparatus was formed in the same manner as in Example 1 using a non-existing catalyst as a high-temperature NO x storage reduction catalyst, and the NO x saturated storage amount was measured in the same manner. The results are shown in Table 1.
[0058]
(Comparative Example 5)
Al 2 O weight ratio of 3: ZrO 2 = 1: 1 to become noble metal and the NO x storage material in the coating layer made of the mixed powder is carried in the same manner as low-temperature NO x storage-and-reduction catalyst 1 of Example 1 catalyzes a low-temperature NO x storage-and-reduction catalysts, the high-temperature type NO x storage-and-reduction catalyst 2 of example 1 as a high-temperature type NO x storage-and-reduction catalysts, similarly form an exhaust gas purifying apparatus as in example 1, similarly NO x saturation storage The amount was measured. The results are shown in Table 1.
[0059]
(Evaluation)
[0060]
[Table 1]
Figure 0004144174
[0061]
From Table 1, it can be seen that the exhaust gas purifying apparatus of each example greatly improved the NO x storage capacity after the sulfur poisoning recovery treatment as compared with the comparative example. This is because a low-temperature NO x storage-reduction catalyst consisting of an oxide carrier with high sulfur desorption is placed upstream of the exhaust gas stream, and a high-temperature NO x storage-reduction catalyst with a sulfur trapping layer is placed downstream of it. It is clear that this is caused by
[0062]
For example, the purification device of Comparative Example 4 includes the low-temperature NO x storage reduction catalyst referred to in the present invention, and thus exhibits a relatively high NO x storage capacity in the low temperature range. NO x storage capacity is low. In addition, the purification device of Comparative Example 5 has a sulfur trapping layer and thus exhibits a relatively high NO x storage capacity in a high temperature range. However, since ZrO 2 is contained in the upstream catalyst support, it becomes a basic oxide, and SO It is easy to adsorb x and has low NO x storage capacity in a low temperature range.
[0063]
However, since the purification apparatus of each example has the configuration of the present invention, the NO x storage capacity is low after the sulfur poisoning treatment, but the NO x storage capacity is easily recovered by performing the sulfur poisoning recovery treatment. It has a high NO x storage capacity in a wide temperature range from low temperature to high temperature. That is, according to the exhaust gas purifying apparatus of the present embodiment, by using controlled to be stoichiometric-rich side air-fuel ratio from the lean side in a pulsed manner, efficiently NO x over a wide temperature range from low to high temperature purification can do.
[0064]
In the above embodiment, the low temperature type NO x storage reduction catalyst and the high temperature type NO x storage reduction catalyst are arranged with a gap in one catalytic converter, but there may be a structure in which both catalysts are in contact with each other without any gap. . Alternatively, the low-temperature NO x storage reduction catalyst and the high-temperature NO x storage reduction catalyst may be arranged in the catalytic converter, respectively, and the two catalytic converters may be connected in series.
[0065]
【The invention's effect】
That is, according to the exhaust gas purification apparatus of the present invention, a stable high NO x storage ability can be secured from a low temperature range to a high temperature range, and since it is excellent in sulfur poisoning resistance, a long-term stable NO x purification performance can be obtained. .
[Brief description of the drawings]
FIG. 1 is an explanatory sectional view showing a configuration of an exhaust gas purifying apparatus according to an embodiment of the present invention.
[Explanation of symbols]
1: Low-temperature NO x storage reduction catalyst 2: High-temperature NO x storage reduction catalyst
11: Coat layer 21: Lower layer 22: Sulfur capture layer

Claims (1)

Nb 2 O 5 SnO 2 Nb 2 O 5 -ZrO 2 及び Nb 2 O 5 -TiO 2 から選ばれる少なくとも一種からなる粉末とアルミナ粉末との混合物よりなる第1酸化物担体にアルカリ土類金属及びリチウムから選ばれる少なくとも一種を含むNOx 吸蔵材と貴金属とを担持してなり低温域でNOx を吸蔵還元する低温型NOx 吸蔵還元触媒と、
塩基性酸化物からなる第2酸化物担体に貴金属と少なくともアルカリ金属を含むNOx 吸蔵材とを担持してなる下層と該下層表面に形成された硫黄捕捉層とをもち高温域でNOx を吸蔵還元する高温型NOx 吸蔵還元触媒と、からなり、
排ガス流の上流側に該低温型NOx 吸蔵還元触媒を配置しその下流側に該高温型NOx 吸蔵還元触媒を配置してなることを特徴とする排ガス浄化装置。
Nb 2 O 5 , SnO 2 , Nb 2 O 5 —ZrO 2 and Nb 2 O 5 —TiO 2 selected from an alkaline earth metal and lithium as the first oxide support made of a mixture of at least one powder and alumina powder and a low temperature type the NO x storage reduction catalyst occludes reducing NO x in low-temperature region becomes carries the the NO x storage material and the noble metal containing at least one,
The second oxide carrier in the precious metal and NO x at high temperatures has a the NO x storage material and the sulfur trapping layer formed on the carrying lower and lower layer surface comprising a comprising at least alkali metal consisting of basic oxide A high-temperature NO x storage-reduction catalyst that stores and reduces,
Exhaust gas purification apparatus characterized by comprising placing the high temperature NO x storage-and-reduction catalyst on the upstream side of the exhaust gas flow arranged the cold-type NO x storage-and-reduction catalyst downstream thereof.
JP2000325039A 2000-10-25 2000-10-25 Exhaust gas purification device Expired - Fee Related JP4144174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000325039A JP4144174B2 (en) 2000-10-25 2000-10-25 Exhaust gas purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000325039A JP4144174B2 (en) 2000-10-25 2000-10-25 Exhaust gas purification device

Publications (2)

Publication Number Publication Date
JP2002126453A JP2002126453A (en) 2002-05-08
JP4144174B2 true JP4144174B2 (en) 2008-09-03

Family

ID=18802474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000325039A Expired - Fee Related JP4144174B2 (en) 2000-10-25 2000-10-25 Exhaust gas purification device

Country Status (1)

Country Link
JP (1) JP4144174B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015081153A1 (en) * 2013-11-26 2015-06-04 Clean Diesel Technologies, Inc. Support oxides for zpgm catalyst systems
WO2015081183A1 (en) * 2013-11-26 2015-06-04 Clean Diesel Technologies, Inc. Pgm and copper-manganese in three way catalyst systems
WO2015081156A1 (en) * 2013-11-26 2015-06-04 Clean Diesel Technologies, Inc. System and methods for using synergized pgm as a three-way catalyst
US9511353B2 (en) 2013-03-15 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) Firing (calcination) process and method related to metallic substrates coated with ZPGM catalyst
US9511350B2 (en) 2013-05-10 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) ZPGM Diesel Oxidation Catalysts and methods of making and using same
US9511358B2 (en) 2013-11-26 2016-12-06 Clean Diesel Technologies, Inc. Spinel compositions and applications thereof
US9545626B2 (en) 2013-07-12 2017-01-17 Clean Diesel Technologies, Inc. Optimization of Zero-PGM washcoat and overcoat loadings on metallic substrate

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4543689B2 (en) * 2004-02-02 2010-09-15 トヨタ自動車株式会社 Exhaust purification catalyst
JP4534749B2 (en) * 2004-12-20 2010-09-01 株式会社豊田中央研究所 NOx storage material, method for supporting the same, and NOx storage reduction catalyst
JP2007075707A (en) * 2005-09-13 2007-03-29 Hino Motors Ltd Exhaust cleaner
JP4807620B2 (en) * 2006-03-21 2011-11-02 株式会社豊田中央研究所 Exhaust gas purification catalyst and exhaust gas purification method using the same
JP5582671B2 (en) 2006-04-21 2014-09-03 株式会社キャタラー Exhaust gas purification catalyst, exhaust gas purification catalyst recovery method, and exhaust gas purification catalyst system
JP4856576B2 (en) * 2007-03-30 2012-01-18 本田技研工業株式会社 Exhaust gas purification system
JP4941111B2 (en) * 2007-06-01 2012-05-30 マツダ株式会社 Exhaust gas purification device
JP5037283B2 (en) * 2007-09-26 2012-09-26 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
JP4390000B2 (en) 2008-01-09 2009-12-24 トヨタ自動車株式会社 NOx adsorption device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3374999B2 (en) * 1993-10-14 2003-02-10 トヨタ自動車株式会社 Exhaust gas purification catalyst
JP3538214B2 (en) * 1993-12-07 2004-06-14 株式会社豊田中央研究所 Nitrogen oxide reduction catalyst and method of using the same
JP3544400B2 (en) * 1995-01-13 2004-07-21 株式会社豊田中央研究所 Exhaust gas purification catalyst
JP3799651B2 (en) * 1995-04-28 2006-07-19 マツダ株式会社 Exhaust gas purification catalyst
JP3496348B2 (en) * 1995-07-14 2004-02-09 株式会社豊田中央研究所 Exhaust gas purification catalyst
JP3473295B2 (en) * 1995-11-16 2003-12-02 株式会社豊田中央研究所 Catalyst carrier and catalyst for exhaust gas purification
JPH10118457A (en) * 1996-10-25 1998-05-12 Hitachi Ltd Exhaust gas cleaning apparatus for internal combustion engine
JP3302900B2 (en) * 1997-03-13 2002-07-15 株式会社日本自動車部品総合研究所 Exhaust gas purification catalyst device for internal combustion engine and exhaust gas purification method
JP3924946B2 (en) * 1997-09-25 2007-06-06 マツダ株式会社 Exhaust gas purification material
JP2000024499A (en) * 1998-07-07 2000-01-25 Toyota Motor Corp Catalyst for purification of exhaust gas and its production
JP3430937B2 (en) * 1998-10-06 2003-07-28 三菱自動車工業株式会社 Exhaust gas purification equipment
JP3659028B2 (en) * 1998-10-29 2005-06-15 日産自動車株式会社 Exhaust gas purification device and method of using the same
JP2001289035A (en) * 1998-11-05 2001-10-19 Toyota Motor Corp Exhaust emission control method and system
JP3821343B2 (en) * 1998-12-10 2006-09-13 トヨタ自動車株式会社 Exhaust gas purification device
JP3846139B2 (en) * 1999-04-22 2006-11-15 トヨタ自動車株式会社 Exhaust gas purification catalyst and exhaust gas purification method using the same
JP2000334269A (en) * 1999-05-28 2000-12-05 Toyota Motor Corp Waste gas cleaning device
JP2001113172A (en) * 1999-10-15 2001-04-24 Toyota Motor Corp Exhaust gas cleaning catalyst

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9511353B2 (en) 2013-03-15 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) Firing (calcination) process and method related to metallic substrates coated with ZPGM catalyst
US9511350B2 (en) 2013-05-10 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) ZPGM Diesel Oxidation Catalysts and methods of making and using same
US9545626B2 (en) 2013-07-12 2017-01-17 Clean Diesel Technologies, Inc. Optimization of Zero-PGM washcoat and overcoat loadings on metallic substrate
WO2015081153A1 (en) * 2013-11-26 2015-06-04 Clean Diesel Technologies, Inc. Support oxides for zpgm catalyst systems
WO2015081183A1 (en) * 2013-11-26 2015-06-04 Clean Diesel Technologies, Inc. Pgm and copper-manganese in three way catalyst systems
WO2015081156A1 (en) * 2013-11-26 2015-06-04 Clean Diesel Technologies, Inc. System and methods for using synergized pgm as a three-way catalyst
US9511355B2 (en) 2013-11-26 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) System and methods for using synergized PGM as a three-way catalyst
US9511358B2 (en) 2013-11-26 2016-12-06 Clean Diesel Technologies, Inc. Spinel compositions and applications thereof
US9555400B2 (en) 2013-11-26 2017-01-31 Clean Diesel Technologies, Inc. Synergized PGM catalyst systems including platinum for TWC application
CN106413881A (en) * 2013-11-26 2017-02-15 克林迪塞尔技术公司 System and methods for using synergized PGM as a three-way catalyst

Also Published As

Publication number Publication date
JP2002126453A (en) 2002-05-08

Similar Documents

Publication Publication Date Title
KR100196245B1 (en) Catalyst for purifying exhaust gases
JP4590733B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the catalyst
JP4144174B2 (en) Exhaust gas purification device
US6557342B2 (en) Exhaust gas purifying system
JP3952617B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JP3821343B2 (en) Exhaust gas purification device
JP3846139B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP3685463B2 (en) Exhaust gas purification catalyst
JP4573993B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3704701B2 (en) Exhaust gas purification catalyst
JP3789231B2 (en) Exhaust gas purification catalyst
KR20080066944A (en) Exhaust gas clean-up system and exhaust gas clean-up method
JP5490342B2 (en) Catalytic trap with potassium component and method of use thereof
JP2001300262A (en) Exhaust gas purifying device and catalyst for purifying exhaust gas
JP3555694B2 (en) Exhaust gas purification device
JPH10128114A (en) Catalyst for purifying exhaust gas
JP5163955B2 (en) Exhaust gas purification catalyst
JP5094199B2 (en) Exhaust gas purification device
JP4479418B2 (en) Exhaust gas purification catalyst
JP3659028B2 (en) Exhaust gas purification device and method of using the same
JP3551346B2 (en) Exhaust gas purification equipment
JP3775080B2 (en) Exhaust gas purification catalyst
JP4962753B2 (en) Sulfur oxide absorber and exhaust gas purification device
JP3965793B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JP2002168117A (en) Exhaust emission control system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080609

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees