JPS6031107B2 - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS6031107B2
JPS6031107B2 JP56001256A JP125681A JPS6031107B2 JP S6031107 B2 JPS6031107 B2 JP S6031107B2 JP 56001256 A JP56001256 A JP 56001256A JP 125681 A JP125681 A JP 125681A JP S6031107 B2 JPS6031107 B2 JP S6031107B2
Authority
JP
Japan
Prior art keywords
layer
integrated circuit
circuit device
region
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56001256A
Other languages
Japanese (ja)
Other versions
JPS56107572A (en
Inventor
知行 渡部
隆博 岡部
義人 大村
博 古寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56001256A priority Critical patent/JPS6031107B2/en
Publication of JPS56107572A publication Critical patent/JPS56107572A/en
Publication of JPS6031107B2 publication Critical patent/JPS6031107B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0214Particular design considerations for integrated circuits for internal polarisation, e.g. I2L
    • H01L27/0229Particular design considerations for integrated circuits for internal polarisation, e.g. I2L of bipolar structures
    • H01L27/0233Integrated injection logic structures [I2L]
    • H01L27/0244I2L structures integrated in combination with analog structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Bipolar Transistors (AREA)
  • Bipolar Integrated Circuits (AREA)
  • Logic Circuits (AREA)

Description

【発明の詳細な説明】 本発明は逆方向トランジスタを含む半導体集積回路装置
に関し、さらに詳しくは、従来構造のバィボーラ集積回
路と、逆方向トランジスタあるいは集積注入論理回路(
lnにgrateg lnfction山gic,以下
PLと略記する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor integrated circuit device including a reverse direction transistor, and more particularly to a bibolar integrated circuit of conventional structure and a reverse direction transistor or an integrated injection logic circuit (
ln is a great lnfction mountain gic, hereinafter abbreviated as PL.

)とを1個の半導体チップ上に共存せしめた半導体集積
回路装置に関するものである。逆方向トランジスタはマ
ルチコレクタトランジスタとしてPLと従来回路のイン
タフェース等によく使われるようになって来た。
) coexist on one semiconductor chip. Reverse direction transistors have come to be frequently used as multi-collector transistors for interfaces between PL and conventional circuits.

12Lは少数キャリア注入用のィンジェクタとスイッチ
ングトランジスタが組み合わされてなるバィポーラロジ
ックで、高密度に集積でき、かつ低消費電力制御回路が
得られる利点を有するものである。
12L is a bipolar logic device which is a combination of an injector for injecting minority carriers and a switching transistor, and has the advantage of being highly densely integrated and providing a low power consumption control circuit.

この12Lにも逆方向(動作)トランジスタが含まれて
いるので、以下12Lと従来構造の集積回路(以下単に
ICと略記する。)とを1個の半導体チップ上に共存せ
しめた場合を例にとり説明する。従来12Lを用いた種
々の回路網が構成されているが、いずれの回路網におい
ても入出力回路を結合させたり、その他の回路(これら
の回路はIC構成とされる。
Since this 12L also includes a reverse direction (operation) transistor, we will take as an example the case where the 12L and a conventionally structured integrated circuit (hereinafter simply referred to as IC) coexist on one semiconductor chip. explain. Conventionally, various circuit networks using 12L have been constructed, but in any of the circuit networks, input/output circuits are coupled, and other circuits (these circuits are configured as ICs).

)との組合せが必要になる。その場合、装置全体が一つ
の半導体チップ上にICの製造工程によって、同時に構
成されることが望ましい。しかもPLのロジック構成部
分は電力遅延積を小さくし性能向上をはかった構造を、
その他の回路構成部分はコレクタ飽和電圧が低く高周波
特性が優れかつ高耐圧化をはかった構造をとる必要がい
よいよ生じる。本願発明者等は先に上記の要望をすべて
満足させ得る半導体集積回路装置およびその製造方法を
提案している(特願昭49一7636ツ号:特開昭51
−6487号、特顔昭49−135444号:特開昭5
1一61786号)。
) is required in combination with In that case, it is desirable that the entire device be constructed simultaneously on one semiconductor chip through an IC manufacturing process. Moreover, the logic component of the PL has a structure that reduces the power delay product and improves performance.
It is increasingly necessary for other circuit components to have a structure that has a low collector saturation voltage, excellent high frequency characteristics, and high breakdown voltage. The inventors of the present application have previously proposed a semiconductor integrated circuit device and its manufacturing method that can satisfy all of the above demands (Japanese Patent Application No. 7636/1983:
No.-6487, special face No. 49-135444: Japanese Unexamined Patent Publication No. 5
1-61786).

その代表的な構造(要部拡大断面)は第1図に示すとお
りで、1個の半導体基板1の上にICの代表としてのN
PNトランジスタ2と12L3が共存している。以下こ
の構造と動作並に特徴を簡単に説明する。説明を簡単に
するため、各構成部分の半導体の導電性を規定し、基板
1にはP型基板を用いた場合で説明するが、N型基板を
用いるときは上記各構成部分の導電性(PとN)を入れ
かえればよいことは言うまでもないことである。第1図
において4,4′はN十型低抵抗埋込層、5はN型ェピ
タキシャル成長層、6,6′,6″はICと12Lを構
成する領域を区分するために設けたり型(もしくは絶縁
物)分離層である。分離された各領域の所望の位置にP
層7,7′,7″およびN+層8,8′,8″,8川が
設けられている。9は絶縁膜、10乃至16は電極であ
る。
Its typical structure (enlarged cross-section of the main part) is as shown in Figure 1, in which an N as a representative IC is placed on one semiconductor substrate 1.
PN transistors 2 and 12L3 coexist. The structure, operation, and features will be briefly explained below. To simplify the explanation, the conductivity of the semiconductor of each component will be defined and the explanation will be made assuming that a P-type substrate is used as the substrate 1. However, when an N-type substrate is used, the conductivity of each component ( It goes without saying that all you have to do is replace P and N). In FIG. 1, 4 and 4' are N-type low-resistance buried layers, 5 is an N-type epitaxial growth layer, and 6, 6', and 6'' are formed to separate the regions constituting the IC and 12L. (or an insulator) separation layer.Place P at the desired position in each separated region.
Layers 7, 7', 7'' and N+ layers 8, 8', 8'', 8 are provided. 9 is an insulating film, and 10 to 16 are electrodes.

ここで従来装置の構成の異なる特徴的な点は、PLを構
成している分離された領域の前言己N十型低抵抗埋込層
4′の上方(P層7′,7″の下方)部分に低抵抗N型
領域17が設けられていることである。
Here, a characteristic point different from the configuration of the conventional device is that the separated region constituting the PL is located above the N0 type low-resistance buried layer 4' (below the P layers 7' and 7''). A low resistance N-type region 17 is provided in a portion.

分離層6,6′で囲まれた領域に構成されたNPNトラ
ンジスタ2は10がェミッタ電極、11がベース電極、
12がコレクタ電極、4がコレクター抵抗を下げるため
の埋込層として動作する通常のバイポーラNPNトラン
ジスタである。
The NPN transistor 2 configured in a region surrounded by separation layers 6 and 6' has an emitter electrode 10, a base electrode 11,
12 is a collector electrode, and 4 is a normal bipolar NPN transistor which operates as a buried layer for lowering the collector resistance.

分離層6′,6″で囲まれた領域に構成されたPL3は
、13が注入電極で注入電流を印加しP層7′からN層
5を経てP層7″へホールを注入してP層7″の電位を
高め、これによりN層5(ェミッタ電極16)−P層7
″(ベース電極15)−N十層8″(コレクタ電極14
)で構成される縦形の逆動作NPNトランジスタをON
させるように動作する。前記低抵抗N型領域17は上記
PLにおけるP層7′からのホールの注入効率を高め、
かつ逆動作NPNトランジスタのェミッタの不純物濃度
を高くして電流増幅率を改善するために設けられたもの
で(詳細な理由は前記特磯昭49−7636y号:侍関
昭51一6487号参照)、PLの性能向上に大きく貢
献している。
In the PL 3 configured in the area surrounded by the separation layers 6' and 6'', 13 applies an injection current with an injection electrode and injects holes from the P layer 7' to the P layer 7'' via the N layer 5 to generate a P layer. The potential of the layer 7'' is increased, thereby the N layer 5 (emitter electrode 16)-P layer 7
″(base electrode 15)-N ten layers 8″(collector electrode 14
) turns on the vertical reverse-acting NPN transistor.
It works like that. The low resistance N-type region 17 increases the hole injection efficiency from the P layer 7' in the PL,
Also, it was provided to improve the current amplification factor by increasing the impurity concentration of the emitter of the reverse operation NPN transistor (for details, see the above-mentioned Tokuiso Sho 49-7636y: Samurai Seki Sho 51-6487). , has greatly contributed to improving the performance of PL.

一方、この低抵抗N型領域17は分離層で絶縁分離され
た領域に構成されるICにとっては耐圧を維持したり、
高出力動作回路等を形成する上にさまたげになる無用の
ものである。本願発明は、低抵抗N型領域の構成を更に
改善し、第1図に示したようなICと12Lを1個の半
導体チップ上に共存せしめた半導体集積回路装置の簡易
化した新規な構造を提供するものである。以下本発明の
半導体集積回路装置を実施例によって詳しく説明する。
実施例 1 第2図a〜fは、本発明の半導体集積回路装置を、製造
工程順に説明する図で、主要な工程の段階を順を追って
示している。
On the other hand, this low-resistance N-type region 17 maintains a breakdown voltage for an IC configured as a region insulated by a separation layer.
This is an unnecessary thing that obstructs the formation of a high-output operation circuit or the like. The present invention further improves the structure of the low-resistance N-type region and provides a new and simplified structure of a semiconductor integrated circuit device in which an IC and 12L as shown in FIG. 1 coexist on one semiconductor chip. This is what we provide. EMBODIMENT OF THE INVENTION The semiconductor integrated circuit device of the present invention will be explained in detail below using examples.
Embodiment 1 FIGS. 2a to 2f are diagrams illustrating the semiconductor integrated circuit device of the present invention in the order of the manufacturing process, and show the main process steps in order.

なおfは完成図であり、第1図に対応するものである。
また図において、第1図と同一符号のものは同一または
均等部分を示すものとして説明は省略する。第1段階の
工程〔第2図a参照〕:まず厚さ100〜600山mの
P型半導体基板1上に熱形成法もしくはCVD(Che
micalVapourDeposition)法等の
適当な方法で薄い二酸化けし、素層、ちつ素けい素層、
酸化アルミニウム層など所望の特性を有する絶縁物マス
クを被着し、上記半導体基板表面上の所望の所にN+埋
込層4をアンチモンまたはヒ素の不純物拡散によって2
〜10仏mの深さに形成する。
Note that f is a completed drawing and corresponds to FIG.
Further, in the figures, the same reference numerals as in FIG. 1 indicate the same or equivalent parts, and the explanation will be omitted. First stage process [see Figure 2a]: First, a P-type semiconductor substrate 1 with a thickness of 100 to 600 m is formed using a thermal forming method or CVD (Chemistry method).
A thin poppy dioxide layer, a bare silicon layer, a thin silicon layer,
An insulating mask having desired characteristics such as an aluminum oxide layer is deposited, and an N+ buried layer 4 is formed at a desired location on the surface of the semiconductor substrate by diffusion of an impurity of antimony or arsenic.
Form to a depth of ~10 meters.

第2段階の工程〔第2図b参照〕:上記構成体上の12
Lを形成する部分に絶縁物マスクを介してアンチモンま
たはヒ素より拡散速度の大きいN形不純物であるリンを
所望時間の堆積し、およそ900〜1300qoの温度
で埋込拡散してシート抵抗値psが10〜2000/で
拡散深さが1〜1叫mのN十埋込層42′を形成する。
Second stage process [see Figure 2b]: 12 on the above structure
Phosphorus, which is an N-type impurity with a higher diffusion rate than antimony or arsenic, is deposited on the portion where L is to be formed for a desired period of time through an insulating mask, and then buried and diffused at a temperature of about 900 to 1300 qo to increase the sheet resistance ps. 10 to 2,000 m/m and a diffusion depth of 1 to 1 m to form an N0 buried layer 42'.

第3段階の工程〔第2図c参照〕:絶縁物マスクを取に
去った後、0.1〜100一弧のN型ェピタキシャル成
長層5を厚さ2〜1秋m形成する。この形成時にN+埋
込層4,42′の不純物は0.5〜2.0必m程度ェピ
タキシャル成長層の内部に拡散する。なお埋込層42′
は、以下の説明及び図面では4′で表わす。第4段階の
工程〔第2図d参照〕:上記N型ェピタキシャル成長層
5の所望の所に絶縁膜をマスクとして付着して、およそ
900〜1300qoでP型不純物であるボロンの拡散
を行ないr型分離層6,6′,6″を形成する。
Third stage process [see FIG. 2c]: After removing the insulating mask, an N-type epitaxial growth layer 5 of 0.1 to 100 m is formed to a thickness of 2 to 1 m. During this formation, impurities in the N+ buried layers 4, 42' diffuse into the epitaxially grown layer by about 0.5 to 2.0 m. Note that the buried layer 42'
is designated 4' in the following description and drawings. Fourth stage process [see Fig. 2 d]: An insulating film is deposited at a desired location of the N-type epitaxial growth layer 5 as a mask, and boron, which is a P-type impurity, is diffused at approximately 900 to 1300 qo. Form r-type separation layers 6, 6', 6''.

なおこの分離層の形成は、上記マスクを使用しN型ェピ
タキシャル層5の厚みの半分程度の深さにエッチングで
穴明けし、適当な方法で酸化を行ない絶縁物を形成する
いわゆるLOCOS(Local○xi船上ionof
Silicon)技術を用いて行なってもよい。
The separation layer is formed by etching a hole to a depth of about half the thickness of the N-type epitaxial layer 5 using the above-mentioned mask, and oxidizing it using an appropriate method to form an insulator. ○xi onboard ionof
It may also be performed using Silicon technology.

次に所望の所に絶縁物マスクを介して900〜1300
00でP型不純物であるボロンの拡散を行ないP層7,
7′,7″を0.6〜4.0舷mの厚さに形成する。
Next, apply 900~1300 to the desired location through an insulator mask.
00, the P-type impurity boron is diffused to form the P layer 7,
7' and 7'' are formed to a thickness of 0.6 to 4.0 m.

第5段階の工程〔第2図e参照〕:再び絶縁膜9をマス
クとしてN型不純物拡散を行ないN十層8,8′,8″
,8′′′を0.3〜3〆mの厚さに形成する。
Fifth stage process [see Figure 2 e]: Using the insulating film 9 as a mask, N-type impurity diffusion is performed again to form N10 layers 8, 8', 8''.
, 8''' to a thickness of 0.3 to 3 m.

以上第4および第5段階の工程で、あらかじめ設けられ
たN+埋込層4,4′(42′)が拡散(上方へのわき
上り)し、FLを形成する部分(分離層6′,6″で囲
まれた領域)ではリンの拡散速度が大きいために埋込層
4′の厚さが埋込層4の厚さより厚く形成され、P層7
′,7″の底面と接するようになる。
In the above fourth and fifth steps, the N+ buried layers 4, 4'(42') provided in advance are diffused (rising upward), and the portions forming the FL (separation layers 6', 6 ''), the diffusion rate of phosphorus is high, so the buried layer 4' is formed thicker than the buried layer 4, and the P layer 7
It comes into contact with the bottom surface of ',7''.

一方ICを形成する部分(分離層6,6′で囲まれた領
域)ではN十埋込層4がアンチモンまたはヒ素のみで形
成されている為拡散速度が遅くほとんど広がらない為に
P層7の底面とは広い間隔がそのままに保たれる。第6
段階の工程〔第2図f参照〕:所望の所に穴明けされた
厚さ0.5〜10一mの絶縁膜9を介して電極10〜1
6等をアルミニウムの蒸着で0.5〜3.呼mの厚さに
形成する。
On the other hand, in the part where the IC is formed (the area surrounded by the separation layers 6 and 6'), the N buried layer 4 is formed only of antimony or arsenic, so the diffusion rate is slow and it hardly spreads, so the P layer 7 is A wide gap from the bottom is maintained. 6th
Step process [see Fig. 2 f]: Electrodes 10 to 1 are inserted through an insulating film 9 with a thickness of 0.5 to 10 m with holes drilled at desired locations.
6 etc. by evaporation of aluminum to 0.5~3. Form to a nominal thickness of m.

なお図が煩雑になるのでN十埋込層やP+型分離層等の
接続電極やICとPLを相互接続する配線は図示を省略
した。以上説明した工程によりICと性能の向上が図ら
れた12Lが一つの半導体チップ上に共存して形成され
る。なお、本半導体集積回路装置が仕上がった段階で1
2Lを形成した部分でN十埋込層4′(41′,42′
)とP層7′,7″の底面とが丁度接するのがPLの性
能上最も望ましいので、あらかじめ設けたN十埋込層4
1′,42′の不純物の種類、濃度の選定は重要で、そ
の後の工程でうける熱処理(P十層の拡散段階等でうけ
る)工程等を勘案して決定される。以下他の実施例につ
き順次説明するが、製造工程の流れは前述の第1及び第
2段階の工程を除き上記第1の実施例とほとんど同じで
あり、第2図を流用して工程の異なる部分についてのみ
説明する。
Note that connection electrodes such as the N0 buried layer and the P+ type isolation layer and wiring interconnecting the IC and the PL are omitted to avoid complication of the drawing. Through the steps described above, the IC and 12L with improved performance are formed coexisting on one semiconductor chip. Note that when this semiconductor integrated circuit device is completed, 1
In the part where 2L is formed, the N0 buried layer 4'(41',42'
) and the bottom surfaces of the P layers 7', 7'' are most desirable in terms of PL performance.
The selection of the type and concentration of impurities 1' and 42' is important, and is determined by taking into consideration the heat treatment process to be performed in the subsequent process (such as in the diffusion stage of the P ten layer), etc. The other embodiments will be explained in sequence below, but the flow of the manufacturing process is almost the same as the first embodiment above, except for the first and second steps mentioned above, and the different steps are shown in FIG. 2. Only parts will be explained.

なおその際同図b,cにおける42′は4と不純物の種
類または濃度の異なる層を表わしているものとする。実
施例 2 絶縁物マスクを用いてP型半導体基板1の表面上のIC
を形成する部分に選択的にリン、アンチモン、ヒ素など
の拡散不純物を堆積する。
In this case, it is assumed that 42' in b and c of the same figure represents a layer having a different type or concentration of impurities from 4. Example 2 IC on the surface of P-type semiconductor substrate 1 using an insulator mask
Diffusion impurities such as phosphorus, antimony, and arsenic are selectively deposited in the areas where the particles are formed.

ついで再び絶縁物マスクを用いて前記半導体基板表面上
の13Lを形成する部分に、前記IC部分に対するより
高い濃度の前記拡散不純物を所定の時間堆積する。この
ようにしてN+埋込層4,42′の不純物濃度をあらか
じめ異ならしめて形成しておくことにより、素子完成時
点での12L形成部分のN+埋込層4′のわき上りをI
C形成部分のN+埋込層4より大きくすることができる
。第3段階以下の工程は全て第1の実施例と同一である
Then, using an insulating mask again, the diffusion impurity is deposited for a predetermined time on a portion of the surface of the semiconductor substrate where 13L is to be formed, at a higher concentration than that of the IC portion. By forming the N+ buried layers 4 and 42' with different impurity concentrations in advance in this way, the rise of the N+ buried layer 4' in the 12L formation portion at the time of device completion can be reduced by I.
It can be made larger than the N+ buried layer 4 in the C forming portion. All the steps from the third stage onwards are the same as in the first embodiment.

実施例 3絶縁物マスクを用いてP型半導体基板1の表
面上のICを形成する部分にアンチモン、ヒ素、リンな
どの埋込拡散不純物を堆積し、ついで所望の時間だけ引
きのばし拡散を行ない、埋込層4の濃度を下げておく。
Example 3 Embedded diffusion impurities such as antimony, arsenic, and phosphorus are deposited on the surface of the P-type semiconductor substrate 1 where an IC is to be formed using an insulating mask, and then stretched and diffused for a desired time. The concentration of the buried layer 4 is lowered.

つぎに再び絶縁物マスクを用いて、P型半導体基板1の
表面上のFLを形成する部分に、上記と同じ濃度の埋込
拡散用不純物を堆積し拡散する。このようにすると、N
+埋込層4と42′の不純物濃度をあらかじめ異ならし
めて形成しておくことができ、後の工程でのわき上りに
差をつけることができる。第3段階以下の工程は全て第
1の実施例と同一である。
Next, using the insulating mask again, a buried diffusion impurity having the same concentration as above is deposited and diffused in the portion on the surface of the P-type semiconductor substrate 1 where the FL is to be formed. In this way, N
+ The buried layers 4 and 42' can be formed with different impurity concentrations in advance, so that the rise in the subsequent steps can be differentiated. All the steps from the third stage onwards are the same as in the first embodiment.

実施例 4第3図は第1図に示したICと12Lを1個
の半導体チップ上に共存せしめた半導体集積回路装置の
一部構造を変えた場合の断面を示すものである。
Embodiment 4 FIG. 3 shows a cross section of a semiconductor integrated circuit device in which the IC shown in FIG. 1 and 12L coexist on one semiconductor chip, with a partial structure changed.

構造上の違いは、N十埋込層4や4′の上またはその周
辺を取囲む所望の箇所にN十層18を設けたことである
。これはN+カラ−と呼ばれるもので、寄生トランジス
タの発生を防止したり、縦トランジスタのェミッタ抵抗
を減少させ12Lの電流増幅率8が低下するのを防止す
る効果を有するものである。またIC内のNPNトラン
ジスタではコレクタ抵抗を減少させる効果を有するもの
である。このN+カラーはN+埋込層に接する深さにす
るのが一番電流増幅率6が大きくなるがェピタキシャル
層5が厚いときには深くすると、横幅も広がり面積をと
るので実用的でなく一般には適当な深さで止められる。
以下、この構造を有する半導体集積回路装置の製造方法
を説明する。
The structural difference is that the N0 layer 18 is provided at a desired location on or surrounding the N0 buried layer 4 or 4'. This is called an N+ collar, and has the effect of preventing the generation of parasitic transistors, reducing the emitter resistance of the vertical transistor, and preventing the current amplification factor 8 of 12L from decreasing. Furthermore, the NPN transistor in the IC has the effect of reducing the collector resistance. The current amplification factor 6 will be highest if this N+ collar is made at a depth that is in contact with the N+ buried layer, but if the epitaxial layer 5 is thick, making it deeper increases the width and takes up more area, so it is not practical and generally not suitable. It can be stopped at a certain depth.
A method of manufacturing a semiconductor integrated circuit device having this structure will be described below.

第3段階の工程までは前述の実施例のいずれかを用いて
もよく、第4段階の工程のP+型分離層6,6′,6″
形成後N十埋込層4や4′の上に接触するような深いN
+層18を設ける。そのあと前述の実施例と同様にP型
不純物拡散を行なってP層7,7′,7″を形成する。
第5段階以下の工程は全て第1の実施例と同様に行なわ
れ半導体集積回路装置が完成する。ところで、以上説明
した各実施例において、半導体集積回路装置完成時にN
十埋込層4,4′とP層7′,7″とが接するように調
整する必要がある。これは次の3つの方法がある。その
第1の方法は、前記第1、第2段階の工程におけるN型
不純物の堆積時間あるいは温度を変えて、あらかじめ設
ける埋込拡散層のシート抵抗を制御しておき、後の工程
におけるN+埋込層のわき上り量を所望の値にする。
Any of the embodiments described above may be used up to the third stage process, and the P+ type separation layers 6, 6', 6'' of the fourth stage process may be used.
After formation, a deep N
+ layer 18 is provided. Thereafter, P-type impurity diffusion is performed in the same manner as in the previous embodiment to form P layers 7, 7', 7''.
All the steps from the fifth stage onwards are performed in the same manner as in the first embodiment, and the semiconductor integrated circuit device is completed. By the way, in each of the embodiments described above, when the semiconductor integrated circuit device is completed, N
It is necessary to adjust so that the buried layers 4, 4' and the P layers 7', 7'' are in contact with each other. There are three methods for this. The first method is to The sheet resistance of the buried diffusion layer provided in advance is controlled by changing the deposition time or temperature of the N-type impurity in the step process, and the rise amount of the N+ buried layer in the subsequent process is set to a desired value.

第2の方法は、前記第3段階の工程におけるェピタキシ
ャル成長層5の形成厚さを制御し、PLの形成完了時に
P層7′,7″の深さが丁度N十埋込層4′(42′)
のわき上りと接するようにする。
In the second method, the thickness of the epitaxially grown layer 5 in the third step is controlled so that the depth of the P layers 7', 7'' is just N0 when the formation of the PL is completed. (42')
Make sure that it is in contact with the rise of your armpits.

第3の方法は、前記第4段階の工程におけるP+型(も
しくは絶縁物)分離層形成時の拡散(もしくは酸化)時
間を変えるものである。
The third method is to change the diffusion (or oxidation) time during the formation of the P+ type (or insulator) isolation layer in the fourth step.

この方法は温度を例えば1200ooにして一定に保ち
時間を制御するもので、分離層の仕上り深さをあまり問
題にしないのでわき上り量の可変範囲が広くとれる利点
がある。以上説明した製造方法により、ICと12Lが
一つの半導体チップ上に共存した半導体集積回路装置を
作ることができ、その完成時点で13Lを形成した部分
のN+埋込層4′(42′)をP層7′,7″の底面に
近づけることができる。
In this method, the temperature is kept constant at, for example, 1200 oo and the time is controlled, and since the finished depth of the separation layer is not much of an issue, there is an advantage that the amount of swelling can be varied over a wide range. By the manufacturing method explained above, it is possible to manufacture a semiconductor integrated circuit device in which IC and 12L coexist on one semiconductor chip, and when the device is completed, the N+ buried layer 4'(42') where 13L is formed can be made. It can be brought close to the bottom surfaces of the P layers 7', 7''.

そして前述したようにこの両層が丁度接するのが望まし
いのであるが、不純物拡散の制御はかなり微妙なもので
N十埋込層の拡散(上方へのわき上り)が大きくなり過
ぎてP層の底面を多少越える場合もまた拡散が少な過ぎ
てP層の底面と接するに至らない場合も実際上あり得る
が、12Lの性能改善効果の低下はそれ程急激ではなく
、工程のバラッキによる上記わき上り量の変動程度のも
のは充分実用に供し得る。つぎに本発明の効果について
説明する。
As mentioned above, it is desirable for these two layers to be in close contact with each other, but impurity diffusion control is quite delicate, and the diffusion (upward rise) of the N buried layer becomes too large and the P layer In reality, there may be cases where the diffusion exceeds the bottom surface to some extent, or cases where the diffusion is so small that it does not come into contact with the bottom surface of the P layer, but the decline in the performance improvement effect of 12L is not so rapid, and the amount of rise described above due to process variations is likely to occur. A variation of only a certain degree can be put to practical use. Next, the effects of the present invention will be explained.

実施例1〜5の半導体集積回路装置では、12L部分の
N十埋め込み層4′はP層7′および7″の底面に近接
している。この構造によりP層7″が縦トランジスタの
ベース、N十埋め込み層4′が縦トランジスタのェミッ
タになる。したがって、縦トランジスタのベース7″の
不純物濃度に対してェミツタ4′の不純物濃度の方が高
いか、または同程度とすることができる。このためベー
ス7″からェミッタ4′へ注入されるホールが減少して
ベース電流が減少するので縦トランジスタのhF8が増
加する効果がある。つぎに、同様の理由によりィンジヱ
クタ7′から4′へ流れるホールも減少し、7′→5→
7″と流れるホールの割合が増大するため注入効率が向
上する効果がある。
In the semiconductor integrated circuit devices of Examples 1 to 5, the N+ buried layer 4' in the 12L portion is close to the bottom surfaces of the P layers 7' and 7''. With this structure, the P layer 7'' serves as the base of the vertical transistor, The N+ buried layer 4' becomes the emitter of the vertical transistor. Therefore, the impurity concentration of the emitter 4' can be higher than or about the same as the impurity concentration of the base 7'' of the vertical transistor.For this reason, holes injected from the base 7'' to the emitter 4' Since the base current decreases, there is an effect of increasing hF8 of the vertical transistor. Next, for the same reason, the number of holes flowing from injector 7' to 4' decreases, and 7'→5→
7'', which increases the proportion of flowing holes, which has the effect of improving injection efficiency.

また、実施例4ではN十層18があるために、7′→5
→6′などの間に生じやすい寄生PNPトランジスタの
発生を防止したり、縦トランジスタのェミッタ抵抗を減
少させたりする効果もある。本発明は以上のような特徴
と効果を有するが、これは実施例の伝導型だけでなく、
PNP構造にも全く同様に適用できる。すなわち本明細
書のPとN、P+とN+、ホールと電子、をそれぞれ入
れ替えれば、その場合にも全く同様に成立するものであ
る。以上述べたように本発明によれば、ほとんどの工程
が従来から行なわれているに製造工程となんら異なるも
のでなく、一般に広く用いられている技術の組み合せで
容易に特性の優れたICとPLや逆方向トランジスタを
一つの半導体チップ上に共存せしめることができ、1チ
ップで多機能の大規模集積回路装置が得られる。
In addition, in Example 4, since there is the N10 layer 18, 7'→5
This also has the effect of preventing the generation of parasitic PNP transistors that tend to occur between →6' and the like, and of reducing the emitter resistance of vertical transistors. The present invention has the above-mentioned characteristics and effects, but this is not limited to the conduction type of the embodiment.
It is equally applicable to PNP structures. That is, if P and N, P+ and N+, and holes and electrons in this specification are replaced, the same holds true in that case as well. As described above, according to the present invention, most of the processes are no different from conventional manufacturing processes, and it is possible to easily produce ICs and PLs with excellent characteristics by combining widely used techniques. A multifunctional large-scale integrated circuit device can be obtained by making it possible to coexist a reverse direction transistor on a single semiconductor chip.

しかも製造工程数の増加も僅かであり、歩留り低下もほ
とんど問題にならず、工業上得られる利益は極めて大き
い。
In addition, the increase in the number of manufacturing steps is small, the decrease in yield is hardly a problem, and the industrial benefits are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第3図は、それぞ本発明の半導体集積回路装
置の構造を例示した要部拡大断面図、第2図a〜fは本
発明の半導体集積回路装置の主要な製造工程の流れを説
明する図である。 1・・・・・・半導体基板、2・・・・・・IC(NP
Nトランジスタ)、3……12L、4,4′(42′)
……N+埋込層、5・・・・・・ェピタキシャル成長層
、6,6′,6″・・・・・・P十型(絶縁物)分離層
、7,7′,7″・・・・・・P層、8,8′,8″,
8川N+層,9・・…・絶縁膜、10〜16・・・・・
・電極、17・・・低抵抗N型領域、18……N+層(
N+カラー)。 沙「図 》3図 ☆2図
1 and 3 are enlarged cross-sectional views of main parts illustrating the structure of the semiconductor integrated circuit device of the present invention, and FIGS. 2 a to 2 f are flowcharts of the main manufacturing process of the semiconductor integrated circuit device of the present invention. FIG. 1... Semiconductor substrate, 2... IC (NP
N transistor), 3...12L, 4, 4'(42')
...N+ buried layer, 5...Epitaxial growth layer, 6, 6', 6"...P ten type (insulator) separation layer, 7, 7', 7". ...P layer, 8, 8', 8'',
8 River N+ layer, 9... Insulating film, 10 to 16...
・Electrode, 17...Low resistance N-type region, 18...N+ layer (
N+color). Sha "Figure" 3 figures ☆ 2 figures

Claims (1)

【特許請求の範囲】[Claims] 1 第1導電型半導体基板上に基板と反対導電型の第2
導電型半導体層が設けられ、該第2導電型半導体層を複
数の島領域に分離する第1導電型の不純物導入領域また
は絶縁物領域が設けられ、前記複数の島領域のうちの第
1の島領域には逆方向トランジスタあるいは集積注入論
理回路を、第2の島領域にはバイポーラトランジスタが
設けられてなり、前記第1、第2の島領域とも、前記第
1導電型半導体基板と前記第2導電型半導体層との境界
領域に、第2導電型の埋込層が設けられてなる半導体集
積回路装置において、前記第1の島領域に設けられた埋
込層は、前記境界領域より前記第2導電型半導体層内に
向つて減少する不純物濃度分布を有するとともに、前記
第2の島領域に設けられた埋込層よりも、前記第2導電
型半導体層内に深く延在し、上記第1の島領域に設けら
れたトランジスタのベース領域と接触して設けられてな
ることを特徴とする半導体集積回路装置。
1 A second semiconductor substrate of a conductivity type opposite to that of the substrate is placed on a first conductivity type semiconductor substrate.
A conductive type semiconductor layer is provided, a first conductive type impurity-introduced region or an insulator region is provided that separates the second conductive type semiconductor layer into a plurality of island regions, and a first conductive type semiconductor layer is provided. The island region is provided with a reverse direction transistor or an integrated injection logic circuit, and the second island region is provided with a bipolar transistor. In a semiconductor integrated circuit device in which a buried layer of a second conductivity type is provided in a boundary region with a second conductivity type semiconductor layer, the buried layer provided in the first island region The second conductive type semiconductor layer has an impurity concentration distribution that decreases toward the inside of the second conductive type semiconductor layer, and extends deeper into the second conductive type semiconductor layer than the buried layer provided in the second island region. A semiconductor integrated circuit device, characterized in that the semiconductor integrated circuit device is provided in contact with a base region of a transistor provided in a first island region.
JP56001256A 1981-01-09 1981-01-09 Semiconductor integrated circuit device Expired JPS6031107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56001256A JPS6031107B2 (en) 1981-01-09 1981-01-09 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56001256A JPS6031107B2 (en) 1981-01-09 1981-01-09 Semiconductor integrated circuit device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP50041337A Division JPS51116687A (en) 1975-04-07 1975-04-07 Semiconductor integrated circuit device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP58220628A Division JPS59130458A (en) 1983-11-25 1983-11-25 Semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPS56107572A JPS56107572A (en) 1981-08-26
JPS6031107B2 true JPS6031107B2 (en) 1985-07-20

Family

ID=11496372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56001256A Expired JPS6031107B2 (en) 1981-01-09 1981-01-09 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS6031107B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59130458A (en) * 1983-11-25 1984-07-27 Hitachi Ltd Semiconductor integrated circuit
JPS6425566A (en) * 1987-07-22 1989-01-27 Tokai Rika Co Ltd Manufacture of semiconductor integrated circuit
JPH04226002A (en) * 1991-04-30 1992-08-14 Matsushita Electric Ind Co Ltd Fine pitch independent resistance circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5161786A (en) * 1974-11-27 1976-05-28 Hitachi Ltd
JPS51107779A (en) * 1975-02-19 1976-09-24 Siemens Ag

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5161786A (en) * 1974-11-27 1976-05-28 Hitachi Ltd
JPS51107779A (en) * 1975-02-19 1976-09-24 Siemens Ag

Also Published As

Publication number Publication date
JPS56107572A (en) 1981-08-26

Similar Documents

Publication Publication Date Title
US4051506A (en) Complementary semiconductor device
JPS60194558A (en) Manufacture of semiconductor device
JPH0123949B2 (en)
JPH0145224B2 (en)
JPS5978555A (en) Semiconductor device
JPS6031107B2 (en) Semiconductor integrated circuit device
JPS59161867A (en) Semiconductor device
JPS6048111B2 (en) Non-volatile semiconductor memory device
JPS59130458A (en) Semiconductor integrated circuit
EP0036620B1 (en) Semiconductor device and method for fabricating the same
GB2057760A (en) Integrated circuit device and method of making the same
JPS59124153A (en) Semiconductor integrated circuit device
JPS61134036A (en) Manufacture of semiconductor ic
JPS60123062A (en) Manufacture of semiconductor integrated circuit
KR900008818B1 (en) Manufacture method of a particle in bipolar integrated circuit
JPS58225665A (en) Manufacture of semiconductor integrated circuit device
JPS60180138A (en) Semiconductor device
JPH05109745A (en) Semiconductor device
JPH01223740A (en) Manufacture of semiconductor integrated circuit
JPH038582B2 (en)
JPS6356956A (en) Manufacture of semiconductor device
JPH05109748A (en) Semiconductor device and manufacture of the same
JPH0239861B2 (en)
JPH0982722A (en) Manufacture of transistor
JPS62230030A (en) Manufacture of semiconductor device