JPH10235199A - Exhaust gas purifying catalyst - Google Patents

Exhaust gas purifying catalyst

Info

Publication number
JPH10235199A
JPH10235199A JP9038980A JP3898097A JPH10235199A JP H10235199 A JPH10235199 A JP H10235199A JP 9038980 A JP9038980 A JP 9038980A JP 3898097 A JP3898097 A JP 3898097A JP H10235199 A JPH10235199 A JP H10235199A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
honeycomb
gas purifying
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9038980A
Other languages
Japanese (ja)
Inventor
Hiroshi Akama
弘 赤間
Masanori Kamikubo
真紀 上久保
Hiroyuki Kanesaka
浩行 金坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP9038980A priority Critical patent/JPH10235199A/en
Publication of JPH10235199A publication Critical patent/JPH10235199A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PROBLEM TO BE SOLVED: To purify efficiently exhaust gas of an automobile engine driven at the air-fuel ratio in the wide range without lowering the function of a three way catalyst by specifying the volume ratio of pores of diameters of respectively different specified values to the specified % or more in a metal carrying porous crystalline aluminosilicate. SOLUTION: A honeycomb-shaped catalyst 1 containing a metal carrying porous crystalline aluminosilicate catalyst layer and a noble metal carrying alumina catalyst layer is disposed on the upstream side of exhaust gas flow, while a honeycomb-shaped catalyst 2 containing a three way catalyst is disposed on the downstream side of exhaust gas flow in an exhaust gas purifying catalyst. The total volume sum of pores of diameters of 4nm or less in the metal carrying porous crystalline aluminosilicate in the honeycomb-shaped catalyst 1 is set as 60% or more, preferably 75% or more of the total volume sum of pores of diameters of 1-100nm. Also it is preferable to constitute the catalyst formed of a metal carrying porous crystalline aluminosilicate as an upper layer and a noble metal carrying alumina silica catalyst as a lower layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排気ガス浄化用触
媒に関し、特に自動車エンジン等の内燃機関や各種燃焼
器等からの排気ガスの浄化効率及び耐久性に優れた排気
ガス浄化用触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst, and more particularly, to an exhaust gas purifying catalyst excellent in exhaust gas purifying efficiency and durability from an internal combustion engine such as an automobile engine and various combustors.

【0002】[0002]

【従来の技術】従来、自動車のエンジン等の排気ガスを
浄化するための触媒としては、三元触媒が幅広く用いら
れている。従来の三元触媒は、白金、パラジウム、ロジ
ウム等の貴金属成分およびセリウム成分等の各種成分を
含有したアルミナを主成分とする触媒が主流であり、エ
ンジンが理論空燃比の近傍で運転された場合の排気ガス
に対して高い浄化効率を示すものである。
2. Description of the Related Art Conventionally, a three-way catalyst has been widely used as a catalyst for purifying exhaust gas from an automobile engine or the like. Conventional three-way catalysts are predominantly alumina-based catalysts containing various components such as noble metal components such as platinum, palladium and rhodium and cerium components, and when the engine is operated near the stoichiometric air-fuel ratio. It shows high purification efficiency with respect to exhaust gas.

【0003】一方、近年、燃費向上、二酸化炭素の排出
量削減の観点から、理論空燃比より高い空燃比において
も運転されるリーン・バーン・エンジンが注目されてい
る。かかるリーン・バーン・エンジンの排気ガス(リー
ン排気ガス)は、理論空燃比近傍でのみ運転する従来エ
ンジンの排気ガス(ストイキ排気ガス)に比較して、酸
素の含有率が高く、従来の三元触媒では窒素酸化物(N
Ox)の浄化が不十分となる。そこで、幅広い空燃比で
運転されるリーン・バーン・エンジンに適用可能な新触
媒が望まれていた。
[0003] On the other hand, in recent years, from the viewpoint of improving fuel efficiency and reducing carbon dioxide emission, a lean burn engine that operates even at an air-fuel ratio higher than the stoichiometric air-fuel ratio has attracted attention. The exhaust gas of such a lean burn engine (lean exhaust gas) has a higher oxygen content than the exhaust gas of a conventional engine (stoichiometric exhaust gas) that operates only near the stoichiometric air-fuel ratio, and the conventional three-way exhaust gas. The catalyst uses nitrogen oxides (N
Ox) purification is insufficient. Therefore, a new catalyst applicable to a lean burn engine operated at a wide air-fuel ratio has been desired.

【0004】各種の金属成分を多孔質結晶性アルミノケ
イ酸塩(以下、「ゼオライト」と称す)に担持して得ら
れる金属担持ゼオライト触媒(以下、「ゼオライト系触
媒」と称す)は、酸素含有率が高い排気ガス中(リーン
排気ガス)においても、炭化水素類(HC)が存在して
いれば、NOxを比較的効率良く浄化できる能力がある
ことで注目されている。
A metal-supported zeolite catalyst (hereinafter, referred to as “zeolite catalyst”) obtained by supporting various metal components on a porous crystalline aluminosilicate (hereinafter, referred to as “zeolite”) has an oxygen content of It has been noted that even in an exhaust gas having a high concentration (lean exhaust gas), if hydrocarbons (HC) are present, it has a capability of purifying NOx relatively efficiently.

【0005】この金属成分として銅(Cu)、コバルト
(Co)、銀(Ag)、ニッケル(Ni)、鉄(Fe)
等の遷移金属成分に加え、貴金属成分である白金(P
t)もその有効性が認められているが、特に銅(Cu)
を担持したCu−ゼオライト触媒は、NOx活性が高
く、高流速排気ガス条件下でも比較的優れたNOx浄化
性能を有しており、このため、自動車のような移動発生
源や定置型の自家発電用エンジン等からの排気ガス浄化
への適用が期待されている。
The metal components include copper (Cu), cobalt (Co), silver (Ag), nickel (Ni), and iron (Fe).
In addition to the transition metal components such as
t) has also been recognized for its effectiveness, but in particular copper (Cu)
Is high in NOx activity and has relatively excellent NOx purification performance even under high flow rate exhaust gas conditions. It is expected to be applied to purification of exhaust gas from engines for industrial use.

【0006】しかし、ゼオライト系触媒のみでは、理論
空燃(ストイキ)から酸素過剰(リーン)の幅広い空燃
比で運転されるエンジンの排気ガスを十分に浄化するこ
とはできず、三元触媒との組合せが不可欠であった。こ
れは、ゼオライト系触媒は、ストイキ排気ガス中におけ
る炭化水素類(HC)、一酸化炭素(CO)、窒素酸化
物(NOx)の浄化性能が悪く、一方、酸素含有率の高
いリーン排気ガス中でもNOx浄化性能は優れているも
のの、HC,COを浄化する能力に劣るからである。
However, the zeolite-based catalyst alone cannot sufficiently purify the exhaust gas of an engine operated at a wide air-fuel ratio from stoichiometric air-fuel (stoichiometric) to oxygen-excess (lean). Combination was essential. This is because the zeolite-based catalyst has poor purification performance of hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx) in stoichiometric exhaust gas, and on the other hand, even in lean exhaust gas having a high oxygen content. This is because although the NOx purification performance is excellent, the ability to purify HC and CO is inferior.

【0007】このため、ゼオライト系触媒と三元触媒と
を排気ガス流れ方向に対し直列に組み合わせる触媒シス
テムが考えられ、例えば、特開平1−139145号公
報には、排気ガス上流側に遷移金属を担持したゼオライ
ト触媒を、下流側に酸化触媒または三元触媒を配置する
ことが提案されている。
For this reason, a catalyst system in which a zeolite-based catalyst and a three-way catalyst are combined in series in the exhaust gas flow direction has been considered. For example, Japanese Patent Application Laid-Open No. 1-139145 discloses that a transition metal is provided upstream of the exhaust gas. It has been proposed to place a supported zeolite catalyst downstream of an oxidation catalyst or a three-way catalyst.

【0008】このような、排気ガスの上流側にゼオライ
ト系触媒を、下流側に三元触媒を配置する組み合わせ
は、ストイキからリーンに至る幅広い空燃比で運転する
リーン・バーン・エンジンの排気ガス浄化のためには有
効な触媒システムと考えられる。
Such a combination of arranging a zeolite-based catalyst on the upstream side of the exhaust gas and a three-way catalyst on the downstream side of the exhaust gas purifies the exhaust gas of a lean burn engine operating at a wide air-fuel ratio from stoichiometric to lean. Is considered to be an effective catalyst system.

【0009】しかしながら、上記従来の排気ガス浄化触
媒システムは、実際には排気ガス下流側に設置した三元
触媒の機能を十分に発揮させることができず、ストイキ
での排気ガス浄化性能が不十分になるという問題があ
る。これは、ゼオライト系触媒が、リーンからストイ
キ、ストイキからリーンへと排気ガスの状態が切り換わ
る際に、排気ガス中の一部のガス成分を一時的かつ選択
的に捕捉し、これが三元触媒入り口における排気ガス中
の酸化性ガス成分(NOx)と還元性ガス成分のバラン
スを崩し、三元触媒の機能を低下させると概略的に考え
られる。従って、三元触媒の機能を低下させないために
は、ゼオライト系触媒によるガス成分の捕捉力を弱める
ことが必要である。
However, the conventional exhaust gas purifying catalyst system cannot actually exhibit the function of the three-way catalyst installed on the downstream side of the exhaust gas sufficiently, and the exhaust gas purifying performance at the stoichiometric ratio is insufficient. Problem. This is because when the state of the exhaust gas switches from lean to stoichiometric and from stoichiometric to lean, the zeolite-based catalyst temporarily and selectively captures some of the gas components in the exhaust gas, It is generally considered that the balance between the oxidizing gas component (NOx) and the reducing gas component in the exhaust gas at the entrance is lost, and the function of the three-way catalyst is reduced. Therefore, in order not to lower the function of the three-way catalyst, it is necessary to weaken the ability of the zeolite-based catalyst to capture gas components.

【0010】また、従来のCu−ゼオライト系触媒の作
動温度域(温度ウィンドウ)は、250〜300℃のよ
うな低温域では有効に作動せず、排気ガス浄化性能が低
く、温度ウィンドウをより低温側に拡大する必要があ
る。
Further, the operating temperature range (temperature window) of the conventional Cu-zeolite catalyst does not operate effectively in a low temperature range such as 250 to 300 ° C., the exhaust gas purification performance is low, and the temperature window is lowered. Need to expand to the side.

【0011】これに対しては、例えば特開平1−127
044号公報及び特開平5−68888号公報に、Cu
−ゼオライト系触媒を上層に、貴金属触媒層を下層にし
て多層化し、貴金属触媒層での反応熱を利用することに
より、上層のCu−ゼオライト系触媒を低温から作動さ
せ、温度ウィンドウを拡げる排気ガス浄化用触媒が提案
されている。
On the other hand, for example, Japanese Patent Laid-Open No.
No. 044 and JP-A-5-68888, Cu
-Exhaust gas that operates the upper Cu-zeolite catalyst from a low temperature and expands the temperature window by using the reaction heat in the noble metal catalyst layer to form a multilayer by using the zeolite-based catalyst as the upper layer and the noble metal catalyst layer as the lower layer. Purification catalysts have been proposed.

【0012】しかし、元来よりゼオライト系触媒は水分
の共存する高温状態に曝されると劣化し易い性質を有す
るため、上記従来の排気ガス浄化用触媒は、下層に設け
た貴金属触媒層の反応熱により触媒劣化を生じてしま
い、更に、下層の貴金属層で炭化水素類が酸化消費され
るので、NOx浄化率の低下を招くという問題がある。
However, since the zeolite-based catalyst originally has a property of being easily degraded when exposed to a high temperature state in which moisture coexists, the above-mentioned conventional exhaust gas purifying catalyst has a reaction of a noble metal catalyst layer provided below. Heat degrades the catalyst, and furthermore, the hydrocarbons are oxidized and consumed in the lower noble metal layer, which causes a problem of lowering the NOx purification rate.

【0013】[0013]

【発明が解決しようとする課題】従って、本発明の目的
は、三元触媒の機能を低下させずに、ストイキからリー
ンに至る幅広い空燃比で運転する自動車エンジンからの
排気ガスを効率良く浄化することができ、かつ耐久性も
備えた排気ガス浄化用触媒を提供するにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to efficiently purify exhaust gas from an automobile engine operating at a wide air-fuel ratio from stoichiometric to lean without deteriorating the function of the three-way catalyst. An object of the present invention is to provide an exhaust gas purifying catalyst which can be used and has durability.

【0014】[0014]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために研究した結果、ゼオライト系触媒の細
孔分布を特定することにより、ゼオライト系触媒による
特定のガス成分の捕捉力が変化して三元触媒の機能を十
分に発揮でき、かつ排気ガス中に含まれる嵩高い炭化水
素類が下層の貴金属触媒層に拡散し難くなるので、酸化
反応が抑制されて余分な熱の発生が抑制され、さらに、
NOx浄化に必要な還元剤としての炭化水素類の下層で
の酸化消費も抑制されるので、NOx浄化率が向上する
ことを見い出し、本発明に到達した。
Means for Solving the Problems The present inventors have studied to solve the above problems, and as a result, by specifying the pore distribution of the zeolite-based catalyst, the ability of the zeolite-based catalyst to capture a specific gas component. Changes, the function of the three-way catalyst can be sufficiently exhibited, and the bulky hydrocarbons contained in the exhaust gas are less likely to diffuse into the lower noble metal catalyst layer. The occurrence is suppressed,
Since oxidation consumption in the lower layer of hydrocarbons as a reducing agent required for NOx purification is also suppressed, it has been found that the NOx purification rate is improved, and the present invention has been reached.

【0015】本発明の排気ガス浄化用触媒は、金属担持
多孔質結晶性アルミノケイ酸塩触媒層及び貴金属担持ア
ルミナ触媒層を含むハニカム状触媒〔1〕を排気ガス流
の上流側に配置し、三元触媒を含むハニカム状触媒
〔2〕を排気ガス流の下流側に配して成る排気ガス浄化
用触媒であって、前記ハニカム状触媒〔1〕における金
属担持多孔質結晶性アルミノケイ酸塩中の4nm以下の
細孔直径を有する細孔の全容積和が1〜100nmの細
孔直径を有する細孔の全容積総和の60%以上であるこ
とを特徴とする。
According to the exhaust gas purifying catalyst of the present invention, a honeycomb-shaped catalyst [1] including a metal-supported porous crystalline aluminosilicate catalyst layer and a noble metal-supported alumina catalyst layer is disposed upstream of an exhaust gas flow. An exhaust gas purifying catalyst comprising a honeycomb catalyst [2] including a source catalyst disposed downstream of an exhaust gas flow, wherein the catalyst contained in the metal-supported porous crystalline aluminosilicate in the honeycomb catalyst [1] is The total volume of pores having a pore diameter of 4 nm or less is 60% or more of the total volume of pores having a pore diameter of 1 to 100 nm.

【0016】即ち、直径4〜100nmの細孔が特定ガ
ス成分の一時的かつ選択的な捕捉力を担っていると考え
られ、この細孔の割合を制御することにより、三元触媒
の機能低下を抑制することができるのである。特に好ま
しくは、直径4nm以下の径を有する細孔の容積和を、
直径1nm〜100nm以下の細孔の容積総和の75%
以上とする。これにより更に効果的に三元触媒の機能低
下を防止することができるので好ましい。
That is, the pores having a diameter of 4 to 100 nm are considered to have a temporary and selective trapping force for the specific gas component. By controlling the proportion of the pores, the function of the three-way catalyst is reduced. Can be suppressed. Particularly preferably, the volume sum of pores having a diameter of 4 nm or less is
75% of the total volume of pores having a diameter of 1 nm to 100 nm or less
Above. This is preferable because the function of the three-way catalyst can be more effectively prevented from lowering.

【0017】本発明の、ゼオライト系触媒及び貴金属担
持アルミナ触媒を含むハニカム状触媒〔1〕と三元触媒
を含むハニカム状触媒〔2〕との組合せは、ゼオライト
系触媒及び貴金属担持アルミナ触媒を含むハニカム状触
媒〔1〕を排気ガス上流側に、三元触媒を含むハニカム
状触媒〔2〕を下流側に配置することが好ましい。この
配置を逆にするとリーン排気ガスのNOx浄化反応に必
要な還元ガス成分がハニカム状触媒〔1〕に至る前に消
費され、NOx浄化作用が阻害される。また、同様の理
由で、上記ゼオライト系触媒及び貴金属担持アルミナ触
媒を含むハニカム状触媒〔1〕は、ゼオライト系触媒を
上層とし、貴金属担持アルミナ触媒を下層として構成さ
れることが好ましい。
The combination of the honeycomb catalyst [1] containing the zeolite catalyst and the noble metal-supported alumina catalyst and the honeycomb catalyst [2] containing the three-way catalyst of the present invention includes the zeolite catalyst and the noble metal-supported alumina catalyst. It is preferable to dispose the honeycomb catalyst [1] on the upstream side of the exhaust gas and arrange the honeycomb catalyst [2] including the three-way catalyst on the downstream side. When this arrangement is reversed, the reducing gas component necessary for the NOx purification reaction of the lean exhaust gas is consumed before reaching the honeycomb-shaped catalyst [1], and the NOx purification action is hindered. For the same reason, it is preferable that the honeycomb catalyst [1] including the zeolite catalyst and the noble metal-supported alumina catalyst has a zeolite catalyst as an upper layer and a noble metal-supported alumina catalyst as a lower layer.

【0018】ゼオライト系触媒及び貴金属担持アルミナ
触媒を含むハニカム状触媒〔1〕において上層に用いら
れるゼオライト系触媒におけるゼオライトのSiO2
Al 2 3 のモル比は25〜60の範囲が好ましい。S
iO2 /Al2 3 のモル比が25未満になると、ゼオ
ライトの熱安定性が不十分となり、触媒の耐熱性や耐久
性が低下する。逆に、モル比が60を超えると活性金属
成分の担持量が少なくなり、触媒活性が低下する。
Zeolite catalyst and noble metal supported alumina
Used in the upper layer of the honeycomb catalyst containing the catalyst [1]
Of zeolite in zeolite-based catalystsTwo/
Al TwoOThreeIs preferably in the range of 25 to 60. S
iOTwo/ AlTwoOThreeWhen the molar ratio of
Insufficient thermal stability of light, heat resistance and durability of catalyst
Is reduced. Conversely, if the molar ratio exceeds 60, the active metal
The amount of the component carried is reduced, and the catalytic activity is reduced.

【0019】本発明において用いられるゼオライトとし
ては、公知のゼオライトの中から適宜選択して使用する
ことができるが、特にペンタシジ型ゼオライトと称され
る群のものが有効である。このようなゼオライトとして
は、例えば、フェリエライト、ZSM5、ZSM11、
βゼオライト、Y型ゼオライト等があげられるが、特に
MFI型ゼオライトが耐熱性や耐久性の面から好まし
い。
The zeolite used in the present invention can be appropriately selected from known zeolites, and in particular, a group called a pentacidium type zeolite is effective. Examples of such zeolites include ferrierite, ZSM5, ZSM11,
Examples thereof include β zeolite and Y zeolite, and MFI zeolite is particularly preferable in terms of heat resistance and durability.

【0020】また、ゼオライトは、水熱処理、再合成な
どによって、結晶性を高めることにより安定化し、耐熱
性、耐久性の高い触媒が得られるので好ましい。
Zeolite is preferred because it is stabilized by increasing the crystallinity by hydrothermal treatment, resynthesis, etc., and a catalyst having high heat resistance and durability can be obtained.

【0021】本発明に用いられるゼオライトに担持する
金属成分としては、種々の遷移金属種が有効であるが、
特に、Cu,Co,Ag,Ni,Ptが好ましく、Cu
が最も好ましい。その担持量は吸着水を除いたゼオライ
トを基準として金属換算して1.0〜7.0重量%がN
Ox浄化性能及び耐久性の点から好ましい。
As the metal component supported on the zeolite used in the present invention, various transition metal species are effective.
In particular, Cu, Co, Ag, Ni, and Pt are preferable.
Is most preferred. The supported amount is 1.0 to 7.0% by weight in terms of metal based on zeolite excluding adsorbed water.
It is preferable in terms of Ox purification performance and durability.

【0022】また、上流側に配したハニカム状触媒
〔1〕のゼオライト系触媒層を構成する触媒粒子全体の
Cu/Si原子比〔=B(Cu/Si)と表示〕とX線
光電子分光分析法(XPS)により求められる触媒粒子
表面から5nmの深さまでの部分におけるCu/Si原
子比〔=S(Cu/Si)〕との比率〔S(Cu〜S
i)/B(Cu/Si)〕を0を越えて5.0以下とす
ることにより、高活性でかつ耐久性に優れた高性能触媒
が得られる。
Further, the Cu / Si atomic ratio [indicated as = B (Cu / Si)] of the entire catalyst particles constituting the zeolite-based catalyst layer of the honeycomb-shaped catalyst [1] arranged on the upstream side and X-ray photoelectron spectroscopy analysis Ratio [S (Cu to S)] with the Cu / Si atomic ratio [= S (Cu / Si)] in the portion from the catalyst particle surface to a depth of 5 nm determined by the XPS method.
i) / B (Cu / Si)] of more than 0 to 5.0 or less, a high-performance catalyst having high activity and excellent durability can be obtained.

【0023】ゼオライト粒子表面付近には極めて高活性
な金属種が生成しやすく、その活性種が存在すると、リ
ーンからストイキへの排気ガス変換の際に、排気ガス中
のガス成分の捕捉効果が高くなり、三元触媒の機能低下
を大きくする。そのため、三元触媒の機能発揮にはゼオ
ライト粒子表面の活性種の生成を抑えることが必要であ
り、粒子表面に活性種を偏析させないことが重要となる
ため、Cu−ゼオライト触媒の場合、触媒粒子全体のC
u/Si原子比〔=B(Cu/Si)と表示〕とX線光
電子光分析法法により求められる触媒粒子表面から5n
mの深さまでの部分におけるCu/Si原子比〔=S
(Cu/Si)〕の比率〔S(Cu/Si)/B(Cu
/Si)〕を0を越えて5.0以下とすることにより、
NOx浄化活性を低下させることがなく、かつガス成分
の捕捉効果が抑えられ、三元触媒が十分に機能発揮でき
るのである。
An extremely active metal species is easily generated near the surface of the zeolite particles, and the presence of the active species enhances the effect of trapping gas components in the exhaust gas during the conversion of the exhaust gas from lean to stoichiometric. Therefore, the function of the three-way catalyst is greatly reduced. Therefore, in order to exhibit the function of the three-way catalyst, it is necessary to suppress the generation of active species on the surface of the zeolite particles, and it is important not to segregate the active species on the particle surface. Whole C
u / Si atomic ratio [= B (Cu / Si)] and 5n from the catalyst particle surface determined by X-ray photoelectron spectroscopy
m Cu / Si atomic ratio [= S
(Cu / Si)] [S (Cu / Si) / B (Cu
/ Si)] to more than 0 and not more than 5.0,
The effect of trapping gas components is suppressed without lowering the NOx purification activity, and the three-way catalyst can exhibit its function sufficiently.

【0024】ゼオライト系触媒及び貴金属担持アルミナ
触媒を含むハニカム状触媒〔1〕において、下層に用い
られる貴金属担持アルミナ触媒に担持される貴金属は、
Ptおよび/またはPdであり、その担持量は単位ハニ
カム容積当たり金属換算で0.1〜1.4g/LがNO
x浄化性能及び耐久性能の点から好ましい。また、貴金
属を担持する担体としては、アルミナ、シリカ、シリカ
−アルミナ、マグネシア、ジルコニア、チタニア等の一
般的な触媒担体を用いることができるが、特にアルミナ
は比表面積が大きく、かつ耐熱性に優れているため貴金
属を高分散担持でき、より少ない貴金属を有効に活用で
きるため好ましい。
In the honeycomb catalyst [1] including the zeolite-based catalyst and the noble metal-supported alumina catalyst, the noble metal supported on the noble metal-supported alumina catalyst used in the lower layer is:
Pt and / or Pd, and the supported amount of NO is 0.1 to 1.4 g / L in terms of metal per unit honeycomb volume.
x It is preferable from the viewpoint of purification performance and durability performance. In addition, as a carrier for supporting a noble metal, a general catalyst carrier such as alumina, silica, silica-alumina, magnesia, zirconia, and titania can be used, but alumina has a large specific surface area and excellent heat resistance. This is preferable because noble metals can be highly dispersed and supported, and less noble metals can be effectively used.

【0025】ハニカム状触媒〔1〕における貴金属担持
アルミナ触媒層に、バリウム及び/またはカリウム及び
/またはランタンを含有させると、貴金属成分の強い酸
化能を抑制し、リーン条件でNOx還元浄化に必要なH
C成分を確保し、かつ貴金属触媒層での酸化反応熱を抑
制して金属担持ゼオライト触媒層の劣化を防ぐ上で有利
となる。
When the noble metal-supported alumina catalyst layer in the honeycomb catalyst [1] contains barium and / or potassium and / or lanthanum, the strong oxidizing ability of the noble metal component is suppressed, and the NOx reduction and purification are required under lean conditions. H
This is advantageous in securing the C component and suppressing the heat of oxidation reaction in the noble metal catalyst layer to prevent the deterioration of the metal-supported zeolite catalyst layer.

【0026】さらに、該貴金属担持アルミナ触媒層にセ
リウムを含有させると、三元触媒としての機能が付加さ
れ、排気ガスの浄化性能が向上する。
Further, when cerium is contained in the noble metal-carrying alumina catalyst layer, a function as a three-way catalyst is added, and the purification performance of exhaust gas is improved.

【0027】本発明の排気ガス浄化用触媒を調製するに
あたり、金属担持成分の原料としては、無機酸塩、酸化
物、有機酸塩、塩化物、炭酸塩、ナトリウム塩、アンモ
ニウム塩、アンミン錯化合物等の各種化合物を使用する
ことができ、イオン交換法、含浸法等の通常用いられる
方法で該金属成分を各担体、例えばゼオライトやアルミ
ナに担持することができる。さらには、金属原料を高温
で蒸発させて気相担持する方法や、物理的混合法による
担持も有効である。通常のイオン交換法、含浸法による
場合には、金属原料は溶液で用いられることが多く、そ
の溶液には、酸あるいは塩基を添加して適当にpHを調
節することにより好ましい結果を与える場合もあるが、
本発明は担持法によって制限されるものではない。
In preparing the exhaust gas purifying catalyst of the present invention, the raw materials of the metal-supporting component include inorganic acid salts, oxides, organic acid salts, chlorides, carbonates, sodium salts, ammonium salts, and ammine complex compounds. And various other compounds can be used, and the metal component can be supported on each carrier, for example, zeolite or alumina by a commonly used method such as an ion exchange method or an impregnation method. Further, a method in which a metal raw material is evaporated at a high temperature and supported in a gas phase, or a method in which the metal material is supported by a physical mixing method is also effective. In the case of the usual ion exchange method or impregnation method, the metal raw material is often used in a solution, and a preferable result may be obtained by adding an acid or a base to the solution and appropriately adjusting the pH. There is
The present invention is not limited by the loading method.

【0028】また、ゼオライト系触媒の細孔径分布を制
御する方法としては、(1)ゼオライト粒子を湿式ある
いは乾式条件で粉砕し粒径制御する方法、(2)少なく
とも600℃以上の高温で焼成して粒子を焼結する方
法、(3)各種酸化物の微粉末を混合する方法、(4)
触媒表面を各種酸化物でコーティングし粒径制御する方
法等がある。前記(3)および(4)の方法における各
種酸化物としては、可能な限り不活性で触媒性能に悪影
響を与えないものが好ましく、アルミナ(Al
23 )、シリカ(SiO2 )、チタニア(Ti
2 )、炭化珪素(SiC)、窒化珪素(Si3 4
等の微粉末が好適に用いられる。上記方法は単独でも有
効だが、上記(1)〜(4)の方法を適当に組み合わせ
ると、より一層大きな効果が得られる。
The method for controlling the pore size distribution of the zeolite catalyst includes (1) a method in which zeolite particles are pulverized under wet or dry conditions to control the particle size, and (2) a method in which the zeolite particles are calcined at a high temperature of at least 600 ° C. or higher. (3) a method of mixing various oxide fine powders, (4)
There is a method of coating the catalyst surface with various oxides and controlling the particle size. As the various oxides in the methods (3) and (4), those which are as inert as possible and do not adversely affect the catalytic performance are preferable.
2 O 3 ), silica (SiO 2 ), titania (Ti
O 2 ), silicon carbide (SiC), silicon nitride (Si 3 N 4 )
And the like are preferably used. Although the above method is effective alone, an even greater effect can be obtained by appropriately combining the above methods (1) to (4).

【0029】ゼオライト系触媒及び貴金属担持アルミナ
触媒を含むハニカム状触媒〔1〕の製造に際しては、従
来のハニカム状三元触媒の製法に準じた方法が適用でき
る。すなわち、ゼオライト系触媒及び貴金属担持アルミ
ナ触媒の粉末に、バインダーとして各種のシリカ、アル
ミナ、シリカ−アルミナ等を添加し、さらに水を加えて
スラリー化してハニカム担体にコーティングする方法で
ある。具体例を挙げれば、ゼオライト系触媒層と貴金属
担持アルミナ触媒層をそれぞれ上層と下層に塗り分ける
場合、まず、貴金属担持アルミナ触媒のスラリーをハニ
カム担体にコーティングし、120℃にて乾燥後、40
0℃で焼成してハニカム担体に触媒層を固定する。次
に、その上にゼオライト系触媒のスラリーをコーティン
グし、同様に乾燥、焼成を行う。
In the production of the honeycomb catalyst [1] including the zeolite catalyst and the noble metal-supported alumina catalyst, a method according to a conventional method for producing a honeycomb three-way catalyst can be applied. That is, this is a method in which various kinds of silica, alumina, silica-alumina and the like are added as a binder to the powder of the zeolite-based catalyst and the noble metal-supported alumina catalyst, and water is further added to form a slurry to coat the honeycomb carrier. As a specific example, when the zeolite-based catalyst layer and the noble metal-supported alumina catalyst layer are separately applied to an upper layer and a lower layer, respectively, first, a slurry of a noble metal-supported alumina catalyst is coated on a honeycomb carrier, dried at 120 ° C., and then dried.
By firing at 0 ° C., the catalyst layer is fixed on the honeycomb carrier. Next, a slurry of a zeolite-based catalyst is coated thereon, and dried and fired similarly.

【0030】排気ガス流の下流側に配する触媒は、三元
触媒を含むハニカム状触媒〔2〕であり、三元触媒は一
般的に耐火性無機物に貴金属成分を担持することによっ
て得られる。かかる触媒中に含有される貴金属には、P
t,Pd,Rhから成る群より選ばれる1種以上の元素
が含まれる。また耐火性無機物としては、アルミナ、シ
リカ、シリカ−アルミナ、マグネシア、ジルコニア、チ
タニア等の一般的な触媒担体を用いることができるが、
これによって制限されるものではない。また、アルミナ
は比表面積が大きく、かつ耐熱性に優れているため貴金
属を高分散担持でき、より少ない貴金属を有効に活用で
きるため好ましい触媒担体である。
The catalyst disposed downstream of the exhaust gas flow is a honeycomb catalyst [2] including a three-way catalyst. The three-way catalyst is generally obtained by supporting a refractory inorganic substance with a noble metal component. Noble metals contained in such catalysts include P
At least one element selected from the group consisting of t, Pd, and Rh is included. Further, as the refractory inorganic material, alumina, silica, silica-alumina, magnesia, zirconia, can be used a general catalyst carrier such as titania,
It is not limited by this. Alumina is a preferable catalyst carrier because it has a large specific surface area and is excellent in heat resistance, so that noble metals can be highly dispersed and supported, and less noble metals can be effectively used.

【0031】排気ガス下流側のハニカム状触媒〔2〕の
三元触媒には、通常、セリウムを含有させる。セリウム
は、空燃比(空気/燃料比)が14.6付近のストイキ
域のHC,CO,NOxの3成分を同時に浄化できる空
燃比範囲を拡大する機能(酸素ストレージ能)を有して
いることは良く知られている。また、バリウムはNOx
を吸着する能力を有しており、ストイキからリーンへ、
リーンからストイキへの過渡運転条件においてNOxを
効率良く浄化する上で有効である。
The three-way catalyst of the honeycomb catalyst [2] on the downstream side of the exhaust gas usually contains cerium. Cerium has a function (oxygen storage capacity) that expands the air-fuel ratio range that can simultaneously purify three components of HC, CO, and NOx in the stoichiometric region where the air-fuel ratio (air / fuel ratio) is around 14.6. Is well known. Barium is NOx
It has the ability to adsorb, from stoichiometric to lean,
This is effective in efficiently purifying NOx under the transient operation condition from lean to stoichiometric.

【0032】本発明の排気ガス流の上流側及び下流側に
配する上記触媒は各々ハニカム形状で使用するのが好ま
しい。この場合、通常、ハニカム状の担体に本発明で用
いる触媒を塗布して用いる。このハニカム材料として
は、一般にコージェライト質のものが広く用いられてい
るが、これに限定されるものではなく、金属材料からな
るハニカム担体も有効であり、また触媒粉末そのものを
ハニカム状に成形することもできる。更には、触媒の形
状をハニカム状とすることにより、触媒と排気ガスとの
接触面積が大きくなり、圧力損失も抑えられるため、振
動があり、かつ限られた空間内で多量の排気ガスを処理
することが要求される自動車用触媒として用いる場合に
極めて有利となる。
The above-mentioned catalysts disposed on the upstream side and the downstream side of the exhaust gas stream of the present invention are preferably used in a honeycomb shape. In this case, the catalyst used in the present invention is usually applied to a honeycomb-shaped carrier and used. As the honeycomb material, cordierite-based materials are generally widely used, but are not limited thereto, and a honeycomb carrier made of a metal material is also effective, and the catalyst powder itself is formed into a honeycomb shape. You can also. Furthermore, by making the shape of the catalyst a honeycomb shape, the contact area between the catalyst and the exhaust gas is increased and the pressure loss is suppressed, so that a large amount of exhaust gas is processed in a limited space with vibration. This is extremely advantageous when used as an automotive catalyst which is required to be used.

【0033】[0033]

【実施例】以下、本発明を次の実施例及び比較例によっ
て更に詳述するが、本発明はこれによって限定されるも
のではない。実施例1 (1)ゼオライト系触媒及び貴金属担持アルミナ触媒を
含むハニカム状触媒〔1〕 (a)ゼオライト系触媒スラリー 濃度0.1モルの硝酸銅水溶液にSiO2 /Al2 3
モル比が約37のNH 4 型ZSM5の粉末を添加して良
く攪拌し、次いで濾過することにより固液を分離した。
前記攪拌・濾過操作を5回繰り返すことにより、Cuを
イオン交換担持したZSM5ゼオライト触媒ケーキを得
た。このケーキを、乾燥機を用いて120℃で24時間
以上乾燥し、次いで電気炉を用いて大気雰囲気下670
℃で3時間焼成することにより、Cuが5.8重量%担
持されたCu−ZSM5触媒粉を得た。得られたCu−
ZSM5ゼオライト触媒における〔S(Cu/Si)/
BCu/Si)〕比をXPS法で測定した結果、2.3
であった。
The present invention will be described below with reference to the following examples and comparative examples.
The present invention will be described in more detail with reference to
Not.Example 1 (1) Zeolite-based catalyst and noble metal-supported alumina catalyst
Honeycomb-like catalyst containing [1] (a) zeolite-based catalyst slurryTwo/ AlTwoOThree
NH with a molar ratio of about 37 FourGood by adding type ZSM5 powder
The solid and liquid were separated by vigorous stirring and filtration.
By repeating the stirring / filtration operation five times, Cu
Obtaining ZSM5 zeolite catalyst cake carrying ion exchange
Was. This cake is dried at 120 ° C. for 24 hours using a dryer.
After drying, 670 under air atmosphere using an electric furnace.
5.8% by weight of Cu
The obtained Cu-ZSM5 catalyst powder was obtained. The obtained Cu-
[S (Cu / Si) / ZSM5 zeolite catalyst
BCu / Si)] was measured by the XPS method.
Met.

【0034】このようにして得られたCu−ZSM5触
媒粉末とアルミゾル、シリカゾル、チタニアゾルおよび
水とを磁性ボールミルポットに入れ、1時間混合・粉砕
してスラリー化した。アルミナゾル、シリカゾル及びチ
タニアゾルの添加量は、それぞれAl2 3 、Si
2 、TiO2 として、吸着水を除いたCu−ZSM5
触媒粉に対して、2重量%、6重量%、2重量%であっ
た。
The thus obtained Cu-ZSM5 catalyst powder, aluminum sol, silica sol, titania sol and water were placed in a magnetic ball mill pot and mixed and pulverized for 1 hour to form a slurry. The added amounts of the alumina sol, silica sol and titania sol are Al 2 O 3 and Si
Cu-ZSM5 excluding adsorbed water as O 2 and TiO 2
It was 2% by weight, 6% by weight, and 2% by weight based on the catalyst powder.

【0035】(b)貴金属担持アルミナ触媒スラリー γ−アルミナを主成分とする活性アルミナに酸化セリウ
ム(CeO2 )を10重量%加え、ジニトロジアンミン
パラジウム水溶液を用いて含浸法でPd成分を担持した
後、乾燥機中120℃で8時間乾燥し、空気気流中45
0℃で2時間焼成し、Pdが0.5重量%担持されたP
d−CeO2 −Al2 3 を得た。このPd−CeO2
−Al2 3 を酸性アルミナゾル及び水と混合し、磁性
ボールミルポットで2時間粉砕してスラリーを得た。
(B) Noble metal-supported alumina catalyst slurry 10% by weight of cerium oxide (CeO 2 ) was added to activated alumina containing γ-alumina as a main component, and the Pd component was supported by impregnation using an aqueous dinitrodiammine palladium solution. , Dried in a dryer at 120 ° C for 8 hours, and dried in an air stream for 45 hours.
Baking at 0 ° C. for 2 hours, Pd carrying 0.5% by weight of Pd
to give the d-CeO 2 -Al 2 O 3 . This Pd-CeO 2
-Al 2 O 3 was mixed with an acidic alumina sol and water, and pulverized in a magnetic ball mill pot for 2 hours to obtain a slurry.

【0036】(c)ゼオライト系触媒及び貴金属担持ア
ルミナ触媒を含むハニカム状触媒〔1〕の調製 上記(b)で得られた貴金属担持アルミナ触媒スラリー
を、1平方インチ断面当たり、約400個の流路を持つ
コージェライト製ハニカム担体1.0Lに塗布し、15
0℃で熱風乾燥した後、500℃で1時間焼成してハニ
カム担体にPd−CeO2 −Al2 3 触媒を焼き付け
た。Pd触媒層のコート量は約80g/Lであった。さ
らに、このハニカム状触媒に、上記(a)で得られたC
u−ZSM5のスラリーを塗布し、150℃で熱風乾燥
した後、500℃で1時間焼成することによりハニカム
担体に対してCu−ZSM5触媒を約150g/L焼き
付けた。該ハニカム状触媒をコロイダルシリカ溶液中に
2秒間浸し、次いで圧縮空気で余分な溶液を吹き飛ばし
た後、乾燥機中100℃で乾燥後、電気炉中600℃で
1時間焼成し、本発明に用いるゼオライト系触媒及び貴
金属担持アルミナ触媒を含むハニカム状触媒〔1〕を得
た。コロイダルシリカの含浸担体量は、SiO2として
4g/Lであった。
(C) Preparation of honeycomb catalyst [1] containing zeolite-based catalyst and noble metal-supported alumina catalyst The noble metal-supported alumina catalyst slurry obtained in the above (b) was subjected to a flow rate of about 400 per square inch cross section. To 1.0 L of cordierite honeycomb carrier with
After drying with hot air at 0 ° C., firing was performed at 500 ° C. for 1 hour to bake the Pd—CeO 2 —Al 2 O 3 catalyst on the honeycomb support. The coating amount of the Pd catalyst layer was about 80 g / L. Further, the honeycomb catalyst is added to the C obtained in the above (a).
The slurry of u-ZSM5 was applied, dried with hot air at 150 ° C., and then baked at 500 ° C. for 1 hour, so that about 150 g / L of Cu-ZSM5 catalyst was baked on the honeycomb support. The honeycomb-shaped catalyst is immersed in a colloidal silica solution for 2 seconds, and then the excess solution is blown off with compressed air, dried at 100 ° C. in a drier, and calcined at 600 ° C. for 1 hour in an electric furnace, and used in the present invention. A honeycomb-like catalyst [1] containing a zeolite-based catalyst and a noble metal-supported alumina catalyst was obtained. The amount of the impregnated carrier of colloidal silica was 4 g / L as SiO 2 .

【0037】(2)三元触媒を含むハニカム状触媒
〔2〕 γ−アルミナを主成分とする活性アルミナに酸化セリウ
ムを20重量%加え、ジニトロジアンミンパラジウム水
溶液を用いて含浸法でPdを担持した後、乾燥機を用い
て120℃で8時間乾燥し、空気気流中450℃で2時
間焼成し、Pdが1.4重量%担持されたPd−活性ア
ルミナを得た。このPd−CeO2 −活性アルミナにさ
らに酸化セリウムを3重量%添加し、活性アルミナおよ
び硝酸酸性ベーマイトゾルをそれぞれ2重量%および1
2重量%添加混合し、磁性ボールミルポットで8時間粉
砕してスラリーを得た。このスラリーを上記ゼオライト
系触媒と同様にしてハニカム担体0.9Lにコーティン
グし、120℃で乾燥、400℃で焼成した。該触媒の
コート量は約150g/Lであった。
(2) Honeycomb catalyst containing a three-way catalyst [2] 20% by weight of cerium oxide was added to activated alumina mainly composed of γ-alumina, and Pd was supported by impregnation using an aqueous solution of dinitrodiammine palladium. Thereafter, the resultant was dried at 120 ° C. for 8 hours using a dryer, and calcined at 450 ° C. for 2 hours in an air stream to obtain Pd-activated alumina carrying 1.4% by weight of Pd. 3% by weight of cerium oxide was further added to the Pd-CeO2-activated alumina, and 2 % by weight of activated alumina and 1% by weight of nitric acid boehmite sol were added.
2% by weight was added and mixed, and the mixture was pulverized in a magnetic ball mill pot for 8 hours to obtain a slurry. The slurry was coated on 0.9 L of a honeycomb carrier in the same manner as in the above zeolite-based catalyst, dried at 120 ° C, and calcined at 400 ° C. The coating amount of the catalyst was about 150 g / L.

【0038】次いで、酸化セリウムを35重量%含有し
た活性アルミナに硝酸ロジウム水溶液を加え、含浸法で
Ph担持した後、乾燥機を用いて120℃で8時間乾燥
し、空気気流中450℃で2時間焼成して、Rhが0.
9重量%担持されたRh−CeO2 −活性アルミナを得
た。このRh−CeO2 −活性アルミナに硝酸酸性ベー
マイトゾルを添加混合し、磁性ボールミルポットで3時
間粉砕してスラリーを得た。このスラリーを上記Pd−
CeO2 −活性アルミナがコートされたハニカム上にコ
ーティングし、120℃での乾燥、400℃での焼成を
行なった。得られたハニカム状触媒を酢酸バリウム水溶
液に含浸し、同様に120℃での乾燥、400℃での焼
成の工程を経て三元触媒を含むハニカム状触媒〔2〕を
得た。該Ph−活性アルミナのコート量は、42g/L
であり、バリウムの担持量は、酸化バリウム(BaO)
としてハニカム容量当たり13g/Lであった。
Next, an aqueous rhodium nitrate solution was added to activated alumina containing 35% by weight of cerium oxide, and Ph was carried by an impregnation method. Then, it was dried at 120 ° C. for 8 hours using a drier, and dried at 450 ° C. in an air stream. After firing for an hour, Rh is reduced to 0.
9% by weight of supported Rh-CeO 2 -activated alumina was obtained. A nitric acid boehmite sol was added to the Rh-CeO 2 -activated alumina, mixed and pulverized in a magnetic ball mill pot for 3 hours to obtain a slurry. This slurry was mixed with the above Pd-
It was coated on a honeycomb coated with CeO 2 -activated alumina, dried at 120 ° C., and fired at 400 ° C. The obtained honeycomb catalyst was impregnated with an aqueous barium acetate solution, followed by drying at 120 ° C. and firing at 400 ° C. to obtain a honeycomb catalyst [2] containing a three-way catalyst. The coating amount of the Ph-activated alumina was 42 g / L.
And the supported amount of barium is barium oxide (BaO)
Was 13 g / L per honeycomb capacity.

【0039】上記のCu−ZSM5を含むハニカム触媒
〔1〕を排気ガス流の上流側に、三元触媒を含むハニカ
ム状触媒〔2〕を下流側に直列に配置して触媒コンバー
ターに組み込み、〔1.0L+0.9L〕=1.9Lの
タンデム触媒(1)を得た。
The honeycomb catalyst [1] containing the above-mentioned Cu-ZSM5 is arranged in series on the upstream side of the exhaust gas flow, and the honeycomb catalyst [2] containing the three-way catalyst is arranged in series on the downstream side, and incorporated in the catalytic converter. 1.0 L + 0.9 L] = 1.9 L of tandem catalyst (1) was obtained.

【0040】実施例2 実施例1において、ハニカム状触媒〔1〕における貴金
属担持アルミナ触媒の調製に際し、CeO2 を添加しな
った他は、同様にしてタンデム触媒(2)を得た。
Example 2 A tandem catalyst (2) was obtained in the same manner as in Example 1, except that CeO 2 was not added when preparing the noble metal-supported alumina catalyst in the honeycomb catalyst [1].

【0041】実施例3 実施例1において、Cu−ZSM5触媒粉の焼成を70
0℃で4時間とし、コロイダルシリカの含浸を行わなか
った以外は、同様にしてタンデム触媒(3)を得た。こ
の、Cu−ZSM5触媒における〔S(Cu/Si)/
B(Cu/Si)〕比は、1.5であった。
Example 3 In Example 1, the calcination of the Cu-ZSM5 catalyst powder was performed for 70 minutes.
A tandem catalyst (3) was obtained in the same manner except that the temperature was set at 0 ° C. for 4 hours and the impregnation with colloidal silica was not performed. [S (Cu / Si) /
B (Cu / Si)] ratio was 1.5.

【0042】実施例4 実施例1において、Cu−ZSM5触媒粉の焼成を70
0℃で4時間とし、コロイダルシリカの含浸担持量を4
g/Lとした以外は、同様にしてタンデム触媒(4)を
得た。
Example 4 In Example 1, the calcination of the Cu-ZSM5 catalyst powder was performed for 70 minutes.
At 0 ° C. for 4 hours, the amount of colloidal silica impregnated
A tandem catalyst (4) was obtained in the same manner except that g / L was used.

【0043】実施例5 実施例1において、Cu−ZSM5触媒粉の焼成を70
0℃で4時間とし、コロイダルシリカの含浸担持量を6
g/Lとした以外は、同様にしてタンデム触媒(5)を
得た。
Example 5 In Example 1, the calcination of the Cu-ZSM5 catalyst powder was performed for 70 minutes.
At 0 ° C. for 4 hours, the amount of colloidal silica impregnated
A tandem catalyst (5) was obtained in the same manner except that the amount was changed to g / L.

【0044】実施例6 実施例1のハニカム状触媒〔1〕の製法において、ハニ
カム担体にPd−CeO2 −Al2 3 触媒層を焼き付
けたのち、これを酢酸バリウム及び硝酸ランタンをB
a:La=2:1(原子比)で含有する水溶液中に含浸
し、次いで乾燥、焼成の工程を経てBaO及びLa2
3 をハニカム容量当たりそれぞれ8g/L、2g/L含有
させた以外は、同様にして、ハニカム状触媒〔1〕を得
た。このハニカム状触媒〔1〕と実施例1の三元触媒を
含むハニカム状触媒〔2〕を、実施例1と同様にして触
媒コンバーターに組み込んでタンデム触媒(6)を得
た。
Example 6 In the method for producing the honeycomb catalyst [1] of Example 1, a Pd-CeO 2 -Al 2 O 3 catalyst layer was baked on a honeycomb carrier, and then this was replaced with barium acetate and lanthanum nitrate.
a: La = 2: 1 (atomic ratio), impregnated in an aqueous solution, then dried and fired to obtain BaO and La 2 O.
A honeycomb-shaped catalyst [1] was obtained in the same manner except that 3g was contained at 8 g / L and 2 g / L per honeycomb capacity, respectively. This honeycomb catalyst [1] and the honeycomb catalyst [2] including the three-way catalyst of Example 1 were incorporated in a catalytic converter in the same manner as in Example 1 to obtain a tandem catalyst (6).

【0045】比較例1 実施例1において、Cu−ZSM5触媒粉の焼成を50
0℃で4時間とし、スラリー製造に際しては、シリカゾ
ルを加えずにアルミナゾルのみを添加した。その添加量
は、Al2 3 として、吸着水を除いたCu−ZSM5
触媒粉に対して12重量%とした以外は、実施例1と同
様にして排気ガス流の上流側に配置するハニカム状のC
u−ZSM5触媒を得た。このCu−ZSM5触媒にお
ける〔S(Cu/Si)/B(Cu/Si)〕比は、
3.2であった。上記Cu−ZSM5を含むハニカム触
媒〔1〕と実施例1で得られた三元触媒を含むハニカム
状触媒〔2〕を、実施例1と同様にして触媒コンバータ
ーに組み込んで、1.9L〔=1.0L+0.9L〕の
タンデム触媒(7)を得た。
Comparative Example 1 In Example 1, the calcination of the Cu-ZSM5 catalyst powder was
At 0 ° C. for 4 hours, when producing the slurry, only alumina sol was added without adding silica sol. The amount of addition was Cu-ZSM5 excluding adsorbed water as Al 2 O 3.
Honeycomb-shaped C disposed upstream of the exhaust gas flow in the same manner as in Example 1 except that the amount was 12% by weight with respect to the catalyst powder.
A u-ZSM5 catalyst was obtained. The [S (Cu / Si) / B (Cu / Si)] ratio in this Cu-ZSM5 catalyst is:
3.2. The honeycomb catalyst [1] containing the above-mentioned Cu-ZSM5 and the honeycomb catalyst [2] containing the three-way catalyst obtained in Example 1 were incorporated into a catalytic converter in the same manner as in Example 1, and 1.9 L [= 1.0 L + 0.9 L] of the tandem catalyst (7).

【0046】比較例2 実施例1におけるCu−ZSM5触媒粉の調製工程で、
硝酸銅水溶液の濃度を0.23Mとし、さらにアンモニ
ア水溶液を添加して液pHを8.5とした。こ溶液を用
い、他は実施例1と同様にしてタンデム触媒(8)を得
た。本比較例で得られたCu−ZSM5触媒におけるC
u担持量は、吸着水を除いたCu−ZSM5触媒粉に対
して10.2重量%であり、XPSで測定した〔S(C
u/Si)/B(Cu/Si)〕比は、5.2であっ
た。
Comparative Example 2 In the preparation process of the Cu-ZSM5 catalyst powder in Example 1,
The concentration of the aqueous solution of copper nitrate was adjusted to 0.23 M, and the pH of the solution was adjusted to 8.5 by adding an aqueous solution of ammonia. Using this solution, a tandem catalyst (8) was obtained in the same manner as in Example 1 except for the above. C in the Cu-ZSM5 catalyst obtained in this comparative example
The supported amount of u was 10.2% by weight with respect to the Cu-ZSM5 catalyst powder excluding the adsorbed water, and was measured by XPS [S (C
u / Si) / B (Cu / Si)] ratio was 5.2.

【0047】試験例 上記実施例1〜5及び比較例1で得られた排気ガス浄化
用触媒の細孔容積と触媒性能を以下に示す方法により検
討した。
Test Example The pore volume and catalytic performance of the exhaust gas purifying catalysts obtained in Examples 1 to 5 and Comparative Example 1 were examined by the following methods.

【0048】金属成分を担持したゼオライト系触媒の細
孔容積測定 装置;島津製作所(マイクロメリテックス)製 アサッ
プ2400形 測定方法;N2 ガス吸着による定容法 細孔分布データ解析;BJH法 サンプルの前処理方法;250℃で約15時間の脱気処
理(10-3mmHg以下) 解析データ;吸着側のデータから、細孔直径に対して積
算吸着細孔容積をプロットし、これから直径4nm以下
の細孔の容積和V4 と、直径1nm以上100nm以下
の細孔の容積総和V100 を求め、〔V4 /V100 〕×1
00(%)を算出した。その結果を表1に示す。
The details of the zeolite catalyst supporting the metal component
Pore volume measurement device; Asap 2400 type manufactured by Shimadzu (Micromeritex) Measuring method; Constant volume method by N 2 gas adsorption Pore distribution data analysis; BJH method Sample pretreatment method; Degas at 250 ° C. for about 15 hours Treatment (10 −3 mmHg or less) Analysis data; From the data on the adsorption side, the integrated adsorption pore volume is plotted against the pore diameter, and the volume sum V 4 of the pores having a diameter of 4 nm or less and the diameter of 1 to 100 nm are obtained. obtains the following pore volume total V 100, [V 4 / V 100] × 1
00 (%) was calculated. Table 1 shows the results.

【0049】Cu−ZSM5触媒のXPS測定 分析装置:Parkin Elmer社製ESCA5600型
X線光電子分光分析装置 分析条件:X線源としてMg−Kα線(1253.6e
V)を用いて、15KV×26.7mAで操作した。 帯電補正:SiO2 の結合エネルギーを103.2eV
として帯電補正を行った。 供試試料:加圧成形機により、230kg/cm2 の圧
力でディクス状に成形した。 上記方法により、実施例、比較例の各ゼオライト系触媒
について、触媒表面から約5nmまでの深さのSi及び
Cu成分について定量分析を行った結果から、上記深さ
までを含んだ触媒粒子表面におけるCu/Si原子比=
S(Cu/Si)を算出した。一方、触媒全体のSi及
びCuの含有量をIPC法によって求め、触媒全体のC
u/Si原子比=BCu/Si)を算出した。以上か
ら、各触媒に関しての〔S(Cu/Si)/B(Cu/
Si)〕比を算出し、触媒性能評価結果と共に表1に示
す。
An apparatus for XPS measurement and analysis of Cu-ZSM5 catalyst : ESCA5600 manufactured by Parkin Elmer
X-ray photoelectron spectroscopy analyzer Analysis conditions: Mg-Kα ray (1253.6e) as X-ray source
V) and operated at 15 KV x 26.7 mA. Charging correction: binding energy of SiO 2 is 103.2 eV
To correct the charge. Test sample: molded into a disk at a pressure of 230 kg / cm 2 by a pressure molding machine. From the results of quantitative analysis of Si and Cu components at a depth of about 5 nm from the catalyst surface for each of the zeolite catalysts of Examples and Comparative Examples by the above method, the results show that Cu on the surface of the catalyst particles including up to the above depth was obtained. / Si atomic ratio =
S (Cu / Si) was calculated. On the other hand, the contents of Si and Cu in the entire catalyst were determined by the IPC method,
u / Si atomic ratio = BCu / Si) was calculated. From the above, [S (Cu / Si) / B (Cu /
Si)] ratio is calculated and is shown in Table 1 together with the evaluation results of the catalyst performance.

【0050】触媒初期性能試験例 直列6気筒2Lエンジンを搭載した車両の排気系に上記
実施例及び比較例のタンデム型触媒を各々装着し空燃比
(A/F)=14.6(ストイキ)で40秒運転した
後、A/F=21(リーン)で20秒運転するA/F切
り換え運転モードを20回繰り返した。この切り換え運
動モードの排気ガス中のHC,CO,NOxの平均浄化
率を以下の式により算出して、その結果を表1に示す。
このモード切り換え運転中の触媒入口平均温度は380
℃であった。
Catalyst Initial Performance Test Example The tandem-type catalysts of the above embodiment and comparative example were mounted on the exhaust system of a vehicle equipped with an inline 6-cylinder 2L engine, and the air-fuel ratio (A / F) was 14.6 (stoichiometric). After running for 40 seconds, the A / F switching operation mode in which A / F = 21 (lean) for 20 seconds was repeated 20 times. The average purification rate of HC, CO, and NOx in the exhaust gas in the switching motion mode was calculated by the following equation, and the result is shown in Table 1.
The average catalyst inlet temperature during this mode switching operation is 380
° C.

【0051】触媒耐久後性能試験例 V型6気筒3エンジンを搭載した車両の排気系に上記実
施例及び比較例のタンデム型触媒を装着し、A/F=1
4.6で20秒運転した後、A/F=約21で40秒運
転するストイキ/リーンA/F切り換え運転モードで1
00時間運転した後、排気ガス中のNC,CO,NOx
の浄化率を以下の式により算出して、その結果を表1に
示す。この運転条件における触媒入口温度は、650℃
であった。
Example of Performance Test after Catalyst Endurance The tandem catalysts of the above embodiment and the comparative example were mounted on the exhaust system of a vehicle equipped with a V-type 6-cylinder 3 engine, and A / F = 1
After operating for 20 seconds at 4.6, and operating for 40 seconds at A / F = about 21, 1 in the stoichiometric / lean A / F switching operation mode
After operating for 00 hours, NC, CO, NOx in exhaust gas
Was calculated by the following equation, and the results are shown in Table 1. The catalyst inlet temperature under these operating conditions is 650 ° C.
Met.

【数1】 (Equation 1)

【0052】[0052]

【表1】 [Table 1]

【0053】[0053]

【発明の効果】本発明の自動車排気ガス浄化用触媒は、
ゼオライト系触媒の細孔分布を特定することにより、ゼ
オライト系触媒による特定のガス成分に対する補足力が
抑制できるため、三元触媒の機能を低下させずに、スト
イキからリーンに渡る幅広い空燃比で運転されるエンジ
ンの排気ガスが高効率で浄化可能となり、かつ600℃
以上の高温で長時間使用しても劣化が少ないため、環境
汚染が少なく、経済性(燃費)に優れた自動車を提供す
ることができる。
The automobile exhaust gas purifying catalyst of the present invention is
By specifying the pore distribution of the zeolite-based catalyst, the ability of the zeolite-based catalyst to capture a specific gas component can be suppressed, so that it operates with a wide air-fuel ratio from stoichiometric to lean without reducing the function of the three-way catalyst. Engine exhaust gas can be purified with high efficiency and at 600 ° C
Since there is little deterioration even when used for a long time at the above-mentioned high temperature, it is possible to provide an automobile with little environmental pollution and excellent economy (fuel efficiency).

フロントページの続き (51)Int.Cl.6 識別記号 FI F01N 3/10 F01N 3/28 301P 3/28 301 B01D 53/36 ZAB 102B 102H 104A Continued on the front page (51) Int.Cl. 6 Identification symbol FI F01N 3/10 F01N 3/28 301P 3/28 301 B01D 53/36 ZAB 102B 102H 104A

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 金属担持多孔質結晶性アルミノケイ酸塩
触媒層及び貴金属担持アルミナ触媒層を含むハニカム状
触媒〔1〕を排気ガス流の上流側に配置し、三元触媒を
含むハニカム状触媒〔2〕を排気ガス流の下流側に配し
て成る排気ガス浄化用触媒であって、前記ハニカム状触
媒〔1〕における金属担持多孔質結晶性アルミノケイ酸
塩中の4nm以下の細孔直径を有する細孔の全容積和が
1〜100nmの細孔直径を有する細孔の全容積総和の
60%以上であることを特徴とする排気ガス浄化用触
媒。
1. A honeycomb-shaped catalyst [1] including a metal-supported porous crystalline aluminosilicate catalyst layer and a noble metal-supported alumina catalyst layer is disposed upstream of an exhaust gas flow, and a honeycomb-shaped catalyst including a three-way catalyst [1]. 2] is disposed on the downstream side of the exhaust gas flow, and has a pore diameter of 4 nm or less in the metal-supported porous crystalline aluminosilicate in the honeycomb catalyst [1]. An exhaust gas purifying catalyst, wherein the total volume of pores is 60% or more of the total volume of pores having a pore diameter of 1 to 100 nm.
【請求項2】 請求項1記載の排気ガス浄化用触媒にお
いて、該ハニカム状触媒〔1〕における金属担持多孔質
結晶性アルミノケイ酸塩中の4nm以下の細孔直径を有
する細孔の全容積和が1〜100nmの細孔直径を有す
る細孔の全容積総和の75%以上であることを特徴とす
る排気ガス浄化用触媒。
2. The exhaust gas purifying catalyst according to claim 1, wherein the total volume of pores having a pore diameter of 4 nm or less in the metal-supported porous crystalline aluminosilicate in the honeycomb catalyst [1]. Is 75% or more of the total volume of pores having a pore diameter of 1 to 100 nm.
【請求項3】 請求項1又は2に記載の排気ガス浄化用
触媒において、排気ガス流の上流側に配置するハニカム
状触媒〔1〕は、金属担持多孔質結晶性アルミノケイ酸
塩を上層とし、貴金属担持アルミナ触媒層を下層として
構成されることを特徴とする排気ガス浄化用触媒。
3. The exhaust gas purifying catalyst according to claim 1, wherein the honeycomb catalyst [1] arranged on the upstream side of the exhaust gas flow has a metal-supported porous crystalline aluminosilicate as an upper layer, An exhaust gas purifying catalyst comprising a noble metal-supported alumina catalyst layer as a lower layer.
【請求項4】 請求項1〜3いずれかの項記載の排気ガ
ス浄化用触媒において、ハニカム状触媒〔1〕における
多孔質結晶性アルミノケイ酸塩に担持される金属成分が
銅であり、かつアルミナに担持される貴金属成分がPt
および/又はPdであることを特徴とする排気ガス浄化
用触媒。
4. The exhaust gas purifying catalyst according to claim 1, wherein the metal component carried on the porous crystalline aluminosilicate in the honeycomb catalyst [1] is copper, and Noble metal component supported on Pt
And / or Pd.
【請求項5】 請求項4記載の排気ガス浄化用触媒にお
いて、金属担持多孔質結晶性アルミノケイ酸塩触媒層を
構成する触媒粒子全体のCu/Si原子比〔B(Cu/
Si)〕と、X線光電子分光分析法(XPS)により求
められる触媒粒子表面から5nmの深さまでの部分にお
けるCu/Si原子比〔S(Cu/Si)〕の比率〔S
(Cu/Si)/B(Cu/Si)〕が0を越えて5.
0以下であることを特徴とする排気ガス浄化用触媒。
5. The exhaust gas purifying catalyst according to claim 4, wherein a Cu / Si atomic ratio [B (Cu / Cu / Si) of the entire catalyst particles constituting the metal-supported porous crystalline aluminosilicate catalyst layer.
Si)] and the ratio [S (Cu / Si)] of the Cu / Si atomic ratio [S (Cu / Si)] in the portion from the catalyst particle surface to a depth of 5 nm determined by X-ray photoelectron spectroscopy (XPS).
(Cu / Si) / B (Cu / Si)] exceeds 0,5.
An exhaust gas purifying catalyst characterized by being 0 or less.
【請求項6】 請求項1〜5いずれかの項記載の排気ガ
ス浄化用触媒において、多孔質結晶性アルミノケイ酸塩
のシリカ(SiO2 )/アルミナ(Al2 3 )比が2
5〜60であるMFI型ゼオライトであることを特徴と
する排気ガス浄化用触媒。
6. The exhaust gas according to claim 1, wherein:
Catalysts for purification of porous, crystalline aluminosilicate
Silica (SiOTwo) / Alumina (AlTwoO Three) Ratio is 2
Characterized in that it is an MFI-type zeolite of 5-60.
Exhaust gas purification catalyst.
【請求項7】 請求項1〜6いずれかの項記載の排気ガ
ス浄化用触媒において、ハニカム状触媒〔1〕における
貴金属担持アルミナ触媒層に更に、バリウム、カリウム
及びランタンから成る群より選ばれる少なくとも1種を
含有させることを特徴とする排気ガス浄化用触媒。
7. The exhaust gas purifying catalyst according to claim 1, wherein the noble metal-supported alumina catalyst layer in the honeycomb catalyst [1] further comprises at least one selected from the group consisting of barium, potassium and lanthanum. An exhaust gas purifying catalyst characterized by containing one kind.
【請求項8】 請求項1〜7いずれかの項記載の排気ガ
ス浄化用触媒において、ハニカム状触媒〔1〕における
貴金属担持アルミナ触媒層に更にセリウムを含有させる
ことを特徴とする排気ガス浄化用触媒。
8. The exhaust gas purifying catalyst according to claim 1, wherein cerium is further contained in the noble metal-supported alumina catalyst layer in the honeycomb catalyst [1]. catalyst.
【請求項9】 請求項1〜8いずれかの項記載の排気ガ
ス浄化用触媒において、三元触媒は、白金、パラジウム
及びロジウムから成る群より選ばれた少なくとも1種の
貴金属及びセリウム及びバリウムを担持したアルミナで
あることを特徴とする排気ガス浄化用触媒。
9. The exhaust gas purifying catalyst according to claim 1, wherein the three-way catalyst comprises at least one noble metal selected from the group consisting of platinum, palladium and rhodium and cerium and barium. An exhaust gas purifying catalyst, which is a supported alumina.
JP9038980A 1997-02-24 1997-02-24 Exhaust gas purifying catalyst Pending JPH10235199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9038980A JPH10235199A (en) 1997-02-24 1997-02-24 Exhaust gas purifying catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9038980A JPH10235199A (en) 1997-02-24 1997-02-24 Exhaust gas purifying catalyst

Publications (1)

Publication Number Publication Date
JPH10235199A true JPH10235199A (en) 1998-09-08

Family

ID=12540308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9038980A Pending JPH10235199A (en) 1997-02-24 1997-02-24 Exhaust gas purifying catalyst

Country Status (1)

Country Link
JP (1) JPH10235199A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012086214A (en) * 2010-10-21 2012-05-10 Babcock & Wilcox Power Generation Group Inc System and method for protection of scr catalyst and control of multiple emission
JP2013208577A (en) * 2012-03-30 2013-10-10 Mitsui Mining & Smelting Co Ltd Palladium catalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012086214A (en) * 2010-10-21 2012-05-10 Babcock & Wilcox Power Generation Group Inc System and method for protection of scr catalyst and control of multiple emission
JP2013208577A (en) * 2012-03-30 2013-10-10 Mitsui Mining & Smelting Co Ltd Palladium catalyst

Similar Documents

Publication Publication Date Title
KR100241666B1 (en) Catalyst for purifying oxygen rich exhaust gas
JP5652848B2 (en) Nitrogen oxide removing catalyst and nitrogen oxide removing method using the same
JP3061399B2 (en) Diesel engine exhaust gas purification catalyst and purification method
US6555081B2 (en) Method of the purification of the exhaust gas from a lean-burn engine using a catalyst
JP2007534467A (en) Noble metal catalyst stabilized with iron oxide for removing pollutants from exhaust gas from lean burn engine
US6191061B1 (en) Method of purifying exhaust gas and catalyst for purifying exhaust gas
JPH0910594A (en) Catalyst for purifying exhaust gas
JP2002001124A (en) Catalyst for purification of exhaust gas and method for purification of exhaust gas
KR20040095166A (en) Catalyst for purifying diesel engine exhaust gas and method for production thereof
JPH11104493A (en) Catalyst for purifying exhaust gas and its use
JPH11276907A (en) Catalyst for purifying exhaust gas and its production
JP2009226327A (en) CATALYST FOR SELECTIVELY REDUCING NOx
JPH08281106A (en) Catalyst for purifying exhaust gas and its production
JPH07213910A (en) Adsorbing catalyst for purifying exhaust gas
JPH11221466A (en) Catalyst for purifying exhaust gas and purification of exhaust gas
JP3800200B2 (en) Exhaust gas purification method and exhaust gas purification catalyst
JPH10165819A (en) Catalyst for cleaning of exhaust gas and its use method
JPH10192713A (en) Exhaust gas purifying catalyst and its use
JP2004176589A (en) Emission control device
JP2849585B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH10235199A (en) Exhaust gas purifying catalyst
JPH0957066A (en) Catalyst for purification of exhaust gas
JP3473245B2 (en) Exhaust gas purification catalyst
JP2002224573A (en) Exhaust emission control catalyst and its manufacturing method
JP3321831B2 (en) Exhaust gas purification catalyst