JPS59124153A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS59124153A
JPS59124153A JP57233610A JP23361082A JPS59124153A JP S59124153 A JPS59124153 A JP S59124153A JP 57233610 A JP57233610 A JP 57233610A JP 23361082 A JP23361082 A JP 23361082A JP S59124153 A JPS59124153 A JP S59124153A
Authority
JP
Japan
Prior art keywords
layer
type
substrate
high concentration
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57233610A
Other languages
Japanese (ja)
Inventor
Toyoki Takemoto
竹本 豊樹
Tsutomu Fujita
勉 藤田
Hiroyuki Sakai
坂井 弘之
Kenji Kawakita
川北 憲二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57233610A priority Critical patent/JPS59124153A/en
Publication of JPS59124153A publication Critical patent/JPS59124153A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8222Bipolar technology
    • H01L21/8224Bipolar technology comprising a combination of vertical and lateral transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To improve withstanding voltage and to prevent yielding of parasitic elements, by forming an element separating layer, which reaches a p<+> layer from an n layer in a p<+>n-n<+>n constitution, providing the p<+> layer as a channel stopper, providing an n<+> layer for reducing collector resistance, and providing a bipolar element in the n layer. CONSTITUTION:On a p<+> type Si substrate 31, a p layer 32, an n<+> layer 33, and n layer 34 are sequentially laminated. Etching is performed, and grooves reaching the p<+> substrate 31 are formed and filled up with poly Si 35. Then, an n<+> layer 36 is selectively formed by ion implantation. Thereafter, p layers 37-39 and an n layer 40 are formed. Finally, the surface is coated by SiO2 42, and an Al electrode 41 is provided. Thus the device is completed. In thid constitution, channel prevention is performed by the substrate 31. The p<+> substrate and the n<+> layer 33 are separated by the p layer 32 in the vertical direction. Therefore, withstanding voltage is not deteriorated. Since the n<+> layer 33 is uniform, hFE of parasitic p-n-p caused by the layers 37-34-33-32 is 0.1 or less due to the high concentration of the n base 33, and no actual obstacle is yielded. A mask process can be also reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は絶縁膜により素子間分離された半導体集積回路
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor integrated circuit device in which elements are isolated by an insulating film.

従来例の構成とその問題点 従来、バイポーラ集積回路において、接合間の分離はp
n接合分離技術が使われていた。一方、いわゆるLOC
O3(Local Qxidation ofSi 1
1con )と呼ばれる酸化膜分離法もあったが、L 
OCOS法は、バーズビークと呼ばれる烏のくちばし状
の酸化膜が横方向に広がり、このため活性領域の実質的
面積を狭くする欠点があった。そのため最近では、バー
スビークの発生しない絶縁膜分離法が開発されて来てお
り、実質的に分離に要する面積が縮少して来ている。そ
れにより当然活性領域同士が非常に近づく結果とな9、
分離直下の基板表面のn型反転により、素子間耐圧劣化
並びにリーク電流の発生等が起こる。
Conventional configurations and their problems Conventionally, in bipolar integrated circuits, the isolation between junctions is p
N-junction isolation technology was used. On the other hand, the so-called LOC
O3 (Local Qxidation of Si 1
There was also an oxide film separation method called 1con), but L
The OCOS method has the disadvantage that a crow's beak-shaped oxide film called a bird's beak spreads laterally, thereby narrowing the actual area of the active region. Therefore, insulating film separation methods that do not cause birthbeaks have recently been developed, and the area required for separation has been substantially reduced. This naturally results in the active regions becoming very close9.
The n-type inversion of the substrate surface immediately below the separation causes deterioration of inter-element breakdown voltage and generation of leakage current.

このため通常分離酸化膜直下に、高濃度のp型不純物を
選択的に拡散させ、n型反転を防止することが普通に行
なわれている。しかしこの高濃度のp型拡散層は、n型
の埋込み拡散層と近接しているため、高濃度領域同士の
接触による、制圧劣化が発生する等新たな問題点が発生
し、結果的には活性領域間の距離をある程度はなすこと
が必要となシ、本来の目的の1つである高密度化に不利
益をもたらしている。このことを以下詳細に説明する。
For this reason, it is common practice to selectively diffuse p-type impurities at a high concentration directly beneath the isolation oxide film to prevent n-type inversion. However, since this high concentration p-type diffusion layer is in close proximity to the n-type buried diffusion layer, new problems arise such as suppression deterioration due to contact between the high concentration regions, and as a result, It is necessary to maintain a certain distance between the active regions, which is disadvantageous in achieving high density, which is one of the original objectives. This will be explained in detail below.

第1図は標準的な従来の製造プロセスを示している。FIG. 1 shows a standard conventional manufacturing process.

(春 1はp型基板であり、〜Ω・眞の比抵抗を持ち厚
さ〜100μmである。
(Spring 1 is a p-type substrate, which has a specific resistance of ~Ω·m and a thickness of ~100 μm.

(均 2はn型高濃度領域で通常As(砒素)を障して
作り、層抵抗として数Ω/口〜数1oΩ/口の非常に低
抵抗で、埋込み層としてバクポーラ・トランジスターの
コレクター抵抗の削減のために拡散される。
(Uniform 2 is an n-type high-concentration region, usually made of As (arsenic), and has a very low layer resistance of several Ω/ohm to several 10 ohm/ohm, and is used as a buried layer to compensate for the collector resistance of a backpolar transistor. Diffused for reduction.

(Q  3は高濃度のp型層で、先に述べた素子間分離
の際に、n型反転層が生じるのを防ぐチャネル。
(Q3 is a highly doped p-type layer and is a channel that prevents the formation of an n-type inversion layer during the isolation between elements mentioned above.

発生防止のために選択的に拡散される。Selectively diffused to prevent outbreaks.

(Ill  4は基板1の上にn型のエピタキシャル成
長層を付着させる。比抵抗は0.3〜2Ω−m程度で膜
厚は1〜3μm程度である。
(Ill 4 deposits an n-type epitaxial growth layer on the substrate 1. The specific resistance is about 0.3 to 2 Ω-m, and the film thickness is about 1 to 3 μm.

(均 5は絶縁膜でたとえばシリコン酸化膜、多結晶シ
リコンとシリコン酸化膜の組合せ等で出来ており、素子
間分離として生成される。
(The reference numeral 5 is an insulating film made of, for example, a silicon oxide film, a combination of polycrystalline silicon and silicon oxide film, etc.), and is created as isolation between elements.

(F)6はコレクターウオール拡散であシ、n型の高濃
度層で、コレクター抵抗を下げるために拡散生成される
(F) 6 is a collector wall diffusion layer, which is an n-type high concentration layer, and is generated by diffusion in order to lower the collector resistance.

(G)成長層ルにp型ボロンの拡散が行なわれ、NPN
 トランジスターのベースアを、横型pnpトランジス
ターのエミッタ、コレクタ8が形成される。この不純物
層の層抵抗は200〜300Ω/口である。
(G) P-type boron is diffused into the growth layer, resulting in NPN
The base of the transistor, the emitter and collector 8 of a horizontal pnp transistor are formed. The layer resistance of this impurity layer is 200 to 300 Ω/hole.

(H)9はn型不純物拡散層でりん又は砒素で構成され
npn )ランシスターのエミッタとなっている。
(H) 9 is an n-type impurity diffusion layer made of phosphorus or arsenic, and serves as an emitter of an npn) run sister.

(I)Al配線を実施することにょシ、NPN及びpn
p トランジスタが完成する。尚、10iA7金属膜で
ある。
(I) To perform Al wiring, NPN and pn
p The transistor is completed. Note that it is a 10iA7 metal film.

従来のトランジスタにおいて、先に述べた問題点を詳細
に説明する。
The above-mentioned problems with conventional transistors will be explained in detail.

(1)埋込み層となる領域2は絶縁膜5に近接させてい
るが、もし近接していない場合は、ベース7−成長層4
一基板10組合せによるPNPトランジスターが生じこ
れが寄生PNPとして働き、ラッチアップ等の問題を生
じる。近接させれば、この寄生pnp層のベースが高濃
度のn型である領域2により寄生pnp トランジスタ
ーのhFE は極端に小さくなり、ラッチアップ等の心
配は起らないためである。
(1) The region 2 that will become the buried layer is placed close to the insulating film 5, but if it is not close, the base 7-growth layer 4
PNP transistors are produced by combining 10 on one substrate, which acts as a parasitic PNP and causes problems such as latch-up. This is because if they are brought close together, the hFE of the parasitic pnp transistor becomes extremely small due to the region 2 in which the base of the parasitic pnp layer is highly doped n-type, and there is no concern about latch-up or the like.

一方、絶縁膜5の下部に設置したチャネル防止用のp型
層3は、絶縁膜5が狭いため、更に狭くせねばならず、
領域2と接触し耐圧劣化を発生さす危険がある。又、絶
縁膜5を広く取れば素子面積が大きくなる。
On the other hand, since the insulating film 5 is narrow, the p-type layer 3 for preventing a channel provided under the insulating film 5 has to be made even narrower.
There is a risk of contact with area 2 and deterioration of withstand voltage. Furthermore, if the insulating film 5 is made wider, the element area becomes larger.

(呻 領域2とp型層3との距離はマスク合わせの精度
を考えれば、通常2μm以上はなさねば耐圧的に問題と
なるが、これらの製造プロセスが工程の前半にあるため
、後め温度処理により横方向に広がりやすく、このため
ますます素子面積を広げる結果となり、高密度化が不可
能と々る。
(Considering the precision of mask alignment, the distance between region 2 and p-type layer 3 should normally be 2 μm or more, otherwise it would be a problem in terms of pressure resistance. However, since these manufacturing processes are in the first half of the process, temperature treatment is required later. This tends to spread in the lateral direction, which results in further expansion of the device area, making it impossible to achieve high density.

尚、第1図の例では領域2がベース7より広く取ってい
るので領域2をベース7直下迄縮めることが可能で、上
記問題も若干緩和されるが、絶縁膜5がベース7に接触
している構造すなわちウォールド・ベース構造では、非
常に問題となる。
In the example shown in FIG. 1, the region 2 is wider than the base 7, so it is possible to reduce the region 2 to just below the base 7, which alleviates the above problem to some extent. This is a serious problem for walled base structures.

第2図は、縦型pnpをnpnと混在した従来例である
。(A)で11はp型基板で比抵抗として数Ω−cyn
、であり、12は高濃度n型の埋込み層、13はチャネ
ル防止部でp型高密度層、14はp型高濃度層で、埋込
み層12の内側に拡散形成される。(B) 15はn型
エピタキシャル層で比抵抗は0゜5〜2Ω−mである。
FIG. 2 shows a conventional example in which a vertical PNP is mixed with an NPN. In (A), 11 is a p-type substrate with a specific resistance of several Ω-cyn.
, 12 is a heavily doped n-type buried layer, 13 is a channel prevention portion and is a p-type high-density layer, and 14 is a p-type heavily doped layer, which is formed by diffusion inside the buried layer 12. (B) 15 is an n-type epitaxial layer with a specific resistance of 0.5 to 2 Ω-m.

16はnpnトランジスタのコレクタ電極引出し部のコ
レクタウオール拡散部であり、高濃度のn型不純物が拡
散されている。17は分離部の絶縁膜で素子的に分離し
ている。18は高濃度p型高濃度層14に上部からイオ
ン注入法などで拡散し接続した層で層抵抗として、1.
5〜3にΩ/口程度であシ、縦型pnpのコレクタとな
る層である。1っけ縦型pnpのベースとなる層で、層
抵抗として数百Ω/口でりんなどをイオン注入で打込み
形成している。20,21゜22はそれぞれnpnのベ
ース、pnpのエミフタ及びコレクタとなるp型拡散層
で層抵抗とじて150〜300Ω/口程度でボロンの拡
散等により形成される。23.24はそれぞれnpnト
ランジスタのエミッタとpnp トランジスタのベース
拡散層でりんあるいは砒素拡散等により形成される。層
抵抗は〜Ω/口で厚さは。、2−0.4μm程度である
。25は電極でAlによって形成される。
Reference numeral 16 denotes a collector all diffusion portion of the collector electrode lead-out portion of the npn transistor, into which a high concentration of n-type impurity is diffused. Reference numeral 17 is an insulating film of an isolation portion for elemental isolation. 18 is a layer connected to the high concentration p-type high concentration layer 14 by diffusion from above by ion implantation, etc., and serves as a layer resistance.1.
This layer is about 5 to 3 Ω/hole and serves as a collector for a vertical PNP. This is the base layer of the vertical PNP, and is formed by ion implantation with phosphorus or the like at a resistance of several hundred Ω/hole. Reference numerals 20, 21 and 22 denote p-type diffusion layers which serve as an npn base, a pnp emitter and a collector, respectively, and are formed by boron diffusion or the like and have a layer resistance of about 150 to 300 Ω/hole. Reference numerals 23 and 24 denote the emitter of the npn transistor and the base diffusion layer of the pnp transistor, which are formed by phosphorus or arsenic diffusion, respectively. The layer resistance is ~Ω/mouth and the thickness is. , about 2-0.4 μm. Reference numeral 25 denotes an electrode made of Al.

この様に、npnとpnpが一体形成されているが、こ
こでも、n型埋込層12とチャネル防止層13とが接近
することによる問題点は、第1図に示したものと同じで
ある。
In this way, the npn and pnp are integrally formed, but here too, the problem caused by the proximity of the n-type buried layer 12 and the channel prevention layer 13 is the same as that shown in FIG. .

さて、ICの製造プロセスが特にその工程のマスク枚数
とマスクの合わせ精度の厳しさがどの程度であるかによ
り工程歩留りが決定されることを考え、第1図に示した
従来例に従って考えて見ると、基本的な工程では、第1
表のようになる。
Now, considering that the process yield in the IC manufacturing process is determined by the number of masks in the process and how strict the mask alignment accuracy is, let's consider the conventional example shown in Figure 1. In the basic process, the first
It will look like a table.

以下余白 第1表 この様に、従来例ではマスク枚数が8枚必要でかつ、チ
ャネル防止拡散工程並びに、絶縁膜形成工程にマスク合
わせの精度が要求される。
Table 1 (margin below) As described above, in the conventional example, eight masks are required, and precision in mask alignment is required in the channel prevention diffusion process and the insulating film formation process.

発明の目的 本発明は、高密度、高特性のバイポーラ素子を実現する
上で問題となるチャネル防止拡散部と埋込み層との近接
による耐圧劣化並びにそれを避けることによって生じる
寄生トランジスタの発生を゛防ぎかつ、工程に要するマ
スク枚数の減少と精度の必要なマスク合わせ工程を極小
下げることの出来る半導体集積回路装置を提供せんとす
るものである。
Purpose of the Invention The present invention prevents breakdown voltage deterioration due to the proximity of the channel prevention diffusion part and the buried layer, which is a problem in realizing a high-density, high-performance bipolar device, and the generation of parasitic transistors caused by avoiding this. Moreover, it is an object of the present invention to provide a semiconductor integrated circuit device that can reduce the number of masks required for the process and minimize the mask alignment process that requires precision.

発明の構成 本発明は、高濃度の一方導電型の第1の層とこの層上に
形成された低濃度の第2の層と、この第2の層上に形成
された高濃度の他方導電型の第3↓ の層と、この第3層上に形成された低濃度の他方導電型
の第4の層と、この第4の層表面から前記第1の層に達
する素子間分離膜とを備え、第1の層がトランジスタ素
子間のチャネル・ストッパーとして働き、前記第3の層
が、コレクター抵抗削減のための埋込み層として働き、
前記第4の層には所定バイポーラ素子が形成されること
を特徴とした半導体集積回路装置である。
Structure of the Invention The present invention comprises a highly doped first layer of one conductivity type, a lightly doped second layer formed on this layer, and a highly doped second conductive layer formed on the second layer. a third ↓ layer of the type, a low concentration fourth layer of the other conductivity type formed on the third layer, and an inter-element isolation film reaching the first layer from the surface of the fourth layer. the first layer acts as a channel stopper between transistor elements, the third layer acts as a buried layer for reducing collector resistance,
The semiconductor integrated circuit device is characterized in that a predetermined bipolar element is formed in the fourth layer.

実施例の説明 以下、図に従って本発明の実施例を第3図を用いて説明
する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. 3 according to the drawings.

(A)31は高濃度p型基板で0.2Ω−濡以下を使用
した。厚さは300μm前後である。32は高濃度p型
基板31上にエピタキシャル成長された低濃度p型層で
1Ω−m前後の比抵抗で膜厚は1μm程度である。形成
は低温で形成出来る減圧エピタキシャル法を採用したが
、MBE法(分子線エピタキシャル法)を使用すれば、
更に低温でオド・ドープの少ない膜が成長出来る。33
はp型層32上にイオン注入法などにより全面に形成し
たn型拡散層で、0.5μm前後の厚さにランプ。
(A) 31 was a high concentration p-type substrate with a resistance of 0.2 Ω or less. The thickness is approximately 300 μm. 32 is a low concentration p-type layer epitaxially grown on the high concentration p-type substrate 31, and has a specific resistance of about 1 Ω-m and a film thickness of about 1 μm. For the formation, we adopted the reduced pressure epitaxial method that can be formed at low temperatures, but if we use the MBE method (molecular beam epitaxial method),
Furthermore, films with less odope can be grown at lower temperatures. 33
is an n-type diffusion layer formed entirely on the p-type layer 32 by ion implantation or the like, and has a thickness of about 0.5 μm.

アニール等の短時間アニールにより、p型層32を維持
したまま形成される。34は低濃度n型層で1.、o〜
1.5μm程度全面にエピタキシャル成長される。比抵
抗は0.5Ω−漁前後であり、形成法は減圧エピタキシ
ャル法を使っている。この様に形成された基板を使い、
選択的な素子形成を実施する。
The p-type layer 32 is formed by short-time annealing such as annealing while maintaining the p-type layer 32. 34 is a low concentration n-type layer 1. , o~
Epitaxial growth is performed over the entire surface to a thickness of about 1.5 μm. The specific resistance is around 0.5Ω, and the formation method uses a reduced pressure epitaxial method. Using the substrate formed in this way,
Perform selective device formation.

(B) 36は絶縁膜で、これは従来例で述べた方法と
同様に酸化膜の成長あるいは、シリコン開口後の絶縁膜
埋込み法で形成される。又、多結晶シリコンの埋込み等
の方法が、前記シリコン基板の不純物濃度分布を変化さ
せずに行なえる等利点はある。絶縁膜35の深さは2.
5μm前後であり、その先端が高濃度p型基板31迄達
している。
(B) Reference numeral 36 denotes an insulating film, which is formed by growing an oxide film or by burying an insulating film after a silicon opening, similar to the method described in the conventional example. Another advantage is that methods such as embedding polycrystalline silicon can be performed without changing the impurity concentration distribution of the silicon substrate. The depth of the insulating film 35 is 2.
The diameter is around 5 μm, and its tip reaches the high concentration p-type substrate 31.

(C) 3 eはコレクターウオール拡散で、n型高濃
度不純物形成をイオン注入法を用いて行なう。
(C) 3e is collector wall diffusion, in which n-type high concentration impurities are formed using ion implantation.

(D) 37〜39はp型不純物拡散層で、ボロンのイ
オン注入を用いて形成され、それぞれnpnのベース、
pnpのエミッタ及びコレクタを形成する。
(D) 37 to 39 are p-type impurity diffusion layers formed using boron ion implantation, and are respectively an npn base and a p-type impurity diffusion layer.
Form a pnp emitter and collector.

(E) n型不純物のイオン注入で、層抵抗として数Ω
/口を狙って注入することにより、npnのエミッタ4
0が形成される。
(E) By ion implantation of n-type impurities, the layer resistance is several Ω.
/ By injecting aiming at the mouth, the emitter of npn 4
0 is formed.

(F)41は電極でA7の蒸着を行ない形成される。(F) 41 is an electrode formed by vapor deposition of A7.

尚42は酸化膜である。Note that 42 is an oxide film.

以上、明らかなように、素子間の分離の際に必要なチャ
ネル防止部は基板31がその役目を担い、また高濃度の
p型基板31と高濃度のn型拡散層33とは、低濃度の
p型層32により縦方向に分離されているため、耐圧劣
化の心配もない。また高濃度の拡散層33はシリコン基
板全面にイオン注入されているため、p型ベース37と
拡散層33゜34で形成されるn型コレクタ部とp型層
32のp型部とで形成される寄生pnpのhFE  は
、寄生pnpのベース領域すなわち、拡散層33が高濃
度のため、きわめて小さく0.1以下であり実用上障害
とならない。
As is clear from the above, the substrate 31 plays the role of the channel prevention part necessary for isolation between elements, and the high concentration p-type substrate 31 and the high concentration n-type diffusion layer 33 are Since they are separated in the vertical direction by the p-type layer 32, there is no fear of breakdown voltage deterioration. Furthermore, since the highly concentrated diffusion layer 33 is ion-implanted into the entire surface of the silicon substrate, it is formed by the n-type collector part formed by the p-type base 37 and the diffusion layer 33, and the p-type part of the p-type layer 32. Since the base region of the parasitic PNP, that is, the diffusion layer 33, has a high concentration, hFE of the parasitic PNP is extremely small, 0.1 or less, and does not pose a practical problem.

以上のように、本実施例によれば従来問題となっていた
高濃度p型領域であるチャネル防止部と高濃度n型領域
である埋込み部との隣接の際の問題点を縦型に分離する
構造により解決し、それにより寄生pnp効果の削減と
耐圧劣化を防ぐことが可能となり、高密度化が可能とな
った。また製造に要するマスク枚数及びマスク合わせの
際に問題となる。精度については第2表に示すように、
従来例第1表と比較して、マスク枚数で8枚→6枚マス
ク合わせ工程の厳しいものも3工程→1工程に減少する
ことが可能となった。
As described above, according to this embodiment, the conventional problem when the channel prevention part, which is a highly doped p-type region, and the buried part, which is a highly doped n-type region, are adjacent to each other can be resolved vertically. This problem was solved by a structure that reduces the parasitic pnp effect and prevents breakdown voltage deterioration, making it possible to increase density. Further, problems arise in the number of masks required for manufacturing and in mask alignment. Regarding accuracy, as shown in Table 2,
Compared to the conventional example shown in Table 1, the number of masks can be reduced from 8 to 6. The difficult mask alignment process can be reduced from 3 to 1 process.

以下余白 第2表 第4図に縦型pnpを一体化した実施例を示す。Margin below Table 2 FIG. 4 shows an embodiment in which a vertical PNP is integrated.

(A)51はp型高濃度基板で、62ばp型低濃度エピ
タキシャル層である。53はn型高濃度拡散層で、64
は拡散層53上に選択的に形成されたp型高濃度拡散層
である。基板51.エピタキシャル層52.拡散層53
はマスク合わせなしで全面に形成される。
(A) 51 is a p-type high concentration substrate, and 62 is a p-type low concentration epitaxial layer. 53 is an n-type high concentration diffusion layer, 64
is a p-type high concentration diffusion layer selectively formed on the diffusion layer 53. Substrate 51. Epitaxial layer 52. Diffusion layer 53
is formed on the entire surface without mask alignment.

(B) 55はn型エピタキシャル層で比抵抗0.5〜
1.5Ω−mi、で膜厚は1.0〜2.0μmである。
(B) 55 is an n-type epitaxial layer with a specific resistance of 0.5 to
1.5Ω-mi, and the film thickness is 1.0 to 2.0 μm.

56は絶縁膜であり、多結晶シリコンの埋込み等で形成
される。57はコレクタウオール部となる、高濃度n型
層で、コレクタ電極の抵抗性を良くするために形成され
る。58はp型層でpnp )ランジスタのコレクタと
なり、イオン注入法により形成される。59はn型層で
、p型層58内に形成され、pnpのベースとなる。6
0,61,62はそれぞれnpnのベース及びpnpの
エミッタ及びコレクタコンタクト部となり、p型ボロン
が注入形成される。63.64はそれぞれnpnトラン
ジスタのエミッタ及びpnpトランジスタのベースコン
タクト部となり、砒素等がイオン注入される。65は電
極としてのAl配線である。第4図の実施例で示したよ
うに、縦型pupを一体化形成したものも、第3図で示
した実施例と同様にp+、p、h+の3層の非選択性を
持たない一様な基板からプロセス工程が始まるのは同様
である。
Reference numeral 56 denotes an insulating film, which is formed by burying polycrystalline silicon or the like. Reference numeral 57 denotes a highly doped n-type layer serving as a collector all portion, which is formed to improve the resistance of the collector electrode. A p-type layer 58 serves as the collector of the pnp transistor, and is formed by ion implantation. Reference numeral 59 denotes an n-type layer, which is formed within the p-type layer 58 and serves as a pnp base. 6
0, 61, and 62 become the npn base and pnp emitter and collector contact portions, respectively, into which p-type boron is implanted. 63 and 64 become the emitter of the npn transistor and the base contact of the pnp transistor, respectively, into which arsenic or the like is ion-implanted. 65 is an Al wiring as an electrode. As shown in the embodiment shown in FIG. 4, a vertical pup formed integrally also has a structure that does not have the non-selectivity of the three layers p+, p, and h+, similar to the embodiment shown in FIG. Similarly, the process steps begin with a similar substrate.

この第4図で示した例においても、第1の実施例と同様
に、マスク合わせ工程は2枚減少することとなり、また
電気特性的効果も、第1の実施例と同様である。
In the example shown in FIG. 4, as in the first embodiment, the number of masks required in the mask alignment process is reduced by two, and the electrical characteristic effects are also the same as in the first embodiment.

第5図に本発明の第3の実施例を示す。第5図において
、7oは、高濃度p型基板でありその上部に低濃度のn
型層71をまたその上部に高濃度のn型層72が、最後
に低濃度のn型層73が積み重ねられており、これらの
層は、シリコンウェハー全域に非選択的に均一に形成さ
れている。この構造は先に述べた第3図(春に相当する
シリコン基板で、第3図の工程(壽以下の工程は第5図
のものにおいても全く同様である。第3図(A)の実施
例との相異は、第5図においては低濃度層71がn型で
あることである。
FIG. 5 shows a third embodiment of the present invention. In FIG. 5, 7o is a highly doped p-type substrate with a low doped n-type substrate on top of it.
A high concentration n-type layer 72 and a low concentration n-type layer 73 are stacked on top of the mold layer 71, and these layers are formed non-selectively and uniformly over the entire silicon wafer. There is. This structure is a silicon substrate corresponding to the silicon substrate shown in FIG. 3 (spring) described earlier, and the steps shown in FIG. The difference from the example is that the low concentration layer 71 in FIG. 5 is of n-type.

特にこの層71の役割は、p型の基板70とn型の高濃
度のn型層72とを接触させないことと、pn接合の空
乏層の広がる領域となり、耐圧を持たせるためであるた
め、p型であってもn型であっても本質的に変わらない
。そのためN71をn型にするかp型にするかは、エピ
タキシャルの容易さ等で判断すればよい。
In particular, the role of this layer 71 is to prevent the p-type substrate 70 and the n-type high concentration n-type layer 72 from coming into contact with each other, and to serve as a region where the depletion layer of the pn junction spreads to provide a breakdown voltage. There is essentially no difference whether it is p-type or n-type. Therefore, whether to make N71 an n-type or a p-type can be determined based on ease of epitaxial formation, etc.

発明の効果 本発明は次の様な特長を持つ。すなわち、(1)従来は
チャネル防止層と埋込み層とが近接しているために発生
した耐圧劣化を縦方向に分離することにより、面積を大
きくすることなく耐圧劣化を防ぎ、またその濃度も従来
より高くすることが可能となり素子特性を向上させた。
Effects of the Invention The present invention has the following features. In other words, (1) By vertically separating the breakdown voltage deterioration that conventionally occurred due to the close proximity of the channel prevention layer and the buried layer, the breakdown voltage deterioration can be prevented without increasing the area, and the concentration can be reduced to the same level as before. This makes it possible to increase the height even further, improving device characteristics.

(2)素子の下部全面に高濃度n型領域が設置されない
ことにより生じる寄生効果たとえば寄生pnpのhFE
  を著しるしく減少させた。
(2) Parasitic effects caused by not providing a high concentration n-type region over the entire lower part of the device, such as parasitic pnp hFE
significantly decreased.

(3)  プロセス工程でのマスク枚数を従来に比し2
枚減少させた。
(3) The number of masks in the process has been increased by 2 compared to the conventional method.
Reduced number of copies.

(→ プロセス工程でのマスク合わせの精度が厳しい部
分を、著しるしく少なくした。
(→ We have significantly reduced the number of parts in the process where the precision of mask alignment is critical.

(鴫 高抵抗基板を使用しているため、熱抵抗を下げる
ことが可能となり、熱放散を容易にした。
(Tsuji) Because a high-resistance board is used, it is possible to lower thermal resistance and facilitate heat dissipation.

以上述べて来た効果により、生産工程の著しるしい改善
が可能となり、工業上大きい利益をもたらした。
The effects described above have made it possible to significantly improve the production process, resulting in great industrial benefits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(八〜σ)は従来のn’pn)ランジスタと横型
pnp)ランジスタを一体化したプロセス工程図、第2
図(P−) 、 (B)は従来のnpn )ランジスタ
と縦型pnp)ランジスタを一体化したプロセス断面図
、第3図へ)〜(1″)は本発明の第1の実施例に係る
横型pnpとnpn)ランジスタを一体化したプロセス
工程図、第4図に)、■)は本発明の第2の実施例に係
る縦型pnpとnpn)ランジスタを一体化したプロセ
ス断面図、第5図は本発明の第3の実施例に係る基板の
構造断面図である。 31.51.70・・印・高濃度n型、拡散層、34゜
55.73・・・・・・低濃度n型層、71・旧・・低
濃度n型層。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第1
図 第1図 第1図 ? 第2図 第3図 第3図
Figure 1 (8 to σ) is a process diagram of integrating a conventional n'pn) transistor and a horizontal pnp) transistor;
Figures (P-) and (B) are cross-sectional views of a process in which a conventional npn transistor and a vertical pnp transistor are integrated; Figure 4) is a process flow diagram of integrating horizontal PNP and NPN) transistors, and ■) is a process cross-sectional diagram of integrating vertical PNP and NPN) transistors according to the second embodiment of the present invention. The figure is a cross-sectional view of the structure of a substrate according to the third embodiment of the present invention. 31.51.70 mark: high concentration n-type, diffusion layer, 34°55.73...low concentration N-type layer, 71/old...Low concentration n-type layer. Name of agent: Patent attorney Toshio Nakao Haga 1 person No. 1
Figure 1 Figure 1? Figure 2 Figure 3 Figure 3

Claims (1)

【特許請求の範囲】 高濃度の一方導電型の第1の層とこの第1の層上に形成
された低濃度の一方又は他方導電型の第票 2層と、この第2の層上に形成された高濃度の他方導電
型の第3の層と、この第3の層上に形成された低濃度の
他方導電型の第4の層と、この第4の層表面から前記第
1の層に達する素子間分離酸化膜とを備え、前記素子間
分離膜により分離された前記第4の層に所定バイポーラ
素子が形成されていることを特徴とする半導体集積回路
装置。
[Claims] A first layer of one conductivity type with a high concentration, a second layer of one conductivity type with a low concentration formed on this first layer, and a second layer of one conductivity type with a low concentration formed on this first layer; A third layer of the other conductivity type with a high concentration is formed, a fourth layer of the other conductivity type with a low concentration is formed on the third layer, and the first layer is formed from the surface of the fourth layer. What is claimed is: 1. A semiconductor integrated circuit device comprising: an inter-element isolation oxide film reaching the layer, and a predetermined bipolar element is formed in the fourth layer separated by the inter-element isolation film.
JP57233610A 1982-12-29 1982-12-29 Semiconductor integrated circuit device Pending JPS59124153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57233610A JPS59124153A (en) 1982-12-29 1982-12-29 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57233610A JPS59124153A (en) 1982-12-29 1982-12-29 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS59124153A true JPS59124153A (en) 1984-07-18

Family

ID=16957741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57233610A Pending JPS59124153A (en) 1982-12-29 1982-12-29 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS59124153A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127147A (en) * 1984-11-26 1986-06-14 Hitachi Ltd Semiconductor device
JPS61214460A (en) * 1985-03-19 1986-09-24 Mitsubishi Electric Corp Semiconductor integrated circuit device
JPS6387740A (en) * 1986-09-30 1988-04-19 Nec Corp Semiconductor device
US5072274A (en) * 1987-09-14 1991-12-10 Fujitsu Limited Semiconductor integrated circuit having interconnection with improved design flexibility
JP2001135719A (en) * 1999-11-01 2001-05-18 Denso Corp Element isolation structure for semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50278A (en) * 1973-04-25 1975-01-06
JPS5037387A (en) * 1973-08-06 1975-04-08
JPS5687360A (en) * 1979-12-19 1981-07-15 Pioneer Electronic Corp Transistor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50278A (en) * 1973-04-25 1975-01-06
JPS5037387A (en) * 1973-08-06 1975-04-08
JPS5687360A (en) * 1979-12-19 1981-07-15 Pioneer Electronic Corp Transistor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127147A (en) * 1984-11-26 1986-06-14 Hitachi Ltd Semiconductor device
JPS61214460A (en) * 1985-03-19 1986-09-24 Mitsubishi Electric Corp Semiconductor integrated circuit device
JPS6387740A (en) * 1986-09-30 1988-04-19 Nec Corp Semiconductor device
US5072274A (en) * 1987-09-14 1991-12-10 Fujitsu Limited Semiconductor integrated circuit having interconnection with improved design flexibility
JP2001135719A (en) * 1999-11-01 2001-05-18 Denso Corp Element isolation structure for semiconductor device

Similar Documents

Publication Publication Date Title
US4583106A (en) Fabrication methods for high performance lateral bipolar transistors
JPS6080276A (en) Method of forming semiconductor element
US4430793A (en) Method of manufacturing a semiconductor device utilizing selective introduction of a dopant thru a deposited semiconductor contact layer
JPS59124153A (en) Semiconductor integrated circuit device
JPH0513426A (en) Semiconductor device
US5837553A (en) Method of making high voltage, junction isolation semiconductor device having dual conductivity type buried regions
JPH02101747A (en) Semiconductor integrated circuit and manufacture thereof
JPH0465528B2 (en)
JPS5984435A (en) Semiconductor integrated circuit and manufacture thereof
JP3778122B2 (en) Manufacturing method of semiconductor device
JP2864863B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JPH0461346A (en) Manufacture of bipolar semiconductor integrated circuit device
JP2859400B2 (en) Manufacturing method of gate turn-off thyristor
JPS60105265A (en) Manufacture of complementary type semiconductor device
JPS6031107B2 (en) Semiconductor integrated circuit device
JPS60180138A (en) Semiconductor device
JPH0387059A (en) Semiconductor integrated circuit
JPH03222357A (en) Semiconductor device and manufacture thereof
JPH0271526A (en) Semiconductor integrated circuit and manufacture thereof
JPS63205953A (en) Manufacture of semiconductor device
JPH01186669A (en) Manufacture of semiconductor device
JPS63136660A (en) Semiconductor device and manufacture thereof
JPS58212171A (en) Semiconductor device
JPH04364736A (en) Semiconductor integrated circuit device
JPH02234453A (en) Manufacture of semiconductor device