JP3956158B2 - Nitrogen oxide removal catalyst - Google Patents

Nitrogen oxide removal catalyst Download PDF

Info

Publication number
JP3956158B2
JP3956158B2 JP08971696A JP8971696A JP3956158B2 JP 3956158 B2 JP3956158 B2 JP 3956158B2 JP 08971696 A JP08971696 A JP 08971696A JP 8971696 A JP8971696 A JP 8971696A JP 3956158 B2 JP3956158 B2 JP 3956158B2
Authority
JP
Japan
Prior art keywords
catalyst
iridium
sulfur
exhaust gas
removal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08971696A
Other languages
Japanese (ja)
Other versions
JPH09276702A (en
Inventor
顕久 奥村
正雄 堀
真 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Catalyst Technology Inc
Original Assignee
International Catalyst Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP08971696A priority Critical patent/JP3956158B2/en
Application filed by International Catalyst Technology Inc filed Critical International Catalyst Technology Inc
Priority to US08/973,684 priority patent/US6214307B1/en
Priority to CA002223458A priority patent/CA2223458C/en
Priority to PCT/JP1997/001211 priority patent/WO1997037761A1/en
Priority to EP97916636A priority patent/EP0832688B1/en
Priority to KR1019970708846A priority patent/KR100300825B1/en
Priority to DE69738063T priority patent/DE69738063T2/en
Publication of JPH09276702A publication Critical patent/JPH09276702A/en
Priority to MX9710095A priority patent/MX9710095A/en
Priority to US09/778,103 priority patent/US20010012502A1/en
Application granted granted Critical
Publication of JP3956158B2 publication Critical patent/JP3956158B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、自動車、ボイラー、工業用プラント等の内燃機関から排出される排気ガス中の窒素酸化物を除去するための窒素酸化物除去用触媒に関するものである。
【0002】
【従来の技術】
自動車、ボイラー、工業用プラント等の内燃機関から排出される排気ガス中に含まれる窒素酸化物(以下、NOX という)は、大気汚染の原因となっており、排気ガス中のNOX の除去が急務となっている。
【0003】
従来、例えば自動車等のガソリンエンジンの排気ガスの場合、白金等を用いたいわゆる三元触媒によって排気ガスを処理し、炭化水素(HC)および一酸化炭素(CO)と同時にNOX を除去する方法が知られている。この方法は、空燃比(以下、「A/F」という)が化学量論比(A/F=14.6)付近にある場合には極めて有効である。
【0004】
ところで、近年、燃費向上やCO2 削減を目的として、希薄燃焼エンジンが注目されている。しかし、このようなエンジンでは、A/Fが大きくなり(以下、「酸素過剰雰囲気」という)、排気ガス中のHC、CO等の未燃焼成分を完全燃焼させる量よりも過剰な酸素が存在するため、通常の三元触媒によってNOX を還元除去することは困難なものとなっていた。
【0005】
また、ディーゼルエンジンの場合、排気ガスは酸素過剰雰囲気にあるが、ボイラー等の固定発生源となるディーゼルエンジンからの排気ガスに対しては、アンモニア、水素または一酸化炭素等の還元剤を用いてNOX を除去する方法が知られている。
【0006】
しかし、この方法においては、還元剤を添加するための別の装置や、未反応の還元剤の回収、処理のための特別の装置が必要となり、装置全体が複雑化や大型化を招来するので、自動車等の移動発生源となるエンジンには不適となるという問題を生じている。
【0007】
そこで、上記問題を回避するために、酸素過剰雰囲気におけるNOX 除去用触媒としては、種々の各触媒が提案されている。
【0008】
【発明が解決しようとする課題】
ところが、上記従来では、酸素過剰雰囲気においても排気ガス中のNOX を効率よく分解除去し、高温での耐熱性および耐久性に優れ、かつ、広い温度域において触媒活性を発揮するNOX 除去用触媒は未だ知られていないという問題を生じている。
【0009】
NOX 除去用触媒としては、例えば、銅イオン等の遷移金属イオン交換アルミノシリケート(特開昭60−125250号公報、特開昭63−100919号公報、米国特許第4,297,328号明細書)、あるいはメタロアルミノシリケート(特開平3−127628号公報、特開平3−229620号公報)、シリコアルミノフォスフェート(特開平1−112488号公報)等が提案されている。
【0010】
しかし、これらのいわゆるイオン交換ゼオライト触媒は、NOX を除去し得る温度が高く、低温時にはその効果が減少するものであり、さらに耐熱性に劣り高温の排気ガスに曝されるとNOX 分解性能が著しく劣化するという問題を有しており、実用化には至っていない。
【0011】
さらに、酸素過剰雰囲気におけるNOX 除去用触媒としては、イリジウムをアルミナ等の耐火性無機酸化物に担持した触媒が開示されている(特公昭56−54173号公報、特公昭57−13328号公報)。しかし、これらの公報に記載された実施例では、排気ガス中の酸素濃度が3容量%以下の場合しか示されておらず、それ以上の酸素を含むディーゼルエンジンやリーンバーンエンジンの排気ガスに対してはNOX 浄化能、耐久性共に不明である。
【0012】
また、ゼオライトや結晶性シリケート等の基材にイリジウムを担持した触媒も提案されている(特開平6−296870号公報、特開平7−80315号公報、特開平7−88378号公報)。しかし、上記触媒に対する耐久性試験の条件としては、排気ガスが還元雰囲気でしか行われておらず、ディーゼルエンジンやリーンバーンエンジンの排気ガスのような酸素過剰雰囲気での耐久性、耐熱性は不明である。
【0013】
さらに、金属炭化物等を基材にイリジウムを担持した触媒も提案されている(特開平6−31173号公報、特開平7−31884号公報)。しかし、上記各公報における実施例には、最高NOX 除去率しか示されておらず、上記触媒を用いた温度域は不明である。また、ライトオフ特性が示されているものについて見ても、NOX 浄化活性が発現するのは350℃以上の高温である。
【0014】
このように、酸素過剰雰囲気においても排気ガス中のNOX を効率よく分解除去し、しかも高温耐熱性に優れ、かつ、広い温度域において触媒活性を発揮するNOX 除去用触媒は開発されていないのが現状である。
【0015】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意研究の結果、イリジウムと硫黄とを含有してなる触媒が、上記課題を解決するのに有効であることを見出し、本発明を完成するに至った。
【0016】
すなわち、本発明のNOX 除去用触媒は、以上の課題を解決するために、触媒活性物質として、イリジウムと硫黄とを含むことを特徴としている。また、上記硫黄は、硫酸根の形態であることが望ましい。
【0017】
本発明のNOX 除去用触媒は、触媒活性物質としてのイリジウムを有することにより酸素過剰雰囲気下でのNOX を除去することができ、さらに硫黄を有することによって上記イリジウムの触媒活性を向上できて、酸素過剰雰囲気下でのNOX の除去において、広い温度域で活性を示し、また、耐熱性、耐久性に優れたものとなっている。本明細書では、硫黄のように単独ではNOX を除去する活性を有していないものでも、上記活性を有するイリジウムの触媒活性を改善できるものも触媒活性物質としている。
【0018】
【発明の実施の形態】
本発明の一実施の形態について説明すれば、以下の通りである。NOX 除去用触媒は、NOX を除去するための触媒活性物質として、イリジウムと硫黄とを含み、また、上記硫黄を硫酸根の形態で含むものである。
【0019】
上記基材としては、硫黄を有する硫酸根担持アルミナ、硫黄を有する硫酸バリウム等の硫酸根を含む基材化合物を単独、あるいは上記基材化合物と、通常、触媒担持担体として用いられる耐火性無機酸化物、例えばα−アルミナ、もしくはγ,δ、η、θ等の活性アルミナ、チタニア等との混合物(混合焼結体を含む)、上記各耐火性無機酸化物の複合酸化物と上記基材化合物との混合物(混合焼結体を含む)、およびリン酸アルミニウム、結晶性アルミノシリケート、シリコアルミノフォスフェート等と上記基材化合物との混合物を用いることができる。
【0020】
イリジウムの含有量は、上記イリジウムを触媒成分として担持する基材に対して、0.5〜10重量%であることが好ましい。0.5重量%未満であるときは、NOX 除去効率が低下するものであり、10重量%を越えて担持しても担持量に見合うだけの触媒活性が得られない。イリジウム源としては、特に制限はないが、例えば塩化イリジウム、トリクロロヘキサアンミンイリジウム等の水溶性イリジウム塩が好ましく用いられる。
【0021】
イリジウムを基材に担持する方法は特に限定されず、通常の担持方法が用いられる。例えば、(1)イリジウム塩の水溶液を基材に含浸し、乾燥焼成する方法、(2)イリジウム塩の水溶液を基材に入れ、混合した後、ヒドラジン等の還元剤により還元して担持させる方法等である。
【0022】
硫黄とイリジウムとの担持比率は、重量比で1:5〜50:1が好ましい。50:1の比率よりも硫黄の担持比率が大きくなると、初期活性が低下し、1:5の比率よりも硫黄の担持が小さくなるときは活性温度域が狭くなる。
【0023】
硫黄源としては、特に制限はないが、例えば硫酸や硫酸塩、亜硫酸塩、硫化物等が用いられる。硫黄の添加方法としては、(1)硫酸を基材に添加し、乾燥、適宜焼成する方法、(2)硫酸塩、亜硫酸塩等のうち有機溶媒可溶性および/または水溶性の硫黄含有化合物を用いて、上記硫黄含有化合物の溶液を基材に浸漬し、乾燥、適宜焼成する方法が挙げられる
【0024】
通常、本願発明を用いる触媒の具体的態様を示すと、(1)触媒自体を所定の形状に、例えば球状、円柱状に成形して用いる方法、(2)三次元構造体といわれる担体に触媒成分を被覆担持して用いる方法等がある。三次元構造体の例としては、ハニカムモノリス担体、フォーム状の担体、コルゲート状の担体等があり、その材質はセラミック製、メタル製のものが好ましく用いられる。
【0025】
以下に、触媒を調製する方法について説明する。
(1)触媒組成物自体を触媒とする場合、
(イ)触媒組成物を十分に混合した後、円柱、球状等に成形して、触媒とする方法、
(ロ)触媒担持基材を予め所定の形状、例えば球状あるいは円柱状に成形した後、触媒物質を被覆する方法等が挙げられる。
【0026】
(2)一体構造体あるいは不活性無機質担体(以下、「一体構造体等」という)を用いる場合、(イ)触媒組成物を一括してボールミル等に入れ、湿式粉砕し、水性スラリーとし、一体構造体等を浸漬し、乾燥、焼成する方法、(ロ)触媒担持基材をボールミル等により湿式粉砕し、水性スラリーとし、一体構造体等を浸漬し、乾燥、焼成する。次いで、触媒担持基材を被覆した一体構造体等をイリジウム含有水溶液に浸漬し、乾燥、焼成し、さらに、硫黄を含む溶液に該一体構造体を浸漬し、乾燥、適宜焼成する方法、(ハ)イリジウムを予め基材に担持し、さらにボールミル等により水性スラリーとし、この水性スラリー中に一体構造体等を浸漬し、イリジウム担持基材を被覆した一体構造体等を得、次いで、硫黄を含む溶液に浸漬し、乾燥、適宜焼成する方法が挙げられる。これらの方法においては、(2)(イ)〜(ハ)の各方法が好ましい。
【0027】
また、一体構造体等に対し、触媒成分を被覆する場合、この触媒成分の被覆量は一体構造体等1リットル当り50〜400gであることが好ましい。50g未満であるときは触媒活性の低下を生じるものであり、400gを越えるときは担持量に見合う触媒活性が得られないものである。
【0028】
本願発明のNOX 除去用触媒を用いる際のガス空間速度は、5000〜200000hr-1が好ましい。5000hr-1未満であるときは必要な触媒容量が大きくなりすぎ不経済であり、200000hr-1を越えるときはNOX 浄化率が低下する。本願発明のNOX 除去用触媒を用いる際の排気ガス温度は、触媒入口において200℃から700℃、好ましくは250℃から600℃の範囲である。200℃未満ではNOX 浄化能が目標値より劣化し、700℃を越えるときもNOX 浄化能が目標値を下回る。
【0029】
【実施例】
本発明のNOX 除去用触媒の各実施例について、それらの製造方法によりそれぞれ説明すれば以下の通りである。
(実施例1)
まず、基材としてのBET(Brunauer-Emmett-Teller)表面積100m2 を有する多孔質な粉体状の活性アルミナ100gに対し、イリジウム5gを含む塩化イリジウム水溶液を加え、混合し、120℃で2時間乾燥し、続いて500℃で2時間焼成して、イリジウムの微粒子を多孔質の表面に分散させて有する活性アルミナからなる触媒粉体を得た。
【0030】
その後、この触媒粉体をボールミルにより湿式粉砕して水性スラリーを得、続いて、上記水性スラリーに対し、市販のコージェライト質のハニカム担体(日本硝子製、横断面が1インチ平方当り、400個のガス流通セルを有し、直径33mmφ、長さ76mmL、体積65ml)を浸漬した後、余剰の水性スラリーを圧縮空気によりハニカム担体から吹き飛ばして除去した。
【0031】
次いで、水性スラリーを各セルの内表面に有するハニカム担体を120℃で2時間乾燥した後、1.5mol/リットルの硫酸水溶液に浸漬した後、余剰の硫酸を圧縮空気により吹き飛ばし、120℃で2時間乾燥して完成触媒(A)を得た。この完成触媒(A)では、基材としての活性アルミナに対して、イリジウム5重量%、硫黄5重量%担持されていた。
【0032】
(実施例2)
上記の実施例1における1.5mol/リットルの硫酸水溶液に代えて、0.3mol/リットルの硫酸水溶液を用いた以外は、上記実施例1と同様に調製して完成触媒(B)を得た。この完成触媒(B)では、基材としての活性アルミナに対して、イリジウム5重量%、硫黄1重量%担持されていた。
【0033】
(実施例3)
前記の実施例1におけるイリジウム5gを含む塩化イリジウム水溶液、および1.5mol/リットルの硫酸水溶液に代えて、イリジウム1gを含む塩化イリジウム水溶液、および6mol/リットルの硫酸水溶液をそれぞれ用いた以外は、前記実施例1と同様に調製して完成触媒(C)を得た。この完成触媒(C)では、基材としての活性アルミナに対して、イリジウム1重量%、硫黄20重量%担持されていた。
【0034】
(実施例4)
前記の実施例1における1.5mol/リットルの硫酸水溶液に代えて、硫酸カリウム〔K2 SO4 〕27.2gを含む水溶液を用いた以外は、前記実施例1と同様に調製して完成触媒(D)を得た。この完成触媒(D)では、基材としての活性アルミナに対して、イリジウム5重量%、硫黄5重量%担持されていた。
【0035】
(実施例5)
前記の実施例1における活性アルミナ100gに代えて、硫酸バリウム〔BaSO4 〕100gを用い、硫酸水溶液への浸漬を省いた以外は、前記実施例1と同様に調製して完成触媒(E)を得た。この完成触媒(E)では、基材としての硫酸バリウムに対して、イリジウム5重量%担持されており、硫黄7.3重量%含まれていた。
【0036】
(実施例6)
前記の実施例1において、水性スラリーを得る際に、硫酸バリウム〔BaSO4 〕36.4gを加え、硫酸水溶液への浸漬を省いた以外は、前記実施例1と同様に調製して完成触媒(F)を得た。この完成触媒(F)では、基材としての活性アルミナおよび硫酸バリウムに対して、イリジウム3.7重量%担持されており、硫黄3.7重量%含まれていた。
【0037】
次に、上記各完成触媒(A)〜(F)に対する各比較例としての比較触媒について、それらの製造方法に基づいて説明する。
(比較例1)
前記実施例1において、硫酸への浸漬を省いたこと以外は、前記実施例1と同様に調製して比較触媒(X)を得た。この比較触媒(X)では、基材としての活性アルミナに対して、イリジウム5重量%担持されていた。
【0038】
(比較例2)
市販のZSM−5型ゼオライト(SiO2 /Al2 3 =40)100gと、純水400gとを混合した混合物を、98℃で2時間攪拌した後、上記混合物に対し、80℃で0.2モル/リットルの銅アンミン錯体水溶液600mlをゆっくりと滴下した。
【0039】
その後、銅アンミン錯体を有するゼオライトを、混合物からろ取し、十分に洗浄した後、120℃で24時間乾燥してゼオライト触媒粉体を得た。このゼオライト触媒粉体をボールミルにより湿式粉砕して水性スラリーを得た。以下、前記実施例1と同様に、上記水性スラリーを用いて比較触媒(Y)を得た。この比較触媒(Y)はゼオライトに対して銅が5.6重量%担持されていた。
【0040】
次に、実施例1〜6、および比較例1,2にて調製した各触媒(A)〜(F)、(X)、(Y)について、排気ガスが酸素過剰雰囲気となるリーンバーンエンジンの排気ガスを模したモデルガス(A/F=21に相当)を用い、触媒活性の性能評価を行った。
【0041】
(評価方法)
直径34.4mmφ、長さ300mmのステンレス反応管に、各触媒をそれぞれ充填した後、下記組成の反応ガスを空間速度50000hr-1の条件下で導入し、触媒床入口温度を150℃から500℃まで連続的に昇温してNOX 浄化率を測定し、各触媒のライトオフ性能を評価した。
【0042】
(反応ガスの組成)
一酸化窒素(NO) 300ppm
プロピレン(C3 6 ) 3000ppm(メタン換算)
一酸化炭素(CO) 0.18容量%
水素(H2 ) 600ppm
水蒸気(H2 O) 10容量%
二酸化炭素(CO2 ) 10容量%
酸素(O2 ) 7容量%
窒素(N2 ) 残部
また、各触媒の評価を示す結果として、最高NOX 浄化率およびそのときの触媒床入口温度をそれぞれ表1に示した。
【0043】
【表1】

Figure 0003956158
【0044】
次に、実施例1〜6、および比較例1,2にて調製した各触媒(A)〜(F)、(X)、(Y)について、耐熱性および耐久性をそれぞれ試験した。この試験方法としては、各触媒をマルチコンバーターにそれぞれ充填して各充填触媒床を形成した。
【0045】
続いて、市販のガソリンリーンバーンエンジンの排気ガスを、空燃比(A/F)を21に調製して通じ、空間速度(S.V.)160000hr-1、触媒床温度700℃の条件下で20時間エージングした。その後、上記各充填触媒床に対して、前記評価方法により性能評価をそれぞれ行った。それらの結果を表1に合わせてそれぞれ示した。
【0046】
それらの結果の内、触媒(A)、(E)、(X)、(Y)について、初期時(Fresh )および耐久試験(Aged)後のライトオフ性能をそれぞれ図1ないし図4に示した。図1ないし図4では、初期時(Fresh )の結果を実線にて示し、耐久試験(Aged)後の結果を破線にて示した。
【0047】
まず、表1の結果から明らかなように、本願発明の触媒(A)〜(F)は、比較例の触媒(X)、(Y)と比較して、酸素過剰雰囲気でのNOX 除去を、より低温(300℃付近)から広い温度域にわたって行えることが判る。また、経時試験(Aged)後の触媒活性の低下はほとんど観察されず、十分な耐熱性および耐久性を有していることが判る。
【0048】
さらに、図1および図2と、図3との比較により明らかなように、本願発明のNOX 除去用触媒は、イリジウムと硫黄とを共に含むことにより、イリジウムのみが担持されている比較例1の触媒(X)の場合と比べて、高温における活性も向上し、広い温度域でのNOX 浄化が実現できるものとなっている。
【0049】
また、図4から明らかなように、酸素過剰雰囲気下でのNOX 除去用触媒として知られている銅イオン交換ゼオライト触媒は、耐久試験後に顕著な活性の低下を示した。一方、図1および図2に示すように、本願発明のNOX 除去用触媒は、耐久試験後もほとんど活性の低下を示さなかった。したがって、本願発明のNOX 除去用触媒は、比較例2の触媒(Y)と比べて十分な耐熱性および耐久性を有するものとなっている。
【0050】
このように本願発明のNOX 除去用触媒は、金属炭化物または金属窒化物にイリジウムを担持させた従来の触媒と比べて、高価な金属炭化物や金属窒化物を省いて、代わりに安価な硫酸根を有する化合物を用いて従来の触媒と同様のNOX の除去活性を有することから、上記従来の触媒よりコストダウンできるものとなっている。
【0051】
ところで、特開平7−80315号公報に記載された脱硝触媒の担体としてのSO4 /ZrO2 等の硫酸担持基材は、固体超強酸と呼ばれる物質である。この固体超強酸は、ジルコニウム等の水酸化物に対し硫酸を浸漬し、上記水酸化物を、ろ別、乾燥した後、予め焼成して得られるものであり、上記固体超強酸を担体として用いた脱硝触媒は、担体を予め焼成しておくといったように、脱硝触媒の調製に手間取るものとなっている。
【0052】
しかしながら、本願発明のNOX 除去用触媒は、硫酸根の担持形態が固体超強酸である必要はなく、アルミナ等の金属酸化物に対し、後から硫酸を担持させるだけで前述の効果を発揮するものであるので、上記従来公報と比べて、その調製の手間を軽減できるものとなっている。
【0053】
【発明の効果】
本発明のNOX 除去用触媒は、以上のように、イリジウムと硫黄とを有する構成であることにより、酸素過剰雰囲気下でのNOX の除去において、広い温度領域で活性を示し、その上、耐熱性、耐久性に優れることから、排気ガスが酸素過剰雰囲気となり、排気ガスの温度変動幅が広範囲となるディーゼルエンジンや、リーンバーンエンジン等の内燃機関に有効に用いることができるという効果を奏する。
【図面の簡単な説明】
【図1】本発明の実施例1のNOX 除去用触媒(A)における、モデル排気ガスに対する、初期および耐久試験後のNOX ライトオフ性能を示したグラフである。
【図2】本発明の実施例5のNOX 除去用触媒(E)における、モデル排気ガスに対する、初期および耐久試験後のNOX ライトオフ性能を示したグラフである。
【図3】比較例1の触媒(X)における、モデル排気ガスに対する、初期および耐久試験後のNOX ライトオフ性能を示したグラフである。
【図4】比較例2の触媒(Y)における、モデル排気ガスに対する、初期および耐久試験後のNOX ライトオフ性能を示したグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a catalyst for removing nitrogen oxides for removing nitrogen oxides in exhaust gas discharged from internal combustion engines such as automobiles, boilers, and industrial plants.
[0002]
[Prior art]
Automobiles, boilers, nitrogen oxides contained in the exhaust gas discharged from an internal combustion engine such as an industrial plant (hereinafter, referred to as NO X) is caused air pollution, the removal of the NO X in the exhaust gas Is an urgent need.
[0003]
Conventionally, in the case of exhaust gas from gasoline engines such as automobiles, a method of treating exhaust gas with a so-called three-way catalyst using platinum or the like and removing NO x simultaneously with hydrocarbon (HC) and carbon monoxide (CO) It has been known. This method is extremely effective when the air-fuel ratio (hereinafter referred to as “A / F”) is in the vicinity of the stoichiometric ratio (A / F = 14.6).
[0004]
Incidentally, in recent years, lean combustion engines have attracted attention for the purpose of improving fuel consumption and reducing CO 2 . However, in such an engine, the A / F becomes large (hereinafter referred to as “oxygen-excess atmosphere”), and there is excess oxygen than the amount that completely burns unburned components such as HC and CO in the exhaust gas. For this reason, it has been difficult to reduce and remove NO x with a normal three-way catalyst.
[0005]
In the case of a diesel engine, the exhaust gas is in an oxygen-excess atmosphere. However, a reducing agent such as ammonia, hydrogen, or carbon monoxide is used for exhaust gas from a diesel engine that is a fixed generation source such as a boiler. method of removing NO X is known.
[0006]
However, this method requires a separate device for adding the reducing agent and a special device for collecting and treating the unreacted reducing agent, which causes the entire device to become complicated and large. In other words, there is a problem that the engine is not suitable for an engine that is a source of movement of an automobile or the like.
[0007]
In order to avoid the above problems, various catalysts have been proposed as NO x removal catalysts in an oxygen-excess atmosphere.
[0008]
[Problems to be solved by the invention]
However, in the conventional oxygen also NO X in the exhaust gas efficiently decomposed and removed in the rich atmosphere, excellent heat resistance and durability at high temperatures, and for NO X removal that exhibits catalytic activity in a wide temperature range The problem is that the catalyst is not yet known.
[0009]
Examples of the NO x removal catalyst include transition metal ion exchange aluminosilicates such as copper ions (Japanese Patent Laid-Open Nos. 60-125250, 63-1000091, and US Pat. No. 4,297,328). ), Or metalloaluminosilicates (JP-A-3-127628, JP-A-3-229620), silicoaluminophosphate (JP-A-1-112488), and the like have been proposed.
[0010]
However, these so-called ion-exchanged zeolite catalyst is higher temperatures that can remove the NO X is, at low temperatures are those in which it is expected to decrease further inferior in heat resistance when exposed to high-temperature exhaust gas NO X decomposition performance Has a problem that it deteriorates remarkably, and has not been put into practical use.
[0011]
Further, as the NO X removal catalyst in an oxygen-rich atmosphere, catalyst supporting iridium on a refractory inorganic oxide such as alumina is disclosed (JP-B 56-54173 and JP-B-57-13328) . However, in the examples described in these publications, only the case where the oxygen concentration in the exhaust gas is 3% by volume or less is shown, and the exhaust gas of diesel engines and lean burn engines that contain more oxygen is shown. NO X purification ability Te, a durability both unknown.
[0012]
In addition, a catalyst in which iridium is supported on a base material such as zeolite or crystalline silicate has been proposed (Japanese Patent Laid-Open Nos. 6-296870, 7-80315, and 7-88378). However, as a condition of the durability test for the above catalyst, the exhaust gas is only performed in a reducing atmosphere, and the durability and heat resistance in an oxygen-excess atmosphere such as exhaust gas of a diesel engine or lean burn engine are unknown. It is.
[0013]
Furthermore, a catalyst having iridium supported on a metal carbide or the like as a base material has also been proposed (Japanese Patent Laid-Open Nos. 6-31173 and 7-31884). However, only the maximum NO x removal rate is shown in the examples in the above publications, and the temperature range using the catalyst is unknown. Even when the light-off characteristics are shown, the NO x purification activity appears at a high temperature of 350 ° C. or higher.
[0014]
Thus, oxygen is also a NO X in the exhaust gas efficiently decompose and remove the excess atmosphere, moreover excellent in high-temperature resistant, and, NO X removing catalyst which exhibits catalytic activity in a wide temperature range has not been developed is the current situation.
[0015]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have found that a catalyst containing iridium and sulfur is effective in solving the above problems, and to complete the present invention. It came.
[0016]
That is, the NO x removal catalyst of the present invention is characterized by containing iridium and sulfur as catalytic active substances in order to solve the above problems . Also, the sulfur is preferably in the form of a sulfate group.
[0017]
The NO x removal catalyst of the present invention can remove NO x in an oxygen-excess atmosphere by having iridium as a catalytically active substance, and can further improve the catalytic activity of the iridium by having sulfur. In the removal of NO x under an oxygen-excess atmosphere, the activity is exhibited in a wide temperature range, and the heat resistance and durability are excellent. In this specification, those alone as sulfur does not have the activity of removing NO X, are catalytically active substances which can improve the catalytic activity of iridium having the above activity.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described as follows. NO X removal, a catalyst for the catalytic active material for removing NO X, and a iridium and sulfur, was or is intended to include the sulfur in the form of a sulfate group.
[0019]
As the substrate, a sulfate-containing alumina having sulfur, a substrate compound containing a sulfate group such as sulfur-containing barium sulfate alone, or the above-mentioned substrate compound and a refractory inorganic oxidation usually used as a catalyst-supporting carrier. Such as α-alumina, or a mixture (including a mixed sintered body) of activated alumina such as γ, δ, η, θ, etc. (including a mixed sintered body), a composite oxide of each of the above refractory inorganic oxides, and the above base compound And a mixture of the above base compound with aluminum phosphate, crystalline aluminosilicate, silicoaluminophosphate, and the like can be used.
[0020]
The iridium content is preferably 0.5 to 10% by weight with respect to the base material carrying the iridium as a catalyst component. When the amount is less than 0.5% by weight, the NO x removal efficiency is lowered, and even if the amount exceeds 10% by weight, a catalytic activity corresponding to the amount supported cannot be obtained. Although there is no restriction | limiting in particular as an iridium source, For example, water-soluble iridium salts, such as iridium chloride and a trichloro hexa ammine iridium, are used preferably.
[0021]
The method for supporting iridium on the substrate is not particularly limited, and a normal supporting method is used. For example, (1) a method of impregnating a base material with an aqueous solution of iridium salt and drying and baking; (2) a method of putting an aqueous solution of iridium salt into the base material, mixing, and then reducing and supporting with a reducing agent such as hydrazine. Etc.
[0022]
The weight ratio of sulfur and iridium is preferably 1: 5 to 50: 1. When the sulfur loading ratio becomes larger than the ratio of 50: 1, the initial activity decreases, and when the sulfur loading becomes smaller than the ratio of 1: 5, the activation temperature range becomes narrow.
[0023]
Although there is no restriction | limiting in particular as a sulfur source, For example, a sulfuric acid, a sulfate, a sulfite, a sulfide, etc. are used. As a method for adding sulfur, (1) a method in which sulfuric acid is added to a substrate, and drying and firing appropriately , (2) an organic solvent-soluble and / or water-soluble sulfur-containing compound among sulfates, sulfites and the like is used. And a method of immersing the solution of the sulfur-containing compound in a substrate, drying, and firing appropriately .
[0024]
In general, specific embodiments of the catalyst using the present invention are described as follows: (1) a method in which the catalyst itself is formed into a predetermined shape, for example, a spherical shape or a cylindrical shape, and (2) a catalyst on a carrier called a three-dimensional structure. For example, there are methods of coating and supporting the components. Examples of the three-dimensional structure include a honeycomb monolith carrier, a foam carrier, a corrugated carrier, and the like, and those made of ceramic or metal are preferably used.
[0025]
Below, the method to prepare a catalyst is demonstrated.
(1) When the catalyst composition itself is used as a catalyst,
(B) A method in which the catalyst composition is sufficiently mixed and then molded into a cylinder, a sphere, etc. to form a catalyst,
(B) A method of coating the catalyst material after the catalyst-supporting substrate is formed in a predetermined shape, for example, a spherical shape or a cylindrical shape in advance.
[0026]
(2) When using a monolithic structure or an inert inorganic carrier (hereinafter referred to as “monolithic structure or the like”), (a) putting the catalyst composition in a ball mill or the like in a lump, wet pulverizing it into an aqueous slurry, (B) A catalyst-supporting base material is wet-ground by a ball mill or the like to form an aqueous slurry, and the integral structure is immersed, dried and fired. Next, a monolithic structure or the like coated with the catalyst-supporting substrate is dipped in an iridium-containing aqueous solution, dried and fired, and further, the monolithic structure is dipped in a solution containing sulfur, dried, and appropriately fired. ) Preliminarily supporting iridium on a base material, further forming an aqueous slurry with a ball mill or the like, and immersing the integral structure in the aqueous slurry to obtain an integral structure etc. coated with the iridium support base, and then containing sulfur Examples of the method include dipping in a solution, drying, and firing appropriately . In these methods, the methods (2), (a) to (c) are preferable.
[0027]
Further, when the catalyst component is coated on the monolithic structure or the like, the coating amount of the catalyst component is preferably 50 to 400 g per liter of the monolithic structure or the like. When the amount is less than 50 g, the catalyst activity is lowered, and when it exceeds 400 g, the catalyst activity corresponding to the supported amount cannot be obtained.
[0028]
The gas space velocity when using the NO x removal catalyst of the present invention is preferably 5000 to 200000 hr −1 . When it is less than 5000 hr −1 , the required catalyst capacity becomes too large and uneconomical, and when it exceeds 200000 hr −1 , the NO x purification rate decreases. The exhaust gas temperature when using the NO x removal catalyst of the present invention is in the range of 200 ° C. to 700 ° C., preferably 250 ° C. to 600 ° C. at the catalyst inlet. If it is less than 200 ° C., the NO x purification capacity deteriorates from the target value, and when it exceeds 700 ° C., the NO x purification capacity is lower than the target value.
[0029]
【Example】
Examples of the NO x removal catalyst of the present invention will be described below with reference to their production methods.
Example 1
First, iridium chloride aqueous solution containing 5 g of iridium is added to and mixed with 100 g of porous powdery activated alumina having a BET (Brunauer-Emmett-Teller) surface area of 100 m 2 as a base material, and mixed at 120 ° C. for 2 hours. It was dried and then calcined at 500 ° C. for 2 hours to obtain a catalyst powder made of activated alumina having iridium fine particles dispersed on a porous surface.
[0030]
Thereafter, the catalyst powder is wet pulverized by a ball mill to obtain an aqueous slurry. Subsequently, a commercially available cordierite honeycomb carrier (manufactured by Nippon Glass, cross-sectional area is 400 per square inch). And a surplus aqueous slurry was blown off from the honeycomb carrier with compressed air and removed.
[0031]
Next, the honeycomb carrier having the aqueous slurry on the inner surface of each cell was dried at 120 ° C. for 2 hours, then immersed in a 1.5 mol / liter sulfuric acid aqueous solution, and then excess sulfuric acid was blown off with compressed air. Drying for a while gave the finished catalyst (A). In this finished catalyst (A), 5% by weight of iridium and 5% by weight of sulfur were supported on the activated alumina as the base material.
[0032]
(Example 2)
A finished catalyst (B) was obtained in the same manner as in Example 1 except that a 0.3 mol / liter sulfuric acid aqueous solution was used instead of the 1.5 mol / liter sulfuric acid aqueous solution in Example 1 above. . In this finished catalyst (B), 5% by weight of iridium and 1% by weight of sulfur were supported on the activated alumina as the base material.
[0033]
(Example 3)
The iridium chloride aqueous solution containing 5 g of iridium and the 1.5 mol / liter sulfuric acid aqueous solution in Example 1 were used except that an iridium chloride aqueous solution containing 1 g of iridium and a 6 mol / liter sulfuric acid aqueous solution were used. Prepared in the same manner as in Example 1 to obtain a finished catalyst (C). In this finished catalyst (C), 1% by weight of iridium and 20% by weight of sulfur were supported on the activated alumina as the base material.
[0034]
Example 4
A completed catalyst prepared in the same manner as in Example 1 except that an aqueous solution containing 27.2 g of potassium sulfate [K 2 SO 4 ] was used instead of the 1.5 mol / liter sulfuric acid aqueous solution in Example 1 above. (D) was obtained. In this completed catalyst (D), 5% by weight of iridium and 5% by weight of sulfur were supported on the activated alumina as the base material.
[0035]
(Example 5)
The finished catalyst (E) was prepared in the same manner as in Example 1 except that 100 g of activated alumina in Example 1 was replaced with 100 g of barium sulfate [BaSO 4 ] and the immersion in an aqueous sulfuric acid solution was omitted. Obtained. In this finished catalyst (E), 5% by weight of iridium was supported with respect to barium sulfate as a base material, and 7.3% by weight of sulfur was contained.
[0036]
(Example 6)
In Example 1, the aqueous slurry was prepared in the same manner as in Example 1 except that 36.4 g of barium sulfate [BaSO 4 ] was added and immersion in an aqueous sulfuric acid solution was omitted. F) was obtained. In this completed catalyst (F), 3.7% by weight of iridium was supported and 3.7% by weight of sulfur was contained with respect to the activated alumina and barium sulfate as the base materials.
[0037]
Next, comparative catalysts as comparative examples for the finished catalysts (A) to (F) will be described based on their production methods.
(Comparative Example 1)
A comparative catalyst (X) was obtained in the same manner as in Example 1 except that the immersion in sulfuric acid was omitted in Example 1. In this comparative catalyst (X), 5% by weight of iridium was supported on the activated alumina as the base material.
[0038]
(Comparative Example 2)
A mixture obtained by mixing 100 g of commercially available ZSM-5 type zeolite (SiO 2 / Al 2 O 3 = 40) and 400 g of pure water was stirred at 98 ° C. for 2 hours, and then the mixture was stirred at 98 ° C. at 80 ° C. 600 ml of a 2 mol / liter copper ammine complex aqueous solution was slowly added dropwise.
[0039]
Thereafter, the zeolite having a copper ammine complex was filtered from the mixture, washed sufficiently, and dried at 120 ° C. for 24 hours to obtain a zeolite catalyst powder. The zeolite catalyst powder was wet pulverized by a ball mill to obtain an aqueous slurry. Thereafter, in the same manner as in Example 1, a comparative catalyst (Y) was obtained using the aqueous slurry. This comparative catalyst (Y) supported 5.6% by weight of copper with respect to the zeolite.
[0040]
Next, for each of the catalysts (A) to (F), (X), and (Y) prepared in Examples 1 to 6 and Comparative Examples 1 and 2, the lean burn engine in which the exhaust gas is in an oxygen-excess atmosphere Performance evaluation of catalyst activity was performed using a model gas simulating exhaust gas (corresponding to A / F = 21).
[0041]
(Evaluation methods)
After each catalyst was filled in a stainless steel reaction tube having a diameter of 34.4 mmφ and a length of 300 mm, a reaction gas having the following composition was introduced under the condition of a space velocity of 50000 hr −1 , and the catalyst bed inlet temperature was 150 ° C. to 500 ° C. until continuously raised to measure the NO X purification rate was evaluated light-off performance of each catalyst.
[0042]
(Composition of reaction gas)
Nitric oxide (NO) 300ppm
Propylene (C 3 H 6 ) 3000 ppm (methane conversion)
Carbon monoxide (CO) 0.18% by volume
Hydrogen (H 2 ) 600ppm
Water vapor (H 2 O) 10% by volume
Carbon dioxide (CO 2 ) 10% by volume
Oxygen (O 2 ) 7% by volume
Nitrogen (N 2 ) balance As a result showing the evaluation of each catalyst, the maximum NO x purification rate and the catalyst bed inlet temperature at that time are shown in Table 1, respectively.
[0043]
[Table 1]
Figure 0003956158
[0044]
Next, each of the catalysts (A) to (F), (X), and (Y) prepared in Examples 1 to 6 and Comparative Examples 1 and 2 was tested for heat resistance and durability. In this test method, each catalyst was packed in a multi-converter to form each packed catalyst bed.
[0045]
Subsequently, the exhaust gas of a commercially available gasoline lean burn engine was prepared by adjusting the air-fuel ratio (A / F) to 21 under the conditions of a space velocity (SV) of 160000 hr −1 and a catalyst bed temperature of 700 ° C. Aged for 20 hours. Thereafter, performance evaluation was performed on each of the packed catalyst beds by the evaluation method. The results are shown in Table 1 respectively.
[0046]
Among these results, the light-off performance at the initial stage (Fresh) and after the endurance test (Aged) is shown in FIGS. 1 to 4 for the catalysts (A), (E), (X), and (Y). . In FIG. 1 to FIG. 4, the results at the initial time (Fresh) are indicated by solid lines, and the results after the endurance test (Aged) are indicated by broken lines.
[0047]
First, as is clear from the results of Table 1, the catalyst (A) ~ of the present invention (F) is a comparative example of the catalyst (X), as compared to (Y), the NO X removal in an oxygen-rich atmosphere It can be seen that it can be performed over a wide temperature range from a lower temperature (around 300 ° C.). Further, almost no decrease in the catalytic activity after the aging test (Aged) is observed, and it can be seen that the catalyst has sufficient heat resistance and durability.
[0048]
Further, as is apparent from a comparison between FIG. 1 and FIG. 2 and FIG. 3, the NO x removal catalyst of the present invention includes Comparative Example 1 in which only iridium is supported by containing both iridium and sulfur. Compared with the case of the catalyst (X), the activity at high temperature is improved, and NO x purification in a wide temperature range can be realized.
[0049]
As is clear from FIG. 4, a copper ion-exchanged zeolite catalysts known as NO X removal catalyst in an oxygen-rich atmosphere showed a decrease in significant activity after the durability test. On the other hand, as shown in FIGS. 1 and 2, the NO x removal catalyst of the present invention showed almost no decrease in activity even after the durability test. Therefore, the NO x removal catalyst of the present invention has sufficient heat resistance and durability as compared with the catalyst (Y) of Comparative Example 2.
[0050]
Thus, the NO x removal catalyst of the present invention eliminates expensive metal carbides and metal nitrides and replaces them with inexpensive sulfate radicals, compared to conventional catalysts in which iridium is supported on metal carbides or metal nitrides. since it has the same of the NO X removal activity and conventional catalysts using compounds having, it has become what can cost than the conventional catalysts.
[0051]
By the way, a sulfuric acid supporting substrate such as SO 4 / ZrO 2 as a carrier for a denitration catalyst described in JP-A-7-80315 is a substance called a solid super strong acid. This solid superacid is obtained by immersing sulfuric acid in a hydroxide such as zirconium, filtering and drying the hydroxide, and then calcining it beforehand. The solid superacid is used as a carrier. The conventional denitration catalyst takes time to prepare the denitration catalyst, for example, by calcining the carrier in advance.
[0052]
However, the catalyst for removing NO x of the present invention does not need to be a solid superacid in the form of sulfate radicals supported, and exerts the above-mentioned effects only by subsequently supporting sulfuric acid on a metal oxide such as alumina. Therefore, compared with the above-mentioned conventional publication, the labor of preparation can be reduced.
[0053]
【The invention's effect】
As described above, the NO x removal catalyst of the present invention is configured to have iridium and sulfur, and thus exhibits activity in a wide temperature range in the removal of NO x under an oxygen-excess atmosphere. Since it has excellent heat resistance and durability, it has an effect that the exhaust gas becomes an oxygen-excess atmosphere and can be effectively used for an internal combustion engine such as a diesel engine or a lean burn engine in which the temperature fluctuation range of the exhaust gas is wide. .
[Brief description of the drawings]
FIG. 1 is a graph showing NO X light-off performance after initial and endurance tests for model exhaust gas in a NO X removal catalyst (A) of Example 1 of the present invention.
FIG. 2 is a graph showing the NO x light-off performance of the NO x removal catalyst (E) of Example 5 of the present invention for the model exhaust gas after the initial and endurance tests.
FIG. 3 is a graph showing NO X light-off performance of the catalyst (X) of Comparative Example 1 with respect to the model exhaust gas after the initial stage and after the durability test.
4 is a graph showing NO X light-off performance of the catalyst (Y) of Comparative Example 2 with respect to a model exhaust gas after an initial test and after an endurance test. FIG.

Claims (1)

触媒活性物質としてイリジウムと硫黄とを含む窒素酸化物除去用触媒の製造方法であって、
イリジウムを基材に担持させ、乾燥、焼成して得られたイリジウム担持基材に、
(A)硫酸を添加し、乾燥、適宜焼成するか、
(B)硫酸塩、亜硫酸塩のうち有機溶媒可溶性および/または水溶性の硫黄含有化合物を用いて、当該硫黄含有化合物の溶液を浸漬し、乾燥、適宜焼成することを特徴とする窒素酸化物除去用触媒の製造方法。
A method for producing a catalyst for removing nitrogen oxides containing iridium and sulfur as catalytic active substances,
Iridium supported on a substrate obtained by supporting iridium on a substrate, drying and firing,
(A) Add sulfuric acid, dry, and fire appropriately,
(B) Nitrogen oxide removal characterized in that an organic solvent-soluble and / or water-soluble sulfur-containing compound is used among sulfate and sulfite, soaking the solution of the sulfur-containing compound, drying, and firing appropriately. For producing a catalyst for use.
JP08971696A 1996-04-11 1996-04-11 Nitrogen oxide removal catalyst Expired - Lifetime JP3956158B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP08971696A JP3956158B2 (en) 1996-04-11 1996-04-11 Nitrogen oxide removal catalyst
CA002223458A CA2223458C (en) 1996-04-11 1997-04-09 Catalyst for purifying exhaust gas and a process for purifying exhaust gas
PCT/JP1997/001211 WO1997037761A1 (en) 1996-04-11 1997-04-09 Exhaust gas purifying catalyst and exhaust gas purifying method
EP97916636A EP0832688B1 (en) 1996-04-11 1997-04-09 Exhaust gas purifying catalyst and exhaust gas purifying method
US08/973,684 US6214307B1 (en) 1996-04-11 1997-04-09 Exhaust gas purifying catalyst and exhaust gas purifying method
KR1019970708846A KR100300825B1 (en) 1996-04-11 1997-04-09 Catalyst for exhaust gas purification and exhaust gas purification method
DE69738063T DE69738063T2 (en) 1996-04-11 1997-04-09 CATALYST AND METHOD OF EXHAUST GAS CLEANING
MX9710095A MX9710095A (en) 1996-04-11 1997-12-11 Exhaust gas purifying catalyst and exhaust gas purifying method.
US09/778,103 US20010012502A1 (en) 1996-04-11 2001-02-07 Catalyst for purifying exhaust gas and a process for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08971696A JP3956158B2 (en) 1996-04-11 1996-04-11 Nitrogen oxide removal catalyst

Publications (2)

Publication Number Publication Date
JPH09276702A JPH09276702A (en) 1997-10-28
JP3956158B2 true JP3956158B2 (en) 2007-08-08

Family

ID=13978499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08971696A Expired - Lifetime JP3956158B2 (en) 1996-04-11 1996-04-11 Nitrogen oxide removal catalyst

Country Status (1)

Country Link
JP (1) JP3956158B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109310997A (en) * 2016-07-29 2019-02-05 三菱日立电力系统株式会社 Nitrogen emission catalyst, CO oxidation catalyst, exhaust treatment system and waste gas processing method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3556824B2 (en) * 1998-03-20 2004-08-25 三菱重工業株式会社 DeNOx catalyst and exhaust gas treatment method
KR100681481B1 (en) * 2005-12-08 2007-02-09 한국항공우주연구원 The performance measurement system of iridium catalyst
US20120165185A1 (en) * 2010-12-27 2012-06-28 Basf Corporation Thermally Stable Catalyst Carrier Comprising Barium Sulfate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109310997A (en) * 2016-07-29 2019-02-05 三菱日立电力系统株式会社 Nitrogen emission catalyst, CO oxidation catalyst, exhaust treatment system and waste gas processing method
EP3492169A4 (en) * 2016-07-29 2020-01-01 Mitsubishi Hitachi Power Systems, Ltd. Exhaust gas denitration catalyst, co oxidation catalyst, exhaust gas treatment system, and exhaust gas treatment method

Also Published As

Publication number Publication date
JPH09276702A (en) 1997-10-28

Similar Documents

Publication Publication Date Title
US6214307B1 (en) Exhaust gas purifying catalyst and exhaust gas purifying method
JP4012320B2 (en) Exhaust gas purification catalyst for lean combustion engine
US6191061B1 (en) Method of purifying exhaust gas and catalyst for purifying exhaust gas
JPH0884911A (en) Catalyst for decomposing nitrogen oxide and method for purifying diesel engine exhaust using the same
JPH05220403A (en) Exhaust gas purifying catalyst
JPH11276907A (en) Catalyst for purifying exhaust gas and its production
JP3956158B2 (en) Nitrogen oxide removal catalyst
JP4330666B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH05277376A (en) Nox removing catalyst and nox removing method utilizing the catalyst
JPWO2002055194A1 (en) Nitrogen oxide purification catalyst
JPH06327945A (en) Purifying method of exhaust gas
JP3865838B2 (en) Nitrogen oxide removing catalyst, production method thereof, and exhaust gas purification method using the catalyst
JP3447513B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3589763B2 (en) Exhaust gas purification method for gasoline engine
JP4588134B2 (en) Nitrogen oxide purification catalyst
JP3398159B2 (en) Nitrogen oxide removal method
JP3771608B2 (en) Diesel engine exhaust gas purification catalyst and diesel engine exhaust gas purification method using the same
JP3423703B2 (en) Nitrogen oxide removal catalyst
JPH05103985A (en) Catalyst for removal of nitrogen oxide and method for removing nitrogen oxide with the same
JPH03131345A (en) Catalyst for purifying exhaust gas
JP3871992B2 (en) Fuel direct injection gasoline engine exhaust gas purification catalyst, fuel direct injection gasoline engine exhaust gas purification method
JPH05103949A (en) Catalyst for removal of nitrogen oxide and method for removing nitrogen oxide with the same
JPH10235199A (en) Exhaust gas purifying catalyst
JPH08281105A (en) Clarification catalyst for combustion exhaust gas
JPH08224479A (en) Production of catalyst for purifying exhaust gas

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061019

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070425

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term