JPS61164251A - Semiconductor injection integrated logic circuit device - Google Patents

Semiconductor injection integrated logic circuit device

Info

Publication number
JPS61164251A
JPS61164251A JP60006186A JP618685A JPS61164251A JP S61164251 A JPS61164251 A JP S61164251A JP 60006186 A JP60006186 A JP 60006186A JP 618685 A JP618685 A JP 618685A JP S61164251 A JPS61164251 A JP S61164251A
Authority
JP
Japan
Prior art keywords
region
epitaxial layer
layer
diffusion
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60006186A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ookoda
敏幸 大古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Electric Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP60006186A priority Critical patent/JPS61164251A/en
Publication of JPS61164251A publication Critical patent/JPS61164251A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8222Bipolar technology
    • H01L21/8226Bipolar technology comprising merged transistor logic or integrated injection logic

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To increase the degree of integration of the titled device by a method wherein a diffusion layer, including an IIL part, and a color region are formed into a double-stage concentration structure. CONSTITUTION:When an N<-> type epitaxial alyer 3 is grown on a P-type silicon semiconductor substrate 1, an N<+> type buried alyer 2 is also formed simultane ously. An oxide film 3a is formed on the surface of the epitaxial layer 3 by heating, the impurities 18 having he concentration lower than that of deposited impurities 17 are deposited on the oxide film 3a surrounded by a hole 16, and then a flat diffusion layer 19 having the concentration a little higher than that of the epitaxial layer and an annular colored region 15 having the concentration a little lower than that of the base region 7, which will be formed by a succeed ing process, are formed by performing a diffusion on the epitaxial layer 3 at the same time when an isolation diffusion process is performed on the impurities 17 and 18. An injection region 6 and a base region 7 are formed on the diffusion layer 19, collectors 8 and 9 are formed on the base region in the same manner as above, and an injection electrode 10, a base electrode 11, the first collector electrode 12 and the second collector electrode 13 are provided on each region.

Description

【発明の詳細な説明】 (イ〉 産業上の利用分野 本発明は半導体注入集積論理回路装置(以F、IILと
いう。)に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a semiconductor implanted integrated logic circuit device (hereinafter referred to as F, IIL).

(ロ)従来の技術 一つの半導体基板上に二つのトランジスタ(QI、QR
)を第2図に示すように構成されたIILは、一般に第
3図に示すように、注入側をラテラルPNP トランジ
スタ(QI)とし、出力側を逆方向縦形N P N l
−ランジスタ(QR)として、ラテラルPNP l−ラ
ンジスタ(QI)のコレクタを逆方向縦形NPNトラン
ジスタ(QR)のベースと共用する構造を有する。ずな
わち、P型シリコン基板(1)上にで型の埋込み層(2
)を設け、基板(1)上にエピタキシャル成長で形成さ
れたN−型のエビタキシャル71!(3)をP゛型の分
離領域(4)で島状に分離して島領域(5)が形成され
る。この島領域(5)にP型拡故領域(8)(7)おJ
:びN型拡散領域(8)(9)を順次不純物拡散によっ
て形成(7、酸化膜(3a)に設(Jた電極孔を介して
電極〈10)〜(14)が設けられている。そしてラテ
ラルP N P l−ランシスタ(Q+)はP型拡散領
域(6)が]−ミッタ(インジエクタ)、エピタキシャ
ル層(島領域(5))がベース、P型拡散領域(7)が
コレクタでベース接地で働く。−ノj逆方向縦形NPN
)ランジスタ(QR)はエピタキシャル層〈島領域(5
))がエミッタ、P型拡散領域(7)がベース、N型拡
散領域(8)(9)がコレクタとなっている。
(b) Conventional technology Two transistors (QI, QR) are placed on one semiconductor substrate.
) is configured as shown in FIG. 2, generally, as shown in FIG. 3, the injection side is a lateral PNP transistor (QI) and the output side is a reverse vertical N P N l
- As a transistor (QR), it has a structure in which the collector of a lateral PNP l-transistor (QI) is shared with the base of a reverse vertical NPN transistor (QR). That is, a type of buried layer (2) is formed on a P-type silicon substrate (1).
), and an N-type epitaxial layer 71 formed by epitaxial growth on the substrate (1)! (3) is separated into islands by P'-shaped separation regions (4) to form island regions (5). This island region (5) has P-type expansion regions (8), (7) and J
: N-type diffusion regions (8) and (9) are sequentially formed by impurity diffusion (7), and electrodes (10) to (14) are provided through electrode holes formed in the oxide film (3a). The lateral P N P l-lancistor (Q+) has the P type diffusion region (6) as the ]-mitter (injector), the epitaxial layer (island region (5)) as the base, and the P type diffusion region (7) as the collector. Works with ground.-Noj reverse vertical NPN
) The transistor (QR) is an epitaxial layer (island region (5
)) is the emitter, the P-type diffusion region (7) is the base, and the N-type diffusion regions (8) and (9) are the collector.

このようなIILにおいては、逆方向縦形NPN I−
ランンスタの逆方向電流増巾率βlを高くし−〔高速動
作を得るために、逆方向縦形NPN lランジスタのベ
ース領域をN+型のカラー領域(15〉で取り囲んでポ
ールの逆注入を抑制して、逆方向電流増1]率βiを高
くすることが知られている。例えば、特公昭49−35
030号公報に詳しい。
In such IIL, inverted vertical NPN I-
In order to increase the reverse current amplification factor βl of the transistor and obtain high-speed operation, the base region of the reverse vertical NPN transistor is surrounded by an N+ type collar region (15) to suppress the reverse injection of poles. , reverse current increase 1] is known to increase the rate βi.For example,
For details, see Publication No. 030.

(ハ)発明が解決しようとする問題点 前述の従来構造のカラー領域(15)に高濃度の潔%、
’+n拡散を行うとエミッタlF人効率が向−1し、逆
方向電流増11率βiを高く出来ることが知られ−Cい
る。しかし、このカラー領域(15)を高濃度の深いn
拡散層とするには当然その横方向拡散が伴なうため、カ
ラー領域(]5)がベース領域〈7)に喰い込、7Iコ
レクタ領域(8)(9)に接近しすぎてコレクタ、エミ
ッタ耐圧不良の原因となることが多い。
(c) Problems to be solved by the invention In the color area (15) of the above-mentioned conventional structure, there is a high concentration of
It is known that when +n diffusion is performed, the emitter IF efficiency increases by -1, and the reverse current increase rate βi can be increased. However, this color region (15) is
Naturally, in order to form a diffusion layer, it must be diffused in the lateral direction, so the collar region (]5) digs into the base region (7) and comes too close to the 7I collector regions (8) and (9), causing collector and emitter regions. This often causes poor pressure resistance.

特にこの不良は酸化膜にカラー領域(15)を拡散させ
る拡散孔をホトエッチ/グで設ける際のマスクずれによ
る場合が多い。
In particular, this defect is often caused by mask misalignment when forming diffusion holes for diffusing the collar region (15) in the oxide film by photoetching/etching.

この不良発生を防ぐため、従来は高濃度のカラー領域り
15)とベース領域(7)の間をある程度広くとらざる
を得なかった為に集積度をトげる際の障害となっていた
。出願人はこの障害を解決するために、IIL部を身む
拡散層とカシ−領域が2膜製度構造となるために製造工
程が増λる欠点が新に生しる 本発明は工程増加をもたらす事なく2膜製度構造となる
製造方法を提供するにある。
In order to prevent this defect from occurring, conventionally it was necessary to make a certain amount of space between the high-density color area 15) and the base area (7), which was an obstacle to increasing the degree of integration. In order to solve this problem, the applicant has proposed that the diffusion layer containing the IIL portion and the oak region have a two-layer structure, which increases the number of manufacturing steps. The object of the present invention is to provide a manufacturing method that allows a two-layer structure to be formed without causing any damage.

(ニ)問題点を解決するための手段 本発明は上述した従来の問題点を解決すべくなされたも
ので、、一導電型の半導体基板、該板−ヒに形成される
逆導電型のエピタキシャル層、前記基板と前記層間に挿
入される逆導電型の埋込み層、前記エピタキシャル層の
表面より埋込み層に向け−C拡散させた低濃度の逆導電
型拡散層、前記拡散層内に隣接して設置Jた一導電型の
インジェクタ領域及びベース領域、前記ベース領域表面
に少なくとも一つ設けられる逆導電型のコレクタ領域と
前記拡散層内で且前記ベース領域およびインジェクタ領
域を囲む逆導電型のカラー領域からなり、前記カラー領
域の表面濃度をベース領域の表面濃度よりやへ低くする
構造の装置を製造する際の工程増加を抑止する為に、拡
散層とカラー領域を形成する拡散工程を分離拡散工程と
同時にエピタキシャル層に拡散きぜる方法を特徴とする
(D) Means for Solving the Problems The present invention has been made to solve the above-mentioned conventional problems. a buried layer of opposite conductivity type inserted between the substrate and the layer, a low concentration reverse conductivity type diffusion layer in which -C is diffused from the surface of the epitaxial layer toward the buried layer, and adjacent to the inside of the diffusion layer. an injector region and a base region of one conductivity type; a collector region of an opposite conductivity type provided on the surface of the base region; and a collar region of an opposite conductivity type within the diffusion layer and surrounding the base region and the injector region. In order to suppress the increase in process steps when manufacturing a device having a structure in which the surface concentration of the color region is slightly lower than that of the base region, the diffusion process for forming the diffusion layer and the color region is separated from the diffusion process. It is characterized by a method of simultaneously diffusing into the epitaxial layer.

(ポ) 作用 本発明によれば、低濃度の深いN型拡散層にIIL部を
設けるのでリニア部の耐圧を保しながらIIL部の電流
増1[」率を高め更にカラー領域の表面濃度をベース領
域の表面濃度よりやへ低い程度としたへめ、拡散時の横
方向拡散がベース領域に接したとしても実質的にはベー
ス領域の喰い込みが生じないのでカラー領域とベース領
域との間隔を狭める事が可能となり素子の集積度を向」
−キせるとともに逆方向電流増巾率β1の低下も防ぎ工
程の安定化及び歩留の向上が計れてなお、製造工程の増
加をきたさない。
(Po) Function According to the present invention, since the IIL section is provided in the low-concentration deep N-type diffusion layer, the current increase rate of the IIL section is increased while maintaining the breakdown voltage of the linear section, and the surface concentration of the color region is increased. The spacing between the color area and the base area is set to a level slightly lower than the surface concentration of the base area, and even if the lateral diffusion during diffusion comes into contact with the base area, the base area does not substantially bite into the base area, so the distance between the color area and the base area is This makes it possible to narrow the area and increase the degree of device integration.”
- It is possible to prevent the reverse current amplification factor β1 from decreasing and to stabilize the process and improve the yield without causing an increase in the number of manufacturing steps.

(へ)実施例 第1図は本発明によるIILを製造工程順に断面図にて
示すものである。
(F) Embodiment FIG. 1 is a sectional view showing an IIL according to the present invention in the order of manufacturing steps.

先ずP型のシリコン半導体基板(1目二面中央部にN型
不純物を濃く堆積させた後、該基板(1〉上にN−型の
エピタキシャル層(3)を成長させると前記基板く1)
とエピタキシャル層の両方に内在するN+型の埋込み層
(2)が同時に形成される。第1図(a)、次いで酸化
雰囲気炉内で加熱しCエピタキシャル層(3)表面に酸
化膜(3a)を形成し第1図(b)、該酸化膜(3a〉
に後工程で形成されるベース領域(7)を囲む位置にホ
トエツチングにより孔(16)を該孔より露出した前記
エビクキシ〜ル層に比較的筒い濃度のN4電型の不純物
(17)をイ」ンインブランテーンコン等で堆積させ第
1図(C)、該孔(16)”r囲まねる酸化膜(3a)
を再びに L 工ンブングにより露出されるエピタキシ
礒、・ル層に前記堆積不純物(17〉より低い濃度の不
純物(18)を堆積さ封゛第1図(d)、次いで、前記
堆積した不純物(17〉(18)を分離拡散−[程と同
時にコーピタキンへ・ル層(3)に拡散さけてエビタキ
ン〜ル層のa度より僅かに高い濃度となる扁平な拡散層
(19)と後工程で形成されるヘ−ス領域(7)よりや
N低い濃度で11環状のカラー領域(15)を形成きせ
る。第1図(e〉、こ〜で分離拡散工程とはI T L
部を夫々独立さ)↓るためにITL部全体をP型の領域
でリング状に囲4.9島領域く5)を形成する工程を指
し、形成したい領域の酸化膜を除いて露出したーしビタ
キシー■ル層にP型不純物を堆積させ−〔加熱する工程
である。第1図(r>kl酸化膜除去、不純物堆積後の
加熱手段C1拡散層〈J9)にインジェクタ領域(6)
とベース領域(7)を形成した状態を示し、第1図(g
)は同し要領でベース領域に=l【・クク(8)(9)
を形成し、た状態を示し、第1図(i)1ま前記各領域
にオーミック:コンタクトで夫々インシェクク電極(1
0)、ベースV、極(11)、第1コし・クク電極(1
2)、第2コレクタM極(13)を設(Jで本発明装置
を完成した状態を示している。
First, N-type impurities are densely deposited in the center of the second surface of a P-type silicon semiconductor substrate (1), and then an N-type epitaxial layer (3) is grown on the substrate (1).
An N+ type buried layer (2) inherent in both the epitaxial layer and the epitaxial layer is formed at the same time. FIG. 1(a), then heated in an oxidizing atmosphere furnace to form an oxide film (3a) on the surface of the C epitaxial layer (3), and as shown in FIG. 1(b), the oxide film (3a)
A hole (16) is formed by photoetching at a position surrounding the base region (7) to be formed in a later process, and a relatively narrow concentration of N4 type impurity (17) is implanted in the above-mentioned shrimp layer exposed through the hole. 1(C), an oxide film (3a) surrounding the hole (16)
Then, the impurity (18) with a concentration lower than that of the deposited impurity (17) is deposited on the epitaxial layer exposed by L etching (Fig. 1(d)), and then the deposited impurity ( 17〉 (18) is separated and diffused into the corpitachine layer (3) at the same time as the flattened diffusion layer (19) whose concentration is slightly higher than the concentration of the corpitachine layer (19) in the subsequent process. 11 annular color regions (15) are formed at a concentration lower in N than the Hose region (7) to be formed.
This refers to the process of forming an island region (4.9) around the entire ITL region in a ring shape with a P-type region in order to make each part independent), and exposing it except for the oxide film in the desired region. This is a step in which P-type impurities are deposited on the bitaxeal layer and then heated. Figure 1 (r>kl Heating means after oxide film removal and impurity deposition C1 diffusion layer <J9) injector area (6)
Figure 1 (g) shows the state in which the base region (7) is formed.
) is added to the base area in the same way as =l[・kuku(8)(9)
Figure 1(i) shows the state in which the injected electrodes (1) are formed with ohmic contacts in each region.
0), Base V, Pole (11), 1st Koku electrode (1
2) A second collector M pole (13) is installed (J shows the completed state of the device of the present invention.

(1・)発明の効果 本発明によれば、I T L部を含む事になる拡散層と
カラー領域が、2膜製度構造となるから即ち一方の濃度
はリニア部の耐圧を保ちながらIIL部の順方向型dL
増rj]率に高く保ら、更に他方の濃度でIIL部の逆
)5向エミツタ注入効率の向にに役立つ、加えてカラー
領域の表面濃度はたとえカラー領域がベース領域により
接近してもベース領域を喰い込む事がないの−(!、設
×1時にベース領域とカラー領域を従来構造より更に接
近さljる事ができるので集積度を上(′)る。
(1.) Effects of the Invention According to the present invention, the diffusion layer and the color region, which include the ITL region, have a two-layer structure, that is, the concentration of one of the layers can be increased while maintaining the breakdown voltage of the linear region. forward type dL of
In addition, the surface concentration of the color region is kept high even if the color region is closer to the base region. There is no encroachment on the area (!) When setting x1, the base area and color area can be brought closer together than in the conventional structure, increasing the degree of integration (').

而してこの効果をあげる構造の2膜製度構造の製造は実
施例で示した如く、拡散層とカラー領域を分離拡散工程
で同時に形成するようにしたから、従来製造工程より一
切の工程増を伴なわない。
As shown in the example, the manufacturing of the two-layer composite structure that achieves this effect involves forming the diffusion layer and the color region simultaneously in a separate diffusion process, which requires no additional steps compared to the conventional manufacturing process. Not accompanied.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明製造35法をE程順に示した断面図、v
Jz図はIILの回路図、第3図は従来の■I L構造
を示す断面図である。 (1)・・半導体基板、(2)・ 埋込み層、(3)・
エビクギシへ・ル層、(6)・インジェクタ領域、(7
)・ベース領域、(8)、(9)  ・コレクタ領域、
(15)・・カラー領域、(19)・・拡散層。
Figure 1 is a cross-sectional view showing the 35 manufacturing methods of the present invention in the order of E steps, v
The Jz diagram is a circuit diagram of the IIL, and FIG. 3 is a sectional view showing the conventional ■IL structure. (1) Semiconductor substrate, (2) Buried layer, (3)
Ebikugishiheru layer, (6), injector region, (7
)・Base area, (8), (9) ・Collector area,
(15)...Color area, (19)...Diffusion layer.

Claims (1)

【特許請求の範囲】[Claims] (1)下記の工程からなる半導体注入集積論理回路装置
の製造方法。 a、一導電型の半導体基板上に逆導電型の埋込み層を内
在させて逆導電型のエピタキシャル層を成長させる工程
、 b、該エピタキシャル層表面に酸化膜を付与する工程、 c、該酸化膜に後工程で形成されるベース領域を囲む位
置に孔を開け、該孔より前記エピタキシャル層に比較的
高い濃度の逆導電型の不純物を堆積させる工程、 d、前記孔で囲まれる酸化膜を除去し、露出されるエピ
タキシャル層に前記堆積不純物より低い濃度の逆導電型
不純物を堆積させる工程、 e、前記堆積した不純物を分離拡散工程と同時にエピタ
キシャル層に拡散させてエピタキシャル層の濃度より僅
かに高い濃度となる扁平な拡散層と後工程で形成される
ベース領域よりやゝ低い濃度で且環状のカラー領域を形
成する工程、 f、前記拡散層にインジェクタ領域とベース領域を形成
する工程、 g、前記ベース領域にコレクタを形成する工程、
(1) A method for manufacturing a semiconductor implanted integrated logic circuit device comprising the following steps. a. A step of growing an epitaxial layer of an opposite conductivity type by including a buried layer of an opposite conductivity type on a semiconductor substrate of one conductivity type; b. A step of providing an oxide film on the surface of the epitaxial layer; c. The oxide film. forming a hole at a position surrounding a base region to be formed in a later step, and depositing a relatively high concentration of impurity of the opposite conductivity type on the epitaxial layer through the hole; d. removing the oxide film surrounded by the hole; and depositing an opposite conductivity type impurity in the exposed epitaxial layer at a concentration lower than that of the deposited impurity, e. Diffusing the deposited impurity into the epitaxial layer at the same time as the separation and diffusion step so as to have a concentration slightly higher than that of the epitaxial layer. f. forming an annular color region with a slightly lower density than a base region formed in a subsequent step; f) forming an injector region and a base region in the diffusion layer; g. forming a collector in the base region;
JP60006186A 1985-01-17 1985-01-17 Semiconductor injection integrated logic circuit device Pending JPS61164251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60006186A JPS61164251A (en) 1985-01-17 1985-01-17 Semiconductor injection integrated logic circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60006186A JPS61164251A (en) 1985-01-17 1985-01-17 Semiconductor injection integrated logic circuit device

Publications (1)

Publication Number Publication Date
JPS61164251A true JPS61164251A (en) 1986-07-24

Family

ID=11631523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60006186A Pending JPS61164251A (en) 1985-01-17 1985-01-17 Semiconductor injection integrated logic circuit device

Country Status (1)

Country Link
JP (1) JPS61164251A (en)

Similar Documents

Publication Publication Date Title
US3648128A (en) An integrated complementary transistor circuit chip with polycrystalline contact to buried collector regions
US5110749A (en) Method for manufacturing semiconductor device
JPS61164251A (en) Semiconductor injection integrated logic circuit device
JP3877459B2 (en) Manufacturing method of semiconductor device
JPS59124153A (en) Semiconductor integrated circuit device
JPS62291962A (en) Lateral type transistor
JPS61160967A (en) Semiconductor injection integrated logic circuit device
JPH1140573A (en) Manufacture of semiconductor device
JPH0216018B2 (en)
SU986236A1 (en) Method of manufacturing injection integrated circuits
JPS60123062A (en) Manufacture of semiconductor integrated circuit
JPH0439788B2 (en)
JP2002076132A (en) Semiconductor device and manufacturing method
KR940005706B1 (en) Method of making semiconductor device using ion implantation
JP2648027B2 (en) IIL type semiconductor device
JPH01187868A (en) Semiconductor device
JPS63293974A (en) Semiconductor device and manufacture thereof
JPS63136660A (en) Semiconductor device and manufacture thereof
JPH0629374A (en) Semiconductor integrated circuit device
JPH0439787B2 (en)
JPS62111461A (en) Manufacture of semiconductor device
JPH0439789B2 (en)
JPH0278227A (en) Collector isolated diffusion transistor and its manufacture
JPS63257261A (en) Manufacture of semiconductor device
JPS58212171A (en) Semiconductor device