JPS61157659A - Rare earth magnet - Google Patents

Rare earth magnet

Info

Publication number
JPS61157659A
JPS61157659A JP59274870A JP27487084A JPS61157659A JP S61157659 A JPS61157659 A JP S61157659A JP 59274870 A JP59274870 A JP 59274870A JP 27487084 A JP27487084 A JP 27487084A JP S61157659 A JPS61157659 A JP S61157659A
Authority
JP
Japan
Prior art keywords
rare earth
permanent magnet
temp
magnetic
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59274870A
Other languages
Japanese (ja)
Inventor
Takafumi Sato
隆文 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP59274870A priority Critical patent/JPS61157659A/en
Publication of JPS61157659A publication Critical patent/JPS61157659A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve temp. characteristic of magnet without deteriorating magnetic characteristic, by displacing a part of Nd and a part of Fe by Dy and Co respectively in Nd-Fe-B permanent magnet. CONSTITUTION:Conventional Nd-Fe-B permanent magnet is superior in magnetic characteristic such as saturation flux density, coercive force, max. energy product, but has low Curier point and extremely large irrevercible variation ratio, thus is inferior than the other permanent magnet in relation to temp. characteristic. A part of Nd is displaced by Dy of the same rare earth having large anisotropic magnetic field, for improving coercive force dominating irreversible variation ratio for covering the fault. Further a part of Fe is displaced by Co, for preventing deterioration of sintering property and decrease of density due to the displacement of Dy, and improving Curie point and irreversible temp. variation rate, to develop rare earth permanent magnet having compsn. exhibited by a formula (1), superior in both of magnetic and temp. characteristics.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はNd−Fe−B系永久磁石を代表とする希土類
金属(R)と遷移金属(T)とからなる磁石に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnet made of a rare earth metal (R) and a transition metal (T), typified by a Nd-Fe-B permanent magnet.

〔従来技術およびその問題点〕[Prior art and its problems]

近年、Nd−Fe−B系磁石に関する報告がなされてい
るが、Nd−Fe−B5元系合金は、飽和磁束密度βr
が12.5〜12.8 (kG) 、保持力r)(cが
9.0〜10.0(koe) 、最大エネルギー積(B
−H)mが35.0〜38.0(MGOe)と他の磁石
よシもはるかにすぐれた磁気特性を有している反面、キ
ューリ一点Tcが310℃と他の永久磁石に比べ低く、
又可逆温度変化率(βrの温度係数)が−0,126%
/℃とSm−Co系磁石とフェライト磁石の中間的位置
を占め、さらに不可逆変化率β1も極めて大きく温度特
性に関しては他の磁石に劣る欠点があった。
In recent years, reports have been made regarding Nd-Fe-B magnets, and Nd-Fe-B 5-element alloys have a saturation magnetic flux density βr.
is 12.5 to 12.8 (kG), holding force r) (c is 9.0 to 10.0 (koe), maximum energy product (B
-H) m is 35.0 to 38.0 (MGOe), which is far superior to other magnets, but on the other hand, the Curie point Tc is 310°C, which is lower than other permanent magnets.
Also, the reversible temperature change rate (temperature coefficient of βr) is -0,126%
/°C, which is intermediate between Sm-Co magnets and ferrite magnets, and the rate of irreversible change β1 is also extremely large, making it inferior to other magnets in terms of temperature characteristics.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記のような点に鑑み、磁気特性を劣
化させることなぐ、これらの温度特性を改良した希土類
磁石を得ようとするものである。
In view of the above points, an object of the present invention is to obtain a rare earth magnet whose temperature characteristics are improved without deteriorating the magnetic characteristics.

〔発明の構成〕[Structure of the invention]

本発明は上記の目的を達成するために、不可逆変化率β
iを左右するHaを向上させるためにNdの−部を異方
性磁場HAの大きいDyで置換え、更にこのDy置換に
よシ生じる焼結性の悪化と密度の減少の防止とキー−リ
一点と可逆温度変化率β、の向上とを目的としてFeの
一部なCoで置換するようにしたものである。
In order to achieve the above object, the present invention has an irreversible change rate β
In order to improve Ha, which affects i, the negative part of Nd is replaced with Dy, which has a large anisotropic magnetic field HA, and one key point is to prevent deterioration of sinterability and decrease in density caused by this Dy substitution. In order to improve the reversible temperature change rate β, a part of Fe is replaced with Co.

すなわち本発明によれば、材料の組成式が(Nd1−X
DyX)z(Fe1−YcoY)wBl−2−wであっ
てXがO〜0.5゜YがO〜0.512が0.1〜O3
2およびWがo、75〜085であシ、これを粉末冶金
法に製造した希土類磁石が得られる。
That is, according to the present invention, the compositional formula of the material is (Nd1-X
DyX)z(Fe1-YcoY)wBl-2-w where X is O~0.5°Y is O~0.512 is 0.1~O3
2 and W are o, 75 to 085, and a rare earth magnet produced by powder metallurgy is obtained.

本発明では上記組成の合金で各添字XI Yl zIW
の範囲には以下に示すような理由よシ最適条件が規定さ
れている。
In the present invention, each subscript XI Yl zIW in the alloy having the above composition
Optimal conditions are defined in the range for the following reasons.

希土類の成分を(Nd1−xDyx)、o≦X≦0.5
としたのは、 Dyを0.5以上置換するとHCは増加
するがβrが極端に低下してしまい、最適な・磁気特性
が得ることが出来ず、又焼結性が劣るからである。
Rare earth component (Nd1-xDyx), o≦X≦0.5
This is because if Dy is replaced by 0.5 or more, HC increases but βr decreases extremely, making it impossible to obtain optimal magnetic properties and resulting in poor sinterability.

次に、 Fe系の成分を(Fe 1yCoy) 、 o
≦Y≦0.5としたのは、Yが05以上になるとβ1と
HCが極端に減少するからである。又、z、w値につい
ては、Wが075〜085の範囲内でZが0.2以上に
なるとHCが大きくなるが逆にβrは減少し、一方0.
1以下になるとβrは増加するが逆にHcが小さくなっ
て。
Next, the Fe-based component is (Fe 1yCoy), o
The reason for setting ≦Y≦0.5 is that when Y becomes 05 or more, β1 and HC decrease extremely. Regarding the z and w values, when W is within the range of 075 to 085 and Z becomes 0.2 or more, HC increases, but conversely βr decreases;
When it becomes less than 1, βr increases, but conversely Hc decreases.

以外では2を変えても適切な磁石特性を得ることができ
ない。又状態図的にも上述以外の範囲では磁気特性に関
与する以外の相の析出が見られる。
In other cases, even if 2 is changed, appropriate magnetic characteristics cannot be obtained. Also, in the phase diagram, precipitation of phases other than those involved in magnetic properties can be seen in ranges other than those mentioned above.

上記のような組成から希土類磁石を作るのは一般の粉末
冶金法によるものであり、溶解、粉砕。
Rare earth magnets are made from the above composition using the general powder metallurgy method, which involves melting and pulverizing.

磁場中配向、圧縮成形、焼結9時効の順に進められる。Orientation in a magnetic field, compression molding, sintering and aging are performed in this order.

溶解はアーク高周波等を用い、真空あるいは不活性雰囲
気中で行い、粉砕は粗粉砕と微粉砕にわけられ、粗粉砕
はノヨークラソシャー、鉄乳鉢やロール・ミル等で行な
われ、微粉砕はゴール・ミル、振動ミル、ジェットミル
等で行なわれる。
Melting is performed in a vacuum or inert atmosphere using arc high frequency, etc., and pulverization is divided into coarse pulverization and fine pulverization. This is done using a goal mill, vibration mill, jet mill, etc.

磁場中配向及び圧縮成形は金型を用い磁場中で同時に行
なわれるのが通例である。焼結は1000〜1150℃
の範囲で真空及び不活性雰囲気中で、その後の時効は6
00〜900℃の範囲の温度で行なわれる。
Orientation in a magnetic field and compression molding are usually performed simultaneously in a magnetic field using a mold. Sintering is 1000-1150℃
in vacuum and inert atmosphere in the range of 6.
It is carried out at temperatures ranging from 00 to 900°C.

〔実施例〕〔Example〕

以下1本発明の実施例について詳細に説明する。 Hereinafter, one embodiment of the present invention will be described in detail.

実施例−1 純度98 wt%のNa (残部Ce 、 Pr等)が
33.。
Example-1 Na with a purity of 98 wt% (the remainder being Ce, Pr, etc.) was 33%. .

wt%、Bが1.0wt%、残部Feとなる様な3元系
合金(A) NdO,45Fe0.79BO,Q6と、
残部がCoとなる様な3元系合金(B) NdO,15
”0.79B0.06をアルゴン雰囲気中で高周波加熱
によシ溶解しインゴットを得た。
Ternary alloy (A) NdO, 45Fe0.79BO, Q6 such that B is 1.0 wt% and the balance is Fe,
Ternary alloy with the remainder being Co (B) NdO, 15
0.79B0.06 was melted by high frequency heating in an argon atmosphere to obtain an ingot.

次にこの合金を粗粉砕した後、 (A) 、 03)の
母合金を(Fe1−YCoY)。、7.テYが0,0.
2,0.4,0.6゜0.8,1.0となる様に秤量配
合し、ゴール・ミルを用いて平均粒径約3.0μmに微
粉砕した。この微粉末を10 koeの磁界下において
1. Oton/2m2の圧力で成形した。この圧粉体
を1040℃〜1100℃の間で真空及びアルゴン雰囲
気中で焼結し急冷した後、600〜900℃の温度範囲
で時効処理した。
Next, after coarsely pulverizing this alloy, the mother alloy of (A), 03) was obtained (Fe1-YCoY). ,7. TeY is 0,0.
They were weighed and blended to give a ratio of 2, 0.4, 0.6° and 0.8, 1.0°, and were pulverized to an average particle size of about 3.0 μm using a Golle mill. This fine powder was heated under a magnetic field of 10 koe for 1. It was molded at a pressure of Oton/2m2. This green compact was sintered in a vacuum and argon atmosphere between 1040°C and 1100°C, rapidly cooled, and then aged in a temperature range of 600°C to 900°C.

第1図はその時の磁気特性を示す図である。第1図よシ
+Co置換量を増やすンβ7けYが09〜03付近で最
大となるが、 rHcと(B−H)mは減少し。
FIG. 1 is a diagram showing the magnetic characteristics at that time. As shown in Figure 1, when increasing the amount of +Co substitution, β7-Y reaches its maximum around 09-03, but rHc and (B-H)m decrease.

05以上になると極端に劣下する。以上の様に(Fe 
1−yCOy )においてYがO〜0.5の範囲が最適
であることがわかる。
If it becomes 05 or more, it will be extremely degraded. As mentioned above (Fe
1-yCOy), it is found that the optimum range for Y is O to 0.5.

実施例−2 実施例−1で用いた母合金(A)のNdの代りにDyを
用いた3元系合金(C) DyO,15FeO,79B
0.06をアルゴン雰囲気中で高周波加熱により溶解し
、インゴットを得た。次にこの合金を粉砕した後、 (
A) 、 (c)の母合金を(Nd1−xDyX)O,
+5でXが0.0.2,0.4゜06となる様に秤量配
合し、実施例−1と同様に微粉砕、磁場中成形、焼結(
1060℃)1時効処理を行った。
Example-2 Ternary alloy (C) using Dy in place of Nd in the master alloy (A) used in Example-1 DyO, 15FeO, 79B
0.06 was melted by high frequency heating in an argon atmosphere to obtain an ingot. Then, after crushing this alloy, (
A), (c) mother alloy (Nd1-xDyX)O,
+5 and X is 0.0.2, 0.4゜06.
1060°C) 1 aging treatment was performed.

第2図はこの時の磁気特性を示す図である。この第2図
からDy置換量を増やすとβTは減少するがrHcは増
加し、Xが0.2で20 (koe)得られた。しかし
Xが0.5以上になるとβ、 、 (B−H)mが極端
に劣下し、磁石としての特性が十分でなく1機能を果し
得ないし、又着磁しにくい点も問題となる。
FIG. 2 is a diagram showing the magnetic characteristics at this time. As shown in FIG. 2, when the amount of Dy substitution was increased, βT decreased but rHc increased, and 20 (koe) was obtained when X was 0.2. However, when X becomes 0.5 or more, β, , (B-H)m deteriorates extremely, and the characteristics as a magnet are insufficient to perform one function, and there is also the problem that it is difficult to magnetize. Become.

なお密度ρ(&/cn1’)は殆んど水平に近く、焼結
性が改善されていることがよく分る。
Note that the density ρ(&/cn1') is almost horizontal, clearly indicating that the sinterability is improved.

以上の様に(Nd1−XDyx)において、XがO〜0
5の範囲が最適であることがわかる。
As mentioned above, in (Nd1-XDyx), X is O~0
It can be seen that the range of 5 is optimal.

実施例−3 実施例−1で用いた母合金(A)(B)を (F e 
1yCOy)でYが0 、0.1 、0.2 、0.3
となる様に秤量配合し、実施例−1と同様に微粉砕、磁
場中成形、焼結1時効処理を行った。
Example-3 The master alloys (A) and (B) used in Example-1 were (F e
1yCOy) and Y is 0, 0.1, 0.2, 0.3
They were weighed and blended so that the following results were obtained, and they were subjected to fine pulverization, molding in a magnetic field, sintering, and aging treatment in the same manner as in Example-1.

表1はその時の磁気特性なy = Qと0.3にした場
合の1直を示したものである。
Table 1 shows the magnetic properties at that time, y=Q, and the linearity when 0.3.

表  1 第3図はそのときのキューリ一点Tcと可逆温度変化率
βゎを示す図である。第2図におけるキューリ一点のグ
ラフからCoを添加すると大幅に向上し。
Table 1 FIG. 3 is a diagram showing the Curie point Tc and the reversible temperature change rate βゎ at that time. From the graph of one point of cucumber in Figure 2, the addition of Co shows a significant improvement.

Y=03の時530℃であり、この値はフェライト磁石
を上回るものであった。又可逆温度変化率βrは3元系
の時−0,126%/℃の値がCO置換により−o、o
os%/℃と約半分以下になシ、この値はSm−Co系
磁石には多少劣るものの、十分に磁石としての役割を果
たす温度特性である。このようにCO置換によ93元系
に比べ大幅にキューリ一点及び可逆温度変化率を改善す
ることができだ。しかしながらICが低いことよシネ可
逆温度変化β1は悪く、あとに説明する次の実施例での
Dy置換によシ改善を行った。
When Y=03, the temperature was 530°C, which exceeded that of a ferrite magnet. In addition, the reversible temperature change rate βr changes from -0,126%/°C in the case of a ternary system to -o, o due to CO substitution.
Although this value is less than about half of os%/°C, and is somewhat inferior to that of Sm--Co magnets, it has sufficient temperature characteristics to function as a magnet. As described above, CO substitution can significantly improve the Curie point and reversible temperature change rate compared to the 93-element system. However, since the IC was low, the cine reversible temperature change β1 was poor, and this was improved by Dy substitution in the next example, which will be explained later.

実施例−4 実施例−3で用いたNdo、、5(Feo、7COo、
3) 0.79Bo、06のNdの一部なwt%比で1
0%Dyで置換したら5元系合金υ) (NdO,9D
y0.1)0.15(FeO,7”0.3)0.79B
0.06をアルゴン雰囲気中で高周波加熱によシ溶解し
、インゴットを得た。その合金を粗粉砕した後、実施例
−1と同様に微粉砕、磁場中成形、焼結1時効処理を行
った。
Example-4 Ndo, 5(Feo, 7COo,
3) 0.79Bo, part of Nd in 06 wt% ratio is 1
When replaced with 0% Dy, a 5-element alloy υ) (NdO, 9D
y0.1) 0.15 (FeO, 7”0.3) 0.79B
0.06 was melted by high frequency heating in an argon atmosphere to obtain an ingot. After coarsely pulverizing the alloy, it was subjected to fine pulverization, compaction in a magnetic field, sintering, and aging treatment in the same manner as in Example-1.

表2はその時の磁気特性、温度特性を実施例3(表1の
右)の全データと共に示す。表2よシDy置換体の方は
実施例−3の4元系に比べ、βTは減少するがtHcは
向上し、 12 (koe)得ることができ、またキュ
ーリ一点、可逆温度変化率は両者にはほとんど差が見ら
れないが、不可逆変化率βiは)(cが増加したことに
よシ大幅に改善された・なおこの場合不可逆変化率β1
はパーミアンス係数Pが1のときに80°までおよび1
00℃までに加熱して室温まで低下したときの磁束密度
の変化率を示している。
Table 2 shows the magnetic properties and temperature characteristics at that time together with all the data of Example 3 (right side of Table 1). As shown in Table 2, compared to the four-element system of Example 3, the Dy-substituted product decreases βT but improves tHc, and can obtain 12 (koe). There is almost no difference in the rate of irreversible change βi, but the rate of irreversible change βi has been significantly improved due to the increase in c.In this case, the rate of irreversible change β1
is up to 80° when the permeance coefficient P is 1 and 1
It shows the rate of change in magnetic flux density when heated to 00°C and lowered to room temperature.

以下余日 実施例−5 組成が(Ndi−XDyX)0.15(Fe0.7co
0.3) 0.79B0.06 ’但しx = Q〜0
6の範囲、となるように前記実施例と同様の手法で焼結
型磁石を得た。
Example 5 for the rest of the day The composition is (Ndi-XDyX)0.15(Fe0.7co
0.3) 0.79B0.06 'However, x = Q~0
A sintered magnet was obtained in the same manner as in the example described above so that the magnetic flux was within the range of 6.

第4図および第5図は上記のようにして得た磁石のβ1
 + XHc l (B−H)yyl rおよびρ特性
と、βi特性とをそれぞれ示す図である。なおβ1はP
=1の時に80°まで加熱して室温まで低下したときの
値である。
Figures 4 and 5 show β1 of the magnet obtained as described above.
+ Note that β1 is P
This is the value obtained when heating to 80° and lowering to room temperature when =1.

第4図および第5図からいえることは、XすなわちDy
の置換量増加によシβ、は低下し、 rHcは増大して
第2図と同じような傾向を有するが、不可逆温度変化率
が格段に改善されていることが分る。
What can be said from Figures 4 and 5 is that X, that is, Dy
As the amount of substitution increases, β decreases and rHc increases, showing the same tendency as shown in FIG. 2, but it can be seen that the rate of irreversible temperature change is significantly improved.

〔発明の効果〕〔Effect of the invention〕

以上の実施例から明らかな様に2本発明の方法によれば
、 Ndの一部をDyでFeの一部をCoで置換するこ
とによシ、キューリ一点、可逆温度変化。
As is clear from the above examples, according to the method of the present invention, by replacing a portion of Nd with Dy and a portion of Fe with Co, a reversible temperature change can be achieved at a single Curie point.

不可逆温度変化の温度特性を改善した希土類磁石を得る
ことができた。
We were able to obtain a rare earth magnet with improved temperature characteristics of irreversible temperature change.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例−1で得られた希土類磁石の磁気特性を
示す図、第2図は実施例−2による磁気特性を示す図、
第3図は実施例−3による磁気特性を示す図、第4図お
よび第5図は実施例−5の磁気特性を示す図である。 第1図 Ndα15(ヒC1イ・0Y)079″30凹第2図 X (N”XDMx)O,+5”0.7q8006第3図 一−−シY Nd045(Fe1−YCOY)O,OQ Bo、06
第4図 (Nd1−x DVX )O,+5 (Fco7Cca
3)o7q Bo、06−−チX (Nd 1−7”jX)0.+5”eo、’7COO3
)0.7(l Bo、06手続補正書(自発) 昭和にθ年17月2θ日
Fig. 1 is a diagram showing the magnetic properties of the rare earth magnet obtained in Example-1, Fig. 2 is a diagram showing the magnetic properties in Example-2,
FIG. 3 is a diagram showing the magnetic characteristics of Example-3, and FIGS. 4 and 5 are diagrams showing the magnetic characteristics of Example-5. Fig. 1 Ndα15 (Hi C1 I・0Y) 079″30 concave Fig. 2 06
Fig. 4 (Nd1-x DVX)O, +5 (Fco7Cca
3) o7q Bo, 06--chiX (Nd 1-7"jX) 0.+5"eo, '7COO3
) 0.7 (l Bo, 06 procedural amendment (voluntary) Showa 17/2θ

Claims (1)

【特許請求の範囲】 材料の組成が下記組成式 (Nd_1_−_XDy_X)_Z(Fe_1_−_Y
Co_Y)_wB_1_−_Z_−_Wただし0≦X≦
0.5、0≦Y≦0.5 0.1≦Z≦0.2、0.75≦W≦0.85より成り
、粉末冶金法により製造した永久磁石であって、磁気特
性の温度変化に対する特性、即ちキューリー点、可逆温
度変化率、不可逆温度変化率を改良しかつ焼結時の焼結
性を改善したことを特徴とする希土類磁石。
[Claims] The composition of the material is the following compositional formula (Nd_1_-_XDy_X)_Z(Fe_1_-_Y
Co_Y)_wB_1_-_Z_-_W However, 0≦X≦
0.5, 0≦Y≦0.5, 0.1≦Z≦0.2, 0.75≦W≦0.85, and is a permanent magnet manufactured by a powder metallurgy method, and the magnetic properties change with temperature. 1. A rare earth magnet characterized by improved properties such as Curie point, reversible temperature change rate, and irreversible temperature change rate, and improved sinterability during sintering.
JP59274870A 1984-12-28 1984-12-28 Rare earth magnet Pending JPS61157659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59274870A JPS61157659A (en) 1984-12-28 1984-12-28 Rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59274870A JPS61157659A (en) 1984-12-28 1984-12-28 Rare earth magnet

Publications (1)

Publication Number Publication Date
JPS61157659A true JPS61157659A (en) 1986-07-17

Family

ID=17547706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59274870A Pending JPS61157659A (en) 1984-12-28 1984-12-28 Rare earth magnet

Country Status (1)

Country Link
JP (1) JPS61157659A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61221353A (en) * 1985-03-26 1986-10-01 Sumitomo Special Metals Co Ltd Material for permanent magnet
JPS62165305A (en) * 1986-01-16 1987-07-21 Hitachi Metals Ltd Permanent magnet of good thermal stability and manufacture thereof
JPS6379939A (en) * 1986-09-24 1988-04-09 Seiko Instr & Electronics Ltd Rare earth-type composite magnet material
JPH06256913A (en) * 1993-08-02 1994-09-13 Sumitomo Special Metals Co Ltd Permanent magnet material
US6627102B2 (en) * 2000-05-22 2003-09-30 Seiko Epson Corporation Magnetic powder, manufacturing method of magnetic powder and bonded magnets

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132104A (en) * 1983-01-19 1984-07-30 Sumitomo Special Metals Co Ltd Permanent magnet
JPS59211559A (en) * 1983-05-14 1984-11-30 Sumitomo Special Metals Co Ltd Permanent magnet material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132104A (en) * 1983-01-19 1984-07-30 Sumitomo Special Metals Co Ltd Permanent magnet
JPS59211559A (en) * 1983-05-14 1984-11-30 Sumitomo Special Metals Co Ltd Permanent magnet material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61221353A (en) * 1985-03-26 1986-10-01 Sumitomo Special Metals Co Ltd Material for permanent magnet
JPS62165305A (en) * 1986-01-16 1987-07-21 Hitachi Metals Ltd Permanent magnet of good thermal stability and manufacture thereof
US5041172A (en) * 1986-01-16 1991-08-20 Hitachi Metals, Ltd. Permanent magnet having good thermal stability and method for manufacturing same
JPS6379939A (en) * 1986-09-24 1988-04-09 Seiko Instr & Electronics Ltd Rare earth-type composite magnet material
JPH06256913A (en) * 1993-08-02 1994-09-13 Sumitomo Special Metals Co Ltd Permanent magnet material
JPH089756B2 (en) * 1993-08-02 1996-01-31 住友特殊金属株式会社 Permanent magnet material
US6627102B2 (en) * 2000-05-22 2003-09-30 Seiko Epson Corporation Magnetic powder, manufacturing method of magnetic powder and bonded magnets

Similar Documents

Publication Publication Date Title
US4284440A (en) Rare earth metal-cobalt permanent magnet alloy
US3947295A (en) Hard magnetic material
JPH01298704A (en) Rare earth permanent magnet
US5230751A (en) Permanent magnet with good thermal stability
JPH10106875A (en) Manufacturing method of rare-earth magnet
JPH01219143A (en) Sintered permanent magnet material and its production
JPH0551656B2 (en)
JPS61157659A (en) Rare earth magnet
JP2740981B2 (en) R-Fe-Co-BC permanent magnet alloy with excellent thermal stability with small irreversible demagnetization
US4172717A (en) Permanent magnet alloy
JPH0352529B2 (en)
JPH0680608B2 (en) Rare earth magnet manufacturing method
JPS60144908A (en) Permanent magnet material
JPS63178505A (en) Anisotropic r-fe-b-m system permanent magnet
JPS5852019B2 (en) Rare earth cobalt permanent magnet alloy
JPS61147504A (en) Rare earth magnet
JP3178848B2 (en) Manufacturing method of permanent magnet
JPS5853699B2 (en) Method for manufacturing rare earth intermetallic compound magnets
JPS6144155A (en) Permanent magnet alloy
JPH06151137A (en) Powder of rare earth magnet material with excellent anisotropy
JP3253006B2 (en) RE-T-M-B sintered magnet with excellent magnetic properties
JPH0328503B2 (en)
JPS5848607A (en) Production of rare earth cobalt magnet
JPH0252413B2 (en)
JPH07335468A (en) Manufacture of rare-earth magnet