JPH09276702A - Catalyst for removal of nox - Google Patents

Catalyst for removal of nox

Info

Publication number
JPH09276702A
JPH09276702A JP8089716A JP8971696A JPH09276702A JP H09276702 A JPH09276702 A JP H09276702A JP 8089716 A JP8089716 A JP 8089716A JP 8971696 A JP8971696 A JP 8971696A JP H09276702 A JPH09276702 A JP H09276702A
Authority
JP
Japan
Prior art keywords
catalyst
iridium
sulfur
exhaust gas
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8089716A
Other languages
Japanese (ja)
Other versions
JP3956158B2 (en
Inventor
Akihisa Okumura
顕久 奥村
Masao Hori
正雄 堀
Makoto Horiuchi
真 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
I C T KK
ICT Co Ltd
International Catalyst Technology Inc
Original Assignee
I C T KK
ICT Co Ltd
International Catalyst Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP08971696A priority Critical patent/JP3956158B2/en
Application filed by I C T KK, ICT Co Ltd, International Catalyst Technology Inc filed Critical I C T KK
Priority to PCT/JP1997/001211 priority patent/WO1997037761A1/en
Priority to EP97916636A priority patent/EP0832688B1/en
Priority to DE69738063T priority patent/DE69738063T2/en
Priority to CA002223458A priority patent/CA2223458C/en
Priority to US08/973,684 priority patent/US6214307B1/en
Priority to KR1019970708846A priority patent/KR100300825B1/en
Publication of JPH09276702A publication Critical patent/JPH09276702A/en
Priority to MX9710095A priority patent/MX9710095A/en
Priority to US09/778,103 priority patent/US20010012502A1/en
Application granted granted Critical
Publication of JP3956158B2 publication Critical patent/JP3956158B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a catalyst excellent in heat resistance and durability at a high temp. and capable of efficiently decomposing and removing NOx in exhaust gas discharged from an internalcombustion engine even in an atmosphere contg. excess oxygen by incorporating iridium and sulfur as catalytically active substances. SOLUTION: This catalyst for effective removal of NOx contained in exhaust gas discharged from the internal-combustion engine of an automobile, a boiler, etc., contains iridium and sulfur as catalytically active substances and the iridium has been carried on the sulfur-contg. substrate. The sulfur is preferably used in the form of sulfuric acid radicals. Sulfuric acid radical carried alumina, a sulfuric acid radical-contg. substrate compd. such as barium sulfate or a combination of the compd. with a fireproof inorg. oxide used as a catalyst carrier is used as the substrate. The pref. iridium content is 0.5-10wt.% of the amt. of the substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自動車、ボイラ
ー、工業用プラント等の内燃機関から排出される排気ガ
ス中の窒素酸化物を除去するための窒素酸化物除去用触
媒に関するものである。
TECHNICAL FIELD The present invention relates to a nitrogen oxide removing catalyst for removing nitrogen oxides in exhaust gas discharged from an internal combustion engine of an automobile, a boiler, an industrial plant or the like.

【0002】[0002]

【従来の技術】自動車、ボイラー、工業用プラント等の
内燃機関から排出される排気ガス中に含まれる窒素酸化
物(以下、NOX という)は、大気汚染の原因となって
おり、排気ガス中のNOX の除去が急務となっている。
An automobile, a boiler, nitrogen oxides contained in the exhaust gas discharged from an internal combustion engine such as an industrial plant (hereinafter, referred to as NO X) is caused air pollution, exhaust gas There is an urgent need to remove NO x .

【0003】従来、例えば自動車等のガソリンエンジン
の排気ガスの場合、白金等を用いたいわゆる三元触媒に
よって排気ガスを処理し、炭化水素(HC)および一酸
化炭素(CO)と同時にNOX を除去する方法が知られ
ている。この方法は、空燃比(以下、「A/F」とい
う)が化学量論比(A/F=14.6)付近にある場合
には極めて有効である。
Conventionally, for example, in the case of exhaust gas from a gasoline engine of an automobile, etc., the exhaust gas is treated by a so-called three-way catalyst using platinum or the like, and hydrocarbons (HC) and carbon monoxide (CO) and NO x are simultaneously produced. Methods of removing are known. This method is extremely effective when the air-fuel ratio (hereinafter, “A / F”) is near the stoichiometric ratio (A / F = 14.6).

【0004】ところで、近年、燃費向上やCO2 削減を
目的として、希薄燃焼エンジンが注目されている。しか
し、このようなエンジンでは、A/Fが大きくなり(以
下、「酸素過剰雰囲気」という)、排気ガス中のHC、
CO等の未燃焼成分を完全燃焼させる量よりも過剰な酸
素が存在するため、通常の三元触媒によってNOX を還
元除去することは困難なものとなっていた。
By the way, in recent years, lean-burn engines have been attracting attention for the purpose of improving fuel efficiency and reducing CO 2 . However, in such an engine, the A / F becomes large (hereinafter, referred to as “excess oxygen atmosphere”), HC in exhaust gas,
Since there is oxygen in excess of the amount that completely burns unburned components such as CO, it has been difficult to reduce and remove NO x with a normal three-way catalyst.

【0005】また、ディーゼルエンジンの場合、排気ガ
スは酸素過剰雰囲気にあるが、ボイラー等の固定発生源
となるディーゼルエンジンからの排気ガスに対しては、
アンモニア、水素または一酸化炭素等の還元剤を用いて
NOX を除去する方法が知られている。
Further, in the case of a diesel engine, although the exhaust gas is in an oxygen excess atmosphere, the exhaust gas from the diesel engine, which is a fixed generation source such as a boiler, is
A method of removing NO x using a reducing agent such as ammonia, hydrogen or carbon monoxide is known.

【0006】しかし、この方法においては、還元剤を添
加するための別の装置や、未反応の還元剤の回収、処理
のための特別の装置が必要となり、装置全体が複雑化や
大型化を招来するので、自動車等の移動発生源となるエ
ンジンには不適となるという問題を生じている。
However, this method requires a separate device for adding a reducing agent and a special device for collecting and treating unreacted reducing agent, which makes the entire device complicated and large. As a result, the problem arises that it is unsuitable for an engine that is a source of movement such as an automobile.

【0007】そこで、上記問題を回避するために、酸素
過剰雰囲気におけるNOX 除去用触媒としては、種々の
各触媒が提案されている。
Therefore, in order to avoid the above problems, as a catalyst for NO X removal in an oxygen-rich atmosphere, each of the various catalysts have been proposed.

【0008】[0008]

【発明が解決しようとする課題】ところが、上記従来で
は、酸素過剰雰囲気においても排気ガス中のNOX を効
率よく分解除去し、高温での耐熱性および耐久性に優
れ、かつ、広い温度域において触媒活性を発揮するNO
X 除去用触媒は未だ知られていないという問題を生じて
いる。
However, in the above-mentioned prior art, NO X in exhaust gas is efficiently decomposed and removed even in an oxygen excess atmosphere, and heat resistance and durability at high temperatures are excellent, and in a wide temperature range. NO that exhibits catalytic activity
The problem is that the X removal catalyst is not yet known.

【0009】NOX 除去用触媒としては、例えば、銅イ
オン等の遷移金属イオン交換アルミノシリケート(特開
昭60−125250号公報、特開昭63−10091
9号公報、米国特許第4,297,328号明細書)、
あるいはメタロアルミノシリケート(特開平3−127
628号公報、特開平3−229620号公報)、シリ
コアルミノフォスフェート(特開平1−112488号
公報)等が提案されている。
[0009] NO The X catalyst for removing, for example, transition metal ion exchanged aluminosilicate copper ions (Japanese 60-125250, JP-Sho 63-10091
9 publication, US Pat. No. 4,297,328),
Alternatively, a metalloaluminosilicate (Japanese Patent Application Laid-Open No. 3-127)
No. 628, JP-A-3-229620), silicoaluminophosphate (JP-A-11-12488), and the like are proposed.

【0010】しかし、これらのいわゆるイオン交換ゼオ
ライト触媒は、NOX を除去し得る温度が高く、低温時
にはその効果が減少するものであり、さらに耐熱性に劣
り高温の排気ガスに曝されるとNOX 分解性能が著しく
劣化するという問題を有しており、実用化には至ってい
ない。
However, these so-called ion-exchanged zeolite catalysts have a high temperature at which NO x can be removed, and their effect decreases at low temperatures. Further, they are inferior in heat resistance and NO when exposed to high-temperature exhaust gas. It has a problem that the X decomposition performance is significantly deteriorated and has not been put to practical use.

【0011】さらに、酸素過剰雰囲気におけるNOX
去用触媒としては、イリジウムをアルミナ等の耐火性無
機酸化物に担持した触媒が開示されている(特公昭56
−54173号公報、特公昭57−13328号公
報)。しかし、これらの公報に記載された実施例では、
排気ガス中の酸素濃度が3容量%以下の場合しか示され
ておらず、それ以上の酸素を含むディーゼルエンジンや
リーンバーンエンジンの排気ガスに対してはNOX 浄化
能、耐久性共に不明である。
Furthermore, as the catalyst for NO X removal in an oxygen-rich atmosphere, catalyst supporting iridium on a refractory inorganic oxide such as alumina is disclosed (JP-B-56
-54173, JP-B-57-13328). However, in the examples described in these publications,
Oxygen concentration in the exhaust gas not been the only shows the case of 3 volume% or less, a NO X purification performance, durability both unknown for exhaust gases of a diesel engine or a lean burn engine comprising more oxygen .

【0012】また、ゼオライトや結晶性シリケート等の
基材にイリジウムを担持した触媒も提案されている(特
開平6−296870号公報、特開平7−80315号
公報、特開平7−88378号公報)。しかし、上記触
媒に対する耐久性試験の条件としては、排気ガスが還元
雰囲気でしか行われておらず、ディーゼルエンジンやリ
ーンバーンエンジンの排気ガスのような酸素過剰雰囲気
での耐久性、耐熱性は不明である。
Further, a catalyst in which iridium is supported on a base material such as zeolite or crystalline silicate has also been proposed (JP-A-6-296870, JP-A-7-80315, JP-A-7-88378). . However, as a condition of the durability test for the above catalyst, the exhaust gas is conducted only in a reducing atmosphere, and the durability and heat resistance in an oxygen excess atmosphere such as exhaust gas of a diesel engine or a lean burn engine are unknown. Is.

【0013】さらに、金属炭化物等を基材にイリジウム
を担持した触媒も提案されている(特開平6−3117
3号公報、特開平7−31884号公報)。しかし、上
記各公報における実施例には、最高NOX 除去率しか示
されておらず、上記触媒を用いた温度域は不明である。
また、ライトオフ特性が示されているものについて見て
も、NOX 浄化活性が発現するのは350℃以上の高温
である。
Further, a catalyst in which iridium is carried on a base material of metal carbide or the like has been proposed (Japanese Patent Laid-Open No. 6-3117).
No. 3, JP-A-7-31884). However, the examples in each of the above publications only show the highest NO x removal rate, and the temperature range in which the catalyst is used is unknown.
Further, even when the light-off characteristics are shown, the NO X purification activity is exhibited at a high temperature of 350 ° C. or higher.

【0014】このように、酸素過剰雰囲気においても排
気ガス中のNOX を効率よく分解除去し、しかも高温耐
熱性に優れ、かつ、広い温度域において触媒活性を発揮
するNOX 除去用触媒は開発されていないのが現状であ
る。
As described above, a NO X removal catalyst has been developed which efficiently decomposes and removes NO X in exhaust gas even in an oxygen excess atmosphere, has excellent high temperature heat resistance, and exhibits catalytic activity in a wide temperature range. The current situation is that it has not been done.

【0015】[0015]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意研究の結果、イリジウムと硫黄と
を含有してなる触媒が、上記課題を解決するのに有効で
あることを見出し、本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies for solving the above problems, the present inventors have found that a catalyst containing iridium and sulfur is effective in solving the above problems. The present invention has been completed and the present invention has been completed.

【0016】すなわち、本発明のNOX 除去用触媒は、
以上の課題を解決するために、触媒活性物質として、イ
リジウムと硫黄とを含むことを特徴としている。上記イ
リジウムは、硫黄を含む基材上に担持されていることが
好ましい。また、上記硫黄は、硫酸根の形態であること
が望ましい。
That is, the NO x removal catalyst of the present invention is
In order to solve the above problems, it is characterized by containing iridium and sulfur as a catalytically active substance. The iridium is preferably supported on a base material containing sulfur. Further, the sulfur is preferably in the form of sulfate radical.

【0017】本発明のNOX 除去用触媒は、触媒活性物
質としてのイリジウムを有することにより酸素過剰雰囲
気下でのNOX を除去することができ、さらに硫黄を有
することによって上記イリジウムの触媒活性を向上でき
て、酸素過剰雰囲気下でのNOX の除去において、広い
温度域で活性を示し、また、耐熱性、耐久性に優れたも
のとなっている。本明細書では、硫黄のように単独では
NOX を除去する活性を有していないものでも、上記活
性を有するイリジウムの触媒活性を改善できるものも触
媒活性物質としている。
The NO X removal catalyst of the present invention can remove NO X in an oxygen excess atmosphere by having iridium as a catalytically active substance, and further has sulfur to improve the catalytic activity of iridium. It can be improved and shows activity in a wide temperature range in removing NO X in an oxygen-excess atmosphere, and has excellent heat resistance and durability. In the present specification, a substance which does not have the activity of removing NO x by itself such as sulfur, but a substance which can improve the catalytic activity of iridium having the above-mentioned activity is also defined as a catalytically active substance.

【0018】[0018]

【発明の実施の形態】本発明の一実施の形態について説
明すれば、以下の通りである。NOX 除去用触媒は、N
X を除去するための触媒活性物質として、イリジウム
と硫黄とを含み、上記イリジウムが硫黄を含む基材上に
担持され、また、上記硫黄を硫酸根の形態で含むもので
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below. NO x removal catalyst is N
As catalytically active material for the removal of O X, and a iridium and sulfur, the iridium is supported on a substrate comprising sulfur, also is intended to include the sulfur in the form of a sulfate group.

【0019】上記基材としては、硫黄を有する硫酸根担
持アルミナ、硫黄を有する硫酸バリウム等の硫酸根を含
む基材化合物を単独、あるいは上記基材化合物と、通
常、触媒担持担体として用いられる耐火性無機酸化物、
例えばα−アルミナ、もしくはγ,δ、η、θ等の活性
アルミナ、チタニア等との混合物(混合焼結体を含
む)、上記各耐火性無機酸化物の複合酸化物と上記基材
化合物との混合物(混合焼結体を含む)、およびリン酸
アルミニウム、結晶性アルミノシリケート、シリコアル
ミノフォスフェート等と上記基材化合物との混合物を用
いることができる。
As the above-mentioned base material, a base material compound containing a sulfur-containing sulfate group such as sulfur-containing sulfate group-bearing alumina and sulfur-containing barium sulfate is used alone, or with the above-mentioned base material compound, a refractory which is usually used as a catalyst-supporting carrier. Inorganic oxide,
For example, α-alumina, a mixture of activated alumina such as γ, δ, η, and θ, titania and the like (including a mixed sintered body), a composite oxide of each of the above refractory inorganic oxides, and the above base compound It is possible to use a mixture (including a mixed sintered body), and a mixture of aluminum phosphate, crystalline aluminosilicate, silicoaluminophosphate and the like with the above-mentioned base compound.

【0020】イリジウムの含有量は、上記イリジウムを
触媒成分として担持する基材に対して、0.5〜10重
量%であることが好ましい。0.5重量%未満であると
きは、NOX 除去効率が低下するものであり、10重量
%を越えて担持しても担持量に見合うだけの触媒活性が
得られない。イリジウム源としては、特に制限はない
が、例えば塩化イリジウム、トリクロロヘキサアンミン
イリジウム等の水溶性イリジウム塩が好ましく用いられ
る。
The content of iridium is preferably 0.5 to 10% by weight based on the base material carrying the above iridium as a catalyst component. If the amount is less than 0.5% by weight, the NO X removal efficiency is lowered, and even if the amount is more than 10% by weight, the catalytic activity corresponding to the supported amount cannot be obtained. The iridium source is not particularly limited, but a water-soluble iridium salt such as iridium chloride and trichlorohexammineiridium is preferably used.

【0021】イリジウムを基材に担持する方法は特に限
定されず、通常の担持方法が用いられる。例えば、
(1)イリジウム塩の水溶液を基材に含浸し、乾燥焼成
する方法、(2)イリジウム塩の水溶液を基材に入れ、
混合した後、ヒドラジン等の還元剤により還元して担持
させる方法等である。
The method of supporting iridium on the substrate is not particularly limited, and a usual supporting method is used. For example,
(1) a method of impregnating a base material with an aqueous solution of iridium salt, and drying and firing, (2) adding an aqueous solution of iridium salt to the base material,
After mixing, a method such as reducing and supporting with a reducing agent such as hydrazine may be used.

【0022】硫黄とイリジウムとの担持比率は、重量比
で1:5〜50:1が好ましい。50:1の比率よりも
硫黄の担持比率が大きくなると、初期活性が低下し、
1:5の比率よりも硫黄の担持が小さくなるときは活性
温度域が狭くなる。
The weight ratio of sulfur to iridium supported is preferably 1: 5 to 50: 1. When the sulfur loading ratio becomes higher than the ratio of 50: 1, the initial activity decreases,
When the loading of sulfur becomes smaller than the ratio of 1: 5, the active temperature range becomes narrow.

【0023】硫黄源としては、特に制限はないが、例え
ば硫酸や硫酸塩、亜硫酸塩、硫化物等が用いられる。硫
黄の添加方法としては、(1)硫酸を基材に添加し、乾
燥、焼成する方法、(2)硫酸塩、亜硫酸塩等のうち有
機溶媒可溶性および/または水溶性の硫黄含有化合物を
用いて、上記硫黄含有化合物の溶液を基材に浸漬し、乾
燥、焼成する方法、(3)硫酸塩、硫化物等の内、不溶
性または微溶性の化合物をイリジウムの基材として用い
る方法、(4)硫酸塩、硫化物等の内、不溶性または微
溶性の化合物と、イリジウムを担持した基材とを混合し
て用いる方法等が挙げられる。
The sulfur source is not particularly limited, but sulfuric acid, sulfates, sulfites, sulfides, etc. are used. As a method of adding sulfur, (1) a method of adding sulfuric acid to a base material, followed by drying and firing, and (2) using an organic solvent-soluble and / or water-soluble sulfur-containing compound among sulfates, sulfites, etc. A method of immersing a solution of the above-mentioned sulfur-containing compound in a base material, drying and firing, (3) a method of using an insoluble or slightly soluble compound among sulfates, sulfides and the like as a base material of iridium, (4) Examples thereof include a method of mixing an insoluble or slightly soluble compound among sulfates and sulfides with a base material carrying iridium, and the like.

【0024】通常、本願発明を用いる触媒の具体的態様
を示すと、(1)触媒自体を所定の形状に、例えば球
状、円柱状に成形して用いる方法、(2)三次元構造体
といわれる担体に触媒成分を被覆担持して用いる方法等
がある。三次元構造体の例としては、ハニカムモノリス
担体、フォーム状の担体、コルゲート状の担体等があ
り、その材質はセラミック製、メタル製のものが好まし
く用いられる。
Usually, the specific embodiment of the catalyst used in the present invention is as follows: (1) a method in which the catalyst itself is molded into a predetermined shape, for example, a spherical shape or a cylindrical shape, and (2) a three-dimensional structure. There is a method in which a carrier is coated with a catalyst component and used. Examples of the three-dimensional structure include a honeycomb monolith carrier, a foam-shaped carrier, a corrugated carrier, and the like, and those made of ceramic or metal are preferably used.

【0025】以下に、触媒を調製する方法について説明
する。 (1)触媒組成物自体を触媒とする場合、(イ)触媒組
成物を十分に混合した後、円柱、球状等に成形して、触
媒とする方法、(ロ)触媒担持基材を予め所定の形状、
例えば球状あるいは円柱状に成形した後、触媒物質を被
覆する方法等が挙げられる。
The method for preparing the catalyst will be described below. (1) When the catalyst composition itself is used as a catalyst, (a) a method in which the catalyst composition is sufficiently mixed and then formed into a columnar shape, a spherical shape or the like to form a catalyst, and (b) a catalyst-supporting base material is predetermined. The shape of
For example, a method in which the catalyst material is coated after being formed into a spherical shape or a columnar shape can be used.

【0026】(2)一体構造体あるいは不活性無機質担
体(以下、「一体構造体等」という)を用いる場合、
(イ)触媒組成物を一括してボールミル等に入れ、湿式
粉砕し、水性スラリーとし、一体構造体等を浸漬し、乾
燥、焼成する方法、(ロ)触媒担持基材をボールミル等
により湿式粉砕し、水性スラリーとし、一体構造体等を
浸漬し、乾燥、焼成する。次いで、触媒担持基材を被覆
した一体構造体等をイリジウム含有水溶液に浸漬し、乾
燥、焼成し、さらに、硫黄を含む溶液に該一体構造体を
浸漬し、乾燥、焼成する方法、(ハ)イリジウムを予め
基材に担持し、さらにボールミル等により水性スラリー
とし、この水性スラリー中に一体構造体等を浸漬し、イ
リジウム担持基材を被覆した一体構造体等を得、次い
で、硫黄を含む溶液に浸漬し、乾燥、焼成する方法、
(ニ)硫黄を含む溶液を担持基材に含浸、焼成し得られ
た粉体をボールミル等により水性スラリーとし、この水
性スラリー中に一体構造体等を浸漬し、硫黄担持基材を
被覆した一体構造体等を得、次いで、イリジウム含有水
溶液に浸漬し、乾燥、焼成する方法、(ホ)イリジウム
と硫黄と予め基材に担持した後、ボールミル等により水
性スラリーとし、この水性スラリー中に一体構造体等を
浸漬し、乾燥、焼成する方法、(ヘ)イリジウムを、硫
黄を含む基材に担持した後、ボールミル等により水性ス
ラリーとし、この水性スラリー中に一体構造体等を浸漬
し、乾燥、焼成する方法、(ト)イリジウムを予め基材
に担持し、硫黄を含む化合物を混合してボールミル等に
より水性スラリーとし、この水性スラリー中に一体構造
体等を浸漬し、乾燥、焼成する方法等が挙げられる。こ
れらの方法においては、(2)(イ)〜(ト)の各方法
が好ましい。
(2) When using a monolithic structure or an inert inorganic carrier (hereinafter referred to as "monolithic structure"),
(A) A method in which the catalyst composition is put together in a ball mill or the like, wet-milled to form an aqueous slurry, and the monolithic structure, etc. is dipped, dried and fired. Then, it is made into an aqueous slurry, and the integrated structure or the like is dipped, dried and fired. Next, a method of immersing the monolithic structure or the like coated with the catalyst-supporting substrate in an iridium-containing aqueous solution, drying and firing, and further immersing the monolithic structure in a solution containing sulfur, drying and firing, (c) Iridium is preliminarily supported on a base material, and is further made into an aqueous slurry by a ball mill or the like, and an integrated structure or the like is immersed in this aqueous slurry to obtain an integrated structure or the like coated with an iridium-supported base material, and then a solution containing sulfur. Method of immersing in, drying and firing,
(D) Impregnation of a solution containing sulfur into a supporting base material and firing to obtain an aqueous slurry of the powder obtained by a ball mill or the like, and the monolithic structure or the like is dipped in the aqueous slurry to coat the sulfur supporting base material A method of obtaining a structure, etc., and then immersing it in an iridium-containing aqueous solution, drying and firing it, and (e) supporting iridium and sulfur on a base material in advance, forming an aqueous slurry with a ball mill, etc., and forming an integrated structure in this aqueous slurry A method of immersing a body or the like, drying and firing, (f) iridium is carried on a base material containing sulfur, and then made into an aqueous slurry by a ball mill or the like, and an integral structure or the like is immersed in this aqueous slurry and dried, Method of firing, (to) iridium is preliminarily supported on a base material, a compound containing sulfur is mixed and made into an aqueous slurry by a ball mill or the like, and the integrated structure or the like is dipped in the aqueous slurry and dried. , And a method in which firing. Among these methods, the methods (2), (A) to (G) are preferable.

【0027】また、一体構造体等に対し、触媒成分を被
覆する場合、この触媒成分の被覆量は一体構造体等1リ
ットル当り50〜400gであることが好ましい。50
g未満であるときは触媒活性の低下を生じるものであ
り、400gを越えるときは担持量に見合う触媒活性が
得られないものである。
When the catalyst component is coated on the monolithic structure or the like, the coating amount of the catalyst component is preferably 50 to 400 g per liter of the monolithic structure or the like. 50
When it is less than g, the catalytic activity is lowered, and when it exceeds 400 g, the catalytic activity commensurate with the supported amount cannot be obtained.

【0028】本願発明のNOX 除去用触媒を用いる際の
ガス空間速度は、5000〜200000hr-1が好ま
しい。5000hr-1未満であるときは必要な触媒容量
が大きくなりすぎ不経済であり、200000hr-1
越えるときはNOX 浄化率が低下する。本願発明のNO
X 除去用触媒を用いる際の排気ガス温度は、触媒入口に
おいて200℃から700℃、好ましくは250℃から
600℃の範囲である。200℃未満ではNOX 浄化能
が目標値より劣化し、700℃を越えるときもNOX
化能が目標値を下回る。
The gas hourly space velocity when using the NO X removal catalyst of the present invention is preferably 5,000 to 200,000 hr −1 . When it is less than 5000 hr -1 , the required catalyst capacity becomes too large and it is uneconomical, and when it exceeds 200,000 hr -1 , the NO x purification rate decreases. NO of the present invention
The exhaust gas temperature when using the X removal catalyst is in the range of 200 ° C. to 700 ° C., preferably 250 ° C. to 600 ° C. at the catalyst inlet. When the temperature is lower than 200 ° C, the NO x purification capacity deteriorates below the target value, and when the temperature exceeds 700 ° C, the NO x purification capacity falls below the target value.

【0029】[0029]

【実施例】本発明のNOX 除去用触媒の各実施例につい
て、それらの製造方法によりそれぞれ説明すれば以下の
通りである。 (実施例1)まず、基材としてのBET(Brunauer-Emm
ett-Teller)表面積100m2 を有する多孔質な粉体状
の活性アルミナ100gに対し、イリジウム5gを含む
塩化イリジウム水溶液を加え、混合し、120℃で2時
間乾燥し、続いて500℃で2時間焼成して、イリジウ
ムの微粒子を多孔質の表面に分散させて有する活性アル
ミナからなる触媒粉体を得た。
For each example of the NO X catalyst for removing EXAMPLES The invention will be hereinafter described respectively by a method for their preparation. (Example 1) First, BET (Brunauer-Emm
ett-Teller) An iridium chloride aqueous solution containing 5 g of iridium was added to 100 g of porous powdery activated alumina having a surface area of 100 m 2 , mixed and dried at 120 ° C. for 2 hours, and then at 500 ° C. for 2 hours. Firing was performed to obtain a catalyst powder composed of activated alumina having fine particles of iridium dispersed on a porous surface.

【0030】その後、この触媒粉体をボールミルにより
湿式粉砕して水性スラリーを得、続いて、上記水性スラ
リーに対し、市販のコージェライト質のハニカム担体
(日本硝子製、横断面が1インチ平方当り、400個の
ガス流通セルを有し、直径33mmφ、長さ76mm
L、体積65ml)を浸漬した後、余剰の水性スラリー
を圧縮空気によりハニカム担体から吹き飛ばして除去し
た。
Then, this catalyst powder was wet pulverized by a ball mill to obtain an aqueous slurry. Subsequently, a commercially available cordierite honeycomb carrier (manufactured by Nippon Glass Co., Ltd., cross section per 1 inch square) was added to the above aqueous slurry. , 400 gas distribution cells, diameter 33mmφ, length 76mm
L, volume 65 ml), and then the excess aqueous slurry was blown off from the honeycomb carrier with compressed air to remove it.

【0031】次いで、水性スラリーを各セルの内表面に
有するハニカム担体を120℃で2時間乾燥した後、
1.5mol/リットルの硫酸水溶液に浸漬した後、余
剰の硫酸を圧縮空気により吹き飛ばし、120℃で2時
間乾燥して完成触媒(A)を得た。この完成触媒(A)
では、基材としての活性アルミナに対して、イリジウム
5重量%、硫黄5重量%担持されていた。
Next, after drying the honeycomb carrier having the aqueous slurry on the inner surface of each cell at 120 ° C. for 2 hours,
After being immersed in a 1.5 mol / liter sulfuric acid aqueous solution, excess sulfuric acid was blown off by compressed air and dried at 120 ° C. for 2 hours to obtain a finished catalyst (A). This finished catalyst (A)
Then, 5% by weight of iridium and 5% by weight of sulfur were supported on the activated alumina as the base material.

【0032】(実施例2)上記の実施例1における1.
5mol/リットルの硫酸水溶液に代えて、0.3mo
l/リットルの硫酸水溶液を用いた以外は、上記実施例
1と同様に調製して完成触媒(B)を得た。この完成触
媒(B)では、基材としての活性アルミナに対して、イ
リジウム5重量%、硫黄1重量%担持されていた。
(Embodiment 2) 1.
0.3mol instead of 5mol / L sulfuric acid aqueous solution
A completed catalyst (B) was obtained in the same manner as in Example 1 except that a 1 / liter aqueous sulfuric acid solution was used. In this completed catalyst (B), 5% by weight of iridium and 1% by weight of sulfur were supported on the activated alumina as the base material.

【0033】(実施例3)前記の実施例1におけるイリ
ジウム5gを含む塩化イリジウム水溶液、および1.5
mol/リットルの硫酸水溶液に代えて、イリジウム1
gを含む塩化イリジウム水溶液、および6mol/リッ
トルの硫酸水溶液をそれぞれ用いた以外は、前記実施例
1と同様に調製して完成触媒(C)を得た。この完成触
媒(C)では、基材としての活性アルミナに対して、イ
リジウム1重量%、硫黄20重量%担持されていた。
Example 3 An iridium chloride aqueous solution containing 5 g of iridium in Example 1 above, and 1.5
Iridium 1 instead of mol / l sulfuric acid solution
A completed catalyst (C) was obtained in the same manner as in Example 1 except that an iridium chloride aqueous solution containing g and a 6 mol / liter sulfuric acid aqueous solution were used. In this completed catalyst (C), 1% by weight of iridium and 20% by weight of sulfur were supported on the activated alumina as the base material.

【0034】(実施例4)前記の実施例1における1.
5mol/リットルの硫酸水溶液に代えて、硫酸カリウ
ム〔K2 SO4 〕27.2gを含む水溶液を用いた以外
は、前記実施例1と同様に調製して完成触媒(D)を得
た。この完成触媒(D)では、基材としての活性アルミ
ナに対して、イリジウム5重量%、硫黄5重量%担持さ
れていた。
(Fourth Embodiment) 1.
A completed catalyst (D) was prepared in the same manner as in Example 1 except that an aqueous solution containing 27.2 g of potassium sulfate [K 2 SO 4 ] was used instead of the 5 mol / liter aqueous solution of sulfuric acid. In this completed catalyst (D), 5% by weight of iridium and 5% by weight of sulfur were supported on the activated alumina as the base material.

【0035】(実施例5)前記の実施例1における活性
アルミナ100gに代えて、硫酸バリウム〔BaS
4 〕100gを用い、硫酸水溶液への浸漬を省いた以
外は、前記実施例1と同様に調製して完成触媒(E)を
得た。この完成触媒(E)では、基材としての硫酸バリ
ウムに対して、イリジウム5重量%担持されており、硫
黄7.3重量%含まれていた。
Example 5 In place of 100 g of activated alumina in Example 1, barium sulfate [BaS] was used.
O 4 ] was prepared in the same manner as in Example 1 except that immersion in a sulfuric acid aqueous solution was omitted, and a completed catalyst (E) was obtained. In this completed catalyst (E), 5% by weight of iridium was supported on barium sulfate as a base material, and 7.3% by weight of sulfur was contained.

【0036】(実施例6)前記の実施例1において、水
性スラリーを得る際に、硫酸バリウム〔BaSO4 〕3
6.4gを加え、硫酸水溶液への浸漬を省いた以外は、
前記実施例1と同様に調製して完成触媒(F)を得た。
この完成触媒(F)では、基材としての活性アルミナお
よび硫酸バリウムに対して、イリジウム3.7重量%担
持されており、硫黄3.7重量%含まれていた。
(Example 6) In Example 1 above, barium sulfate [BaSO 4 ] 3 was used to obtain an aqueous slurry.
6.4 g was added, except that the immersion in the sulfuric acid aqueous solution was omitted.
The catalyst was prepared in the same manner as in Example 1 to obtain a completed catalyst (F).
In this completed catalyst (F), 3.7% by weight of iridium was supported on the activated alumina and barium sulfate as the base material, and 3.7% by weight of sulfur was contained.

【0037】次に、上記各完成触媒(A)〜(F)に対
する各比較例としての比較触媒について、それらの製造
方法に基づいて説明する。 (比較例1)前記実施例1において、硫酸への浸漬を省
いたこと以外は、前記実施例1と同様に調製して比較触
媒(X)を得た。この比較触媒(X)では、基材として
の活性アルミナに対して、イリジウム5重量%担持され
ていた。
Next, comparative catalysts as comparative examples with respect to the above-mentioned completed catalysts (A) to (F) will be described based on their manufacturing methods. Comparative Example 1 A comparative catalyst (X) was prepared in the same manner as in Example 1 except that the immersion in sulfuric acid was omitted. In this comparative catalyst (X), 5% by weight of iridium was supported on the activated alumina as the base material.

【0038】(比較例2)市販のZSM−5型ゼオライ
ト(SiO2 /Al2 3 =40)100gと、純水4
00gとを混合した混合物を、98℃で2時間攪拌した
後、上記混合物に対し、80℃で0.2モル/リットル
の銅アンミン錯体水溶液600mlをゆっくりと滴下し
た。
Comparative Example 2 100 g of commercially available ZSM-5 type zeolite (SiO 2 / Al 2 O 3 = 40) and 4 parts of pure water
After stirring the mixture mixed with 00 g for 2 hours at 98 ° C., 600 ml of a 0.2 mol / liter copper ammine complex aqueous solution was slowly added dropwise at 80 ° C. to the mixture.

【0039】その後、銅アンミン錯体を有するゼオライ
トを、混合物からろ取し、十分に洗浄した後、120℃
で24時間乾燥してゼオライト触媒粉体を得た。このゼ
オライト触媒粉体をボールミルにより湿式粉砕して水性
スラリーを得た。以下、前記実施例1と同様に、上記水
性スラリーを用いて比較触媒(Y)を得た。この比較触
媒(Y)はゼオライトに対して銅が5.6重量%担持さ
れていた。
Then, the zeolite having the copper ammine complex was filtered from the mixture and thoroughly washed, and then at 120 ° C.
For 24 hours to obtain a zeolite catalyst powder. This zeolite catalyst powder was wet-pulverized by a ball mill to obtain an aqueous slurry. Thereafter, in the same manner as in Example 1, a comparative catalyst (Y) was obtained using the aqueous slurry. This comparative catalyst (Y) had 5.6% by weight of copper supported on the zeolite.

【0040】次に、実施例1〜6、および比較例1,2
にて調製した各触媒(A)〜(F)、(X)、(Y)に
ついて、排気ガスが酸素過剰雰囲気となるリーンバーン
エンジンの排気ガスを模したモデルガス(A/F=21
に相当)を用い、触媒活性の性能評価を行った。
Next, Examples 1 to 6 and Comparative Examples 1 and 2
For each of the catalysts (A) to (F), (X), and (Y) prepared in 1., a model gas (A / F = 21) simulating the exhaust gas of a lean burn engine in which the exhaust gas is in an oxygen excess atmosphere
(Equivalent to) was used to evaluate the performance of catalytic activity.

【0041】(評価方法)直径34.4mmφ、長さ3
00mmのステンレス反応管に、各触媒をそれぞれ充填
した後、下記組成の反応ガスを空間速度50000hr
-1の条件下で導入し、触媒床入口温度を150℃から5
00℃まで連続的に昇温してNOX 浄化率を測定し、各
触媒のライトオフ性能を評価した。
(Evaluation method) Diameter 34.4 mmφ, length 3
After filling each catalyst into a 00 mm stainless steel reaction tube, a reaction gas having the following composition was supplied with a space velocity of 50,000 hr.
-1 under the conditions of -1 , the catalyst bed inlet temperature from 150 ℃ to 5
The NO x purification rate was measured by continuously raising the temperature to 00 ° C., and the light-off performance of each catalyst was evaluated.

【0042】 (反応ガスの組成) 一酸化窒素(NO) 300ppm プロピレン(C3 6 ) 3000ppm(メタン換算) 一酸化炭素(CO) 0.18容量% 水素(H2 ) 600ppm 水蒸気(H2 O) 10容量% 二酸化炭素(CO2 ) 10容量% 酸素(O2 ) 7容量% 窒素(N2 ) 残部 また、各触媒の評価を示す結果として、最高NOX 浄化
率およびそのときの触媒床入口温度をそれぞれ表1に示
した。
(Reaction Gas Composition) Nitric oxide (NO) 300 ppm Propylene (C 3 H 6 ) 3000 ppm (Methane conversion) Carbon monoxide (CO) 0.18% by volume Hydrogen (H 2 ) 600 ppm Steam (H 2 O) ) 10% by volume carbon dioxide (CO 2 ) 10% by volume oxygen (O 2 ) 7% by volume nitrogen (N 2 ) balance Also, as a result showing the evaluation of each catalyst, the maximum NO x purification rate and the catalyst bed inlet at that time are shown. The temperatures are shown in Table 1, respectively.

【0043】[0043]

【表1】 [Table 1]

【0044】次に、実施例1〜6、および比較例1,2
にて調製した各触媒(A)〜(F)、(X)、(Y)に
ついて、耐熱性および耐久性をそれぞれ試験した。この
試験方法としては、各触媒をマルチコンバーターにそれ
ぞれ充填して各充填触媒床を形成した。
Next, Examples 1 to 6 and Comparative Examples 1 and 2
Heat resistance and durability were tested for each of the catalysts (A) to (F), (X), and (Y) prepared in. In this test method, each catalyst was charged into a multi-converter to form each packed catalyst bed.

【0045】続いて、市販のガソリンリーンバーンエン
ジンの排気ガスを、空燃比(A/F)を21に調製して
通じ、空間速度(S.V.)160000hr-1、触媒
床温度700℃の条件下で20時間エージングした。そ
の後、上記各充填触媒床に対して、前記評価方法により
性能評価をそれぞれ行った。それらの結果を表1に合わ
せてそれぞれ示した。
Then, the exhaust gas of a commercially available gasoline lean burn engine was passed through with an air-fuel ratio (A / F) adjusted to 21 and a space velocity (SV) of 160,000 hr −1 and a catalyst bed temperature of 700 ° C. Aged under conditions for 20 hours. Then, performance evaluation was performed on each of the packed catalyst beds by the evaluation method. The results are shown in Table 1.

【0046】それらの結果の内、触媒(A)、(E)、
(X)、(Y)について、初期時(Fresh )および耐久
試験(Aged)後のライトオフ性能をそれぞれ図1ないし
図4に示した。図1ないし図4では、初期時(Fresh )
の結果を実線にて示し、耐久試験(Aged)後の結果を破
線にて示した。
Among these results, the catalysts (A), (E),
The light-off performances of (X) and (Y) at the initial time (Fresh) and after the endurance test (Aged) are shown in FIGS. 1 to 4, respectively. 1 to 4, the initial state (Fresh)
The result is shown by the solid line, and the result after the durability test (Aged) is shown by the broken line.

【0047】まず、表1の結果から明らかなように、本
願発明の触媒(A)〜(F)は、比較例の触媒(X)、
(Y)と比較して、酸素過剰雰囲気でのNOX 除去を、
より低温(300℃付近)から広い温度域にわたって行
えることが判る。また、経時試験(Aged)後の触媒活性
の低下はほとんど観察されず、十分な耐熱性および耐久
性を有していることが判る。
First, as is clear from the results shown in Table 1, the catalysts (A) to (F) of the present invention are the catalysts of the comparative example (X),
Compared with (Y), NO X removal in an oxygen excess atmosphere
It can be seen that it can be performed from a lower temperature (around 300 ° C) to a wide temperature range. In addition, almost no decrease in catalyst activity was observed after the aging test (Aged), indicating that the catalyst has sufficient heat resistance and durability.

【0048】さらに、図1および図2と、図3との比較
により明らかなように、本願発明のNOX 除去用触媒
は、イリジウムと硫黄とを共に含むことにより、イリジ
ウムのみが担持されている比較例1の触媒(X)の場合
と比べて、高温における活性も向上し、広い温度域での
NOX 浄化が実現できるものとなっている。
Further, as is clear from the comparison between FIGS. 1 and 2 and FIG. 3, the catalyst for NO x removal of the present invention contains only iridium and sulfur, so that only iridium is supported. As compared with the case of the catalyst (X) of Comparative Example 1, the activity at high temperature is also improved, and NO x purification in a wide temperature range can be realized.

【0049】また、図4から明らかなように、酸素過剰
雰囲気下でのNOX 除去用触媒として知られている銅イ
オン交換ゼオライト触媒は、耐久試験後に顕著な活性の
低下を示した。一方、図1および図2に示すように、本
願発明のNOX 除去用触媒は、耐久試験後もほとんど活
性の低下を示さなかった。したがって、本願発明のNO
X 除去用触媒は、比較例2の触媒(Y)と比べて十分な
耐熱性および耐久性を有するものとなっている。
Further, as is clear from FIG. 4, the copper ion-exchanged zeolite catalyst known as a catalyst for NO x removal in an oxygen excess atmosphere showed a marked decrease in activity after the durability test. On the other hand, as shown in FIGS. 1 and 2, the catalyst for NO x removal of the present invention showed almost no decrease in activity even after the durability test. Therefore, the NO of the present invention
The X removal catalyst has sufficient heat resistance and durability as compared with the catalyst (Y) of Comparative Example 2.

【0050】このように本願発明のNOX 除去用触媒
は、金属炭化物または金属窒化物にイリジウムを担持さ
せた従来の触媒と比べて、高価な金属炭化物や金属窒化
物を省いて、代わりに安価な硫酸根を有する化合物を用
いて従来の触媒と同様のNOXの除去活性を有すること
から、上記従来の触媒よりコストダウンできるものとな
っている。
As described above, the NO x removal catalyst of the present invention omits expensive metal carbide or metal nitride and is cheaper than the conventional catalyst in which iridium is supported on metal carbide or metal nitride. Since it has the same NO X removal activity as the conventional catalyst by using a compound having various sulfate groups, the cost can be reduced as compared with the above-mentioned conventional catalyst.

【0051】ところで、特開平7−80315号公報に
記載された脱硝触媒の担体としてのSO4 /ZrO2
の硫酸担持基材は、固体超強酸と呼ばれる物質である。
この固体超強酸は、ジルコニウム等の水酸化物に対し硫
酸を浸漬し、上記水酸化物を、ろ別、乾燥した後、予め
焼成して得られるものであり、上記固体超強酸を担体と
して用いた脱硝触媒は、担体を予め焼成しておくといっ
たように、脱硝触媒の調製に手間取るものとなってい
る。
By the way, the sulfuric acid-supporting base material such as SO 4 / ZrO 2 as the carrier of the denitration catalyst described in JP-A-7-80315 is a substance called solid superacid.
The solid superacid is obtained by immersing sulfuric acid in a hydroxide such as zirconium, filtering, drying, and calcining the hydroxide in advance, and using the solid superacid as a carrier. Such a denitration catalyst takes a lot of time to prepare a denitration catalyst, for example, by calcining a carrier in advance.

【0052】しかしながら、本願発明のNOX 除去用触
媒は、硫酸根の担持形態が固体超強酸である必要はな
く、アルミナ等の金属酸化物に対し、後から硫酸を担持
させるだけで前述の効果を発揮するものであるので、上
記従来公報と比べて、その調製の手間を軽減できるもの
となっている。
However, the catalyst for removing NO x of the present invention does not require that the supporting form of the sulfuric acid radical is a solid superacid, and the above-mentioned effect can be obtained by supporting sulfuric acid on a metal oxide such as alumina afterwards. Therefore, the labor of preparation thereof can be reduced as compared with the above-mentioned conventional publication.

【0053】[0053]

【発明の効果】本発明のNOX 除去用触媒は、以上のよ
うに、イリジウムと硫黄とを有する構成であることによ
り、酸素過剰雰囲気下でのNOX の除去において、広い
温度領域で活性を示し、その上、耐熱性、耐久性に優れ
ることから、排気ガスが酸素過剰雰囲気となり、排気ガ
スの温度変動幅が広範囲となるディーゼルエンジンや、
リーンバーンエンジン等の内燃機関に有効に用いること
ができるという効果を奏する。
As described above, the catalyst for removing NO x of the present invention is active in a wide temperature range in the removal of NO x in an oxygen-excess atmosphere because it has a structure containing iridium and sulfur. In addition, since it has excellent heat resistance and durability, the exhaust gas becomes an oxygen excess atmosphere and the temperature fluctuation range of the exhaust gas is wide, and
It has an effect that it can be effectively used for an internal combustion engine such as a lean burn engine.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1のNOX 除去用触媒(A)に
おける、モデル排気ガスに対する、初期および耐久試験
後のNOX ライトオフ性能を示したグラフである。
FIG. 1 is a graph showing the NO X light-off performance of an NO X removal catalyst (A) of Example 1 of the present invention with respect to a model exhaust gas after an initial test and after a durability test.

【図2】本発明の実施例5のNOX 除去用触媒(E)に
おける、モデル排気ガスに対する、初期および耐久試験
後のNOX ライトオフ性能を示したグラフである。
FIG. 2 is a graph showing the NO X light-off performance of the NO X removal catalyst (E) of Example 5 of the present invention with respect to model exhaust gas, after the initial test and after the durability test.

【図3】比較例1の触媒(X)における、モデル排気ガ
スに対する、初期および耐久試験後のNOX ライトオフ
性能を示したグラフである。
FIG. 3 is a graph showing the NO X light-off performance of the catalyst (X) of Comparative Example 1 against model exhaust gas after the initial test and after the durability test.

【図4】比較例2の触媒(Y)における、モデル排気ガ
スに対する、初期および耐久試験後のNOX ライトオフ
性能を示したグラフである。
FIG. 4 is a graph showing the NO X light-off performance of the catalyst (Y) of Comparative Example 2 against the model exhaust gas after the initial and endurance tests.

───────────────────────────────────────────────────── フロントページの続き (71)出願人 395016659 65 CHALLENGER ROAD R IDGEFIELD PARK,NEW JERSEY 07660 U.S.A. (72)発明者 奥村 顕久 兵庫県姫路市網干区興浜字西沖992番地の 1 株式会社日本触媒内 (72)発明者 堀 正雄 兵庫県姫路市網干区興浜字西沖992番地の 1 株式会社日本触媒内 (72)発明者 堀内 真 兵庫県姫路市網干区興浜字西沖992番地の 1 株式会社日本触媒内 ──────────────────────────────────────────────────続 き Continuation of the front page (71) Applicant 395016659 65 CHALLENGER ROAD R IDGEFIELD PARK, NEW JERSEY 07660 U.S.A. S. A. (72) Inventor Akihisa Okumura 1 at 992 Nishioki, Akihama, Aboshi Ward, Himeji City, Hyogo Prefecture, Nihon Catalyst Co., Ltd. ) Inventor Makoto Horiuchi 1 992 Nishioki, Okihama, Aboshi-ku, Himeji-shi, Hyogo Prefecture Nippon Shokubai Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】触媒活性物質として、イリジウムと硫黄と
を含むことを特徴とする窒素酸化物除去用触媒。
1. A catalyst for removing nitrogen oxides, which contains iridium and sulfur as catalytically active substances.
【請求項2】イリジウムは、硫黄を含む基材上に担持さ
れていることを特徴とする請求項1記載の窒素酸化物除
去用触媒。
2. The catalyst for removing nitrogen oxides according to claim 1, wherein iridium is supported on a base material containing sulfur.
【請求項3】硫黄が、硫酸根の形態であることを特徴と
する請求項1または2記載の窒素酸化物除去用触媒。
3. The catalyst for removing nitrogen oxides according to claim 1, wherein the sulfur is in the form of sulfate.
JP08971696A 1996-04-11 1996-04-11 Nitrogen oxide removal catalyst Expired - Lifetime JP3956158B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP08971696A JP3956158B2 (en) 1996-04-11 1996-04-11 Nitrogen oxide removal catalyst
EP97916636A EP0832688B1 (en) 1996-04-11 1997-04-09 Exhaust gas purifying catalyst and exhaust gas purifying method
DE69738063T DE69738063T2 (en) 1996-04-11 1997-04-09 CATALYST AND METHOD OF EXHAUST GAS CLEANING
CA002223458A CA2223458C (en) 1996-04-11 1997-04-09 Catalyst for purifying exhaust gas and a process for purifying exhaust gas
PCT/JP1997/001211 WO1997037761A1 (en) 1996-04-11 1997-04-09 Exhaust gas purifying catalyst and exhaust gas purifying method
US08/973,684 US6214307B1 (en) 1996-04-11 1997-04-09 Exhaust gas purifying catalyst and exhaust gas purifying method
KR1019970708846A KR100300825B1 (en) 1996-04-11 1997-04-09 Catalyst for exhaust gas purification and exhaust gas purification method
MX9710095A MX9710095A (en) 1996-04-11 1997-12-11 Exhaust gas purifying catalyst and exhaust gas purifying method.
US09/778,103 US20010012502A1 (en) 1996-04-11 2001-02-07 Catalyst for purifying exhaust gas and a process for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08971696A JP3956158B2 (en) 1996-04-11 1996-04-11 Nitrogen oxide removal catalyst

Publications (2)

Publication Number Publication Date
JPH09276702A true JPH09276702A (en) 1997-10-28
JP3956158B2 JP3956158B2 (en) 2007-08-08

Family

ID=13978499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08971696A Expired - Lifetime JP3956158B2 (en) 1996-04-11 1996-04-11 Nitrogen oxide removal catalyst

Country Status (1)

Country Link
JP (1) JP3956158B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11267509A (en) * 1998-03-20 1999-10-05 Mitsubishi Heavy Ind Ltd Denitration catalyst and treatment of exhaust gas
KR100681481B1 (en) * 2005-12-08 2007-02-09 한국항공우주연구원 The performance measurement system of iridium catalyst
JP2014505587A (en) * 2010-12-27 2014-03-06 ビーエーエスエフ コーポレーション Thermally stable catalyst support with barium sulfate
WO2018021511A1 (en) * 2016-07-29 2018-02-01 三菱日立パワーシステムズ株式会社 Exhaust gas denitration catalyst, co oxidation catalyst, exhaust gas treatment system, and exhaust gas treatment method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11267509A (en) * 1998-03-20 1999-10-05 Mitsubishi Heavy Ind Ltd Denitration catalyst and treatment of exhaust gas
KR100681481B1 (en) * 2005-12-08 2007-02-09 한국항공우주연구원 The performance measurement system of iridium catalyst
JP2014505587A (en) * 2010-12-27 2014-03-06 ビーエーエスエフ コーポレーション Thermally stable catalyst support with barium sulfate
WO2018021511A1 (en) * 2016-07-29 2018-02-01 三菱日立パワーシステムズ株式会社 Exhaust gas denitration catalyst, co oxidation catalyst, exhaust gas treatment system, and exhaust gas treatment method
JPWO2018021511A1 (en) * 2016-07-29 2019-06-13 三菱日立パワーシステムズ株式会社 Exhaust gas denitration catalyst, CO oxidation catalyst, exhaust gas treatment system, and exhaust gas treatment method

Also Published As

Publication number Publication date
JP3956158B2 (en) 2007-08-08

Similar Documents

Publication Publication Date Title
JP3061399B2 (en) Diesel engine exhaust gas purification catalyst and purification method
US6214307B1 (en) Exhaust gas purifying catalyst and exhaust gas purifying method
JP4012320B2 (en) Exhaust gas purification catalyst for lean combustion engine
US6191061B1 (en) Method of purifying exhaust gas and catalyst for purifying exhaust gas
JPH05220403A (en) Exhaust gas purifying catalyst
JPH0884911A (en) Catalyst for decomposing nitrogen oxide and method for purifying diesel engine exhaust using the same
JP3977883B2 (en) Exhaust gas purification catalyst for internal combustion engine
JP3956158B2 (en) Nitrogen oxide removal catalyst
JP4330666B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH05277376A (en) Nox removing catalyst and nox removing method utilizing the catalyst
WO2002055194A1 (en) Catalyst for clarification of nitrogen oxides
JP3865838B2 (en) Nitrogen oxide removing catalyst, production method thereof, and exhaust gas purification method using the catalyst
JP3447513B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3589763B2 (en) Exhaust gas purification method for gasoline engine
JP3771608B2 (en) Diesel engine exhaust gas purification catalyst and diesel engine exhaust gas purification method using the same
JP3395525B2 (en) Internal combustion engine exhaust gas purification catalyst and purification method
JP3398159B2 (en) Nitrogen oxide removal method
JP4588134B2 (en) Nitrogen oxide purification catalyst
JPH08229350A (en) Catalyst for decomposing nitrogen oxide and purifying method of diesel engine exhaust gas using the same
JP3435992B2 (en) Purification method of exhaust gas containing nitrogen oxides
JPH05103985A (en) Catalyst for removal of nitrogen oxide and method for removing nitrogen oxide with the same
JPH03131345A (en) Catalyst for purifying exhaust gas
JP3423703B2 (en) Nitrogen oxide removal catalyst
JPH0985092A (en) Catalyst for cleaning exhaust gas and exhaust gas cleaning
JPH0557196A (en) Production of catalyst for purifying exhaust gas

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061019

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070425

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term