JPS61154037A - Fine pattern formation - Google Patents

Fine pattern formation

Info

Publication number
JPS61154037A
JPS61154037A JP27729884A JP27729884A JPS61154037A JP S61154037 A JPS61154037 A JP S61154037A JP 27729884 A JP27729884 A JP 27729884A JP 27729884 A JP27729884 A JP 27729884A JP S61154037 A JPS61154037 A JP S61154037A
Authority
JP
Japan
Prior art keywords
pattern
film
mask
substrate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27729884A
Other languages
Japanese (ja)
Other versions
JPH0821571B2 (en
Inventor
Naoki Kasai
直記 笠井
Nobuhiro Endo
遠藤 伸裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59277298A priority Critical patent/JPH0821571B2/en
Publication of JPS61154037A publication Critical patent/JPS61154037A/en
Publication of JPH0821571B2 publication Critical patent/JPH0821571B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To enable formation of a square-shaped fine pattern having crossings which escape from round edges by forming a first linear pattern using a first mask member and subsequently a second linear pattern using a second mask member which crosses the first mask member. CONSTITUTION:A polycrystalline silicon film is piled on a silicon oxide film 2, which has been formed on a substrate 1, to form a first mask having the linear pattern of the polycrystalline silicon film 3 parallel to the 100 direction of the substrate in the subsequent process. Next, starting from a three layer resist which comprizes a lower layer-organic film-, an intermediate layer- silica coated film- and a upper layer- resist film-, a resist pattern is formed in the direction perpendicular to the polycrystalline silicon film pattern by photoetching of the upper layer; the intermediate silicon film is etched by reac tive ion etching; subsequently an organic film pattern 4 as a second mask is formed by O2 reactive ion etching of the lower organic layer with the mask of the intermediate silica film. Finally a SiO2 film pattern having a vertical cross-section is formed by reactive ion etching of the bare silicon oxide film using the first and the second masks, followed by removal of the masks.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は半導体素子形成においてマスク材により被覆さ
れていない領域をエツチングし、微細パターン形成する
方法に関するものである〇〈従来技術とその問題点〉 近来、半導体デバイスの高集積化にともない微細パター
ン形成はリソグラフィー技術とドライエツチング技術の
向上によシ著しい進歩をとげている。たとえばジャーナ
ル・オブ・バキューム・サイエyス・アンド・テクノロ
ジー(Je Vac* 8cLTechnole ) 
15巻1978年319〜326ページにおいては四弗
化炭素ガスによシ反応性スパッタエツチングによシミス
フパターン@に変化t−4しない垂直断面形状を有する
シリコン酸化膜パターン形成が可能なことが報告されて
いる0前例のみならず1反応性スパッタエツチングにお
いてはエツチングガスとエツチング条件を過当に選ぶこ
とで、シリコン酸化膜に限らず、絶縁体、半導体。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method of forming a fine pattern by etching areas not covered with a mask material in semiconductor device formation. 〉 In recent years, with the increasing integration of semiconductor devices, remarkable progress has been made in the formation of fine patterns due to improvements in lithography technology and dry etching technology. For example, the Journal of Vacuum Sciences and Technology
In Vol. 15, 1978, pages 319-326, it was reported that it is possible to form a silicon oxide film pattern with a vertical cross-sectional shape that does not change to t-4 by reactive sputter etching using carbon tetrafluoride gas. In reactive sputter etching, the etching gas and etching conditions are selected excessively, and it can be used not only for silicon oxide films but also for insulators and semiconductors.

金属などがマスク寸法に一致して加工可能でろる◎一方
、リソグラフィー技術は、従来の元投影露元方法に代シ
、紫外光縮小投影′I!IiP元、X−露元、鬼子線露
光技術の開発には解像度はサブミクロ/寸法まで可能と
なっている〇 しかし前記露光技術によシ得られる微細パターンは孤立
パターンにおけるものであシ、パターンが近接したり交
差したりする複雑なパターンにおいては問題を生じる。
On the other hand, lithography technology uses ultraviolet light reduction projection instead of the conventional original projection exposure method. With the development of IiP exposure technology, Problems arise with complex patterns that are close together or intersect.

たとえば、紫外光縮小投影露光法によシ第2図(a)K
示すマスクパターンを基板上に転写する場合、第2図(
b)に示すようにパターンが交差する部分では近接効果
によシ転写されたレジストパターン角部で丸みを生じる
For example, by ultraviolet light reduction projection exposure method,
When transferring the mask pattern shown on the substrate, the mask pattern shown in Fig. 2 (
As shown in b), at the intersection of the patterns, the corners of the resist pattern transferred by the proximity effect are rounded.

このような現象は光露光に限ったものでなく、X線露光
、電子線露光においても程度の差はあれ、避けられない
問題である◎レジストパターンが第2図のごとき形状で
あれば異方性エツチングを用いればレジストパターンど
うシにエツチングされること(な夕、微細半導体素子形
成に対し支障となる。この支障とはたとえば次のような
ものであるo 8i(100)単結晶基板上fc73L
O@等の絶縁膜を形成し、この絶縁膜を上記のような従
来方法で絶縁膜Il壁′1k(100)方向に向くよう
にバターニングすると角部で丸みを生じる◎このらと8
iの気相選択エピタΦシャル成長を行うと、丸みのため
に角部が完全にはsiで埋まらずファセットとよばれる
斜面がかなり大きく形成されてしまう。エビ成長したs
xgに半導体素子を形成するとこの7ア七ツトで配線が
断縁したりする支障が生じる・〈発明の目的〉 本発明は、半導体素子形成における微細パターン加工す
る際、パターン交差部における丸みをなくシ、角型形状
を有する微細パターン形成方法を提供することKある。
This phenomenon is not limited to light exposure, but is an unavoidable problem in X-ray exposure and electron beam exposure as well, although there are differences in degree. ◎If the resist pattern has the shape shown in Figure 2, it is anisotropic. If static etching is used, the resist pattern will be etched (and this will be a hindrance to the formation of fine semiconductor devices. Examples of this hindrance include the following: fc73L on an 8i (100) single crystal substrate)
When an insulating film such as O@ is formed and this insulating film is patterned using the conventional method described above so that it faces the insulating film Il wall'1k (100) direction, rounding occurs at the corners.
When vapor phase selective epitaxial growth of i is performed, the corners are not completely filled with Si due to the roundness, and a considerably large slope called a facet is formed. shrimp grown
If a semiconductor element is formed on xg, there will be problems such as disconnection of wiring at these 7 points.<Object of the Invention> The present invention aims to eliminate roundness at pattern intersections when processing fine patterns in semiconductor element formation. Another object of the present invention is to provide a method for forming a fine pattern having a rectangular shape.

〈発明の構成〉 本発明によれば基板上あるいは基板上に堆積された膜上
に露光技術を用いてマスクパターンを形成し、前記マス
クパターンによって被覆されていない基板あるいは基板
上に堆積された膜を異方性エツチングするパターン形成
方法において、はじめに、第一のマスク材により直線パ
ターンを形成し、次いで前記直線パターンと交差する第
2のマスク材からなる直線パターンを形成し1次いで前
記基板あるいは基板上に堆積された膜を異方性エツチン
グすると交差パターンが得られる0く構成の詳細な説明
〉 本発明は以下の構成をとることにより従来技術の問題点
を解決した0すなわち、基板あるいは基板上に堆積され
た膜を異方性エツチングする際にパターン交差部に丸み
を生じさせたくない領域ではマスクパターン形成工程を
複数回行なう0はじめに第一のマスク材による直線パタ
ーンを形成し、次いで前記パターンと交差する第2のマ
スク材からなるパターンを形成する。つまシー回の露光
工程においては直線パターンしか露光しないので露光に
おける近接効果が防止できる。次に第一と第2のマスク
を用いて基板あるいは基板上に堆積された膜を反応性イ
オンエツチング法により異方性エツチングすることでパ
ターン交差部に丸みの生じない角型パターン形成が可能
となる◎このようにして、パターンが微細化した場合で
も、所望の交差パターンが得られる◎ 〈実施例〉 以下、本発明の実施例について図面を用いて詳細に説明
する@ 第1図は本発明の詳細な説明するために、主要な製造工
程における断面あるいは平面構造を示した模式図である
◎すなわち、(100)面方位の2厘シリコン基板1に
熱酸化によシ約2μm厚さのシリコン醒化膜2を形成し
た後、減圧CVD法によシ約0.3μm厚さの多結晶シ
リコン膜を堆積し、写真蝕刻法と反応性イオンエツチン
グ法によシ第1のマスクとなる多結晶シリコン膜の直線
パターン3を基板の(100)方向と平行に形成すると
第1図h)、 (9fの構造を得る0 次に、下層有機膜、中間層シリカ塗布膜、および上層レ
ジストで構成される三層レジストに対して、上層を通常
の写真蝕刻法によシ前記多結晶シリコン膜パターンと直
交する方向のレジストパターンを形成し1反応性イオン
エツチングにより中間層シリカ膜をエツチングし、つづ
いて中間層シリカ膜をマスクに下層有機膜をOt反応性
イオンエツチングで第2のマスクとなる有機膜パターン
4を形成すると第1図(b)、 (1)’の構造を得る
<Configuration of the Invention> According to the present invention, a mask pattern is formed using an exposure technique on a substrate or a film deposited on a substrate, and a mask pattern is formed on a substrate or a film deposited on a substrate not covered by the mask pattern. In the pattern forming method of anisotropically etching the substrate, first, a linear pattern is formed using a first mask material, then a linear pattern consisting of a second mask material that intersects with the linear pattern is formed, and then the substrate or the substrate is etched. Detailed description of the structure in which an intersecting pattern is obtained by anisotropically etching the film deposited on the substrate> The present invention solves the problems of the prior art by having the following structure. When anisotropically etching a film deposited on a film, the mask pattern forming process is performed multiple times in areas where roundness is not desired at pattern intersections.First, a linear pattern is formed using the first mask material, and then the pattern is A pattern made of the second mask material that intersects with is formed. In the multiple exposure steps, only linear patterns are exposed, so the proximity effect in exposure can be prevented. Next, by using the first and second masks to anisotropically etch the substrate or the film deposited on the substrate by reactive ion etching, it is possible to form a square pattern without rounding at the pattern intersections. ◎ In this way, even if the pattern is miniaturized, a desired intersecting pattern can be obtained ◎ <Example> Examples of the present invention will be explained in detail below using the drawings @ Figure 1 shows the present invention In order to explain in detail, this is a schematic diagram showing the cross-sectional or planar structure in the main manufacturing process. In other words, a silicon substrate 1 with a thickness of about 2 μm is formed by thermal oxidation on a 2-layer silicon substrate 1 with a (100) plane orientation. After forming the amorphous film 2, a polycrystalline silicon film with a thickness of about 0.3 μm is deposited by low-pressure CVD, and a polycrystalline silicon film, which will become the first mask, is deposited by photolithography and reactive ion etching. When the linear pattern 3 of the silicon film is formed parallel to the (100) direction of the substrate, the structure shown in FIG. For the three-layer resist, the upper layer is formed by ordinary photolithography to form a resist pattern in a direction perpendicular to the polycrystalline silicon film pattern, the middle layer silica film is etched by reactive ion etching, and then the middle layer silica film is etched by reactive ion etching. Using the intermediate silica film as a mask, the lower organic film is subjected to Ot reactive ion etching to form an organic film pattern 4 serving as a second mask, resulting in the structure shown in FIGS. 1(b) and 1(1)'.

つづいて、第1と第2のマスクを用いて露出したシリコ
ン酸化膜を反応性イオンエツチング法によプ垂直断面形
状を有する8t01膜パター7を形成し、マスクを除去
すると第1図(c)、 (Jの構造を得る。
Next, using the first and second masks, the exposed silicon oxide film is etched by reactive ion etching to form an 8T01 film pattern 7 having a vertical cross-sectional shape, and when the masks are removed, FIG. 1(c) , (obtain the structure of J.

次に5iH2C11とH!から成るガス系に)IC/ガ
スを約1 volfy程度加え、950℃の温度でシリ
コン基板にのみ選択的にシリコンエピタキシャル成長さ
せ、エピタキシャルシリコン膜5厚さが2μmのとき第
1図(alの構造を得る。本実施例のように8i01パ
タ一ン交差部が直交していると、エピタキシャル層での
7アセツトの大きさが小さくなシ、平坦性の良い基板が
得られた。また、エピタキシャル層の8i01膜近傍お
ける積層欠陥密度も低減した0この後、通常のnチャネ
ルM08FBTを形成するために、厚さ200Xのゲー
ト酸化膜6を形成し。
Next, 5iH2C11 and H! Adding about 1 vol. of IC/gas to the gas system consisting of the following, silicon epitaxial growth was performed selectively only on the silicon substrate at a temperature of 950°C. When the epitaxial silicon film 5 had a thickness of 2 μm, the structure of When the 8i01 pattern intersections were orthogonal as in this example, the size of the 7 assets in the epitaxial layer was small and a substrate with good flatness was obtained. The stacking fault density in the vicinity of the 8i01 film was also reduced. After this, a gate oxide film 6 with a thickness of 200X was formed to form a normal n-channel M08FBT.

次いでイオン注入によプホウ素金加速エネルギー30k
eVで1.5 X 10”tyn−2と100 keV
t’2 X 101232注入し、次いで減圧CVD法
によル多結晶シリコンを4500!堆積し1反応性イオ
ンエツチングによりゲート電極7を形成すると@1図t
elの構造を得る。次いでヒ素を加速エネルギー150
 keVで5 X 10 ”es−2イオン注入し、高
濃度n型層8を形成し、次いで、ポリシコンゲート電極
にリンを拡散する。次に、 CV D 8i01膜10
t−堆積し、コンタクトホールをあけ、アルミ破線11
i行なうと第1図(f)に示すようなnチャネルMO8
FETが得られる。
Next, by ion implantation, the acceleration energy of boron gold was 30k.
1.5 x 10”tyn-2 in eV and 100 keV
t'2 x 101232 x 101232 x 101232 x 101232 x 100 x 100 x 100 x 100 x 100 x 100 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 100% polycrystalline silicon. When gate electrode 7 is formed by depositing and reactive ion etching, @1 Figure t
Obtain the structure of el. Next, arsenic is accelerated with an energy of 150
5 x 10'' es-2 ions are implanted at keV to form a heavily doped n-type layer 8, and then phosphorous is diffused into the polysilicon gate electrode.
T-deposit, make contact hole, aluminum broken line 11
When performing i, an n-channel MO8 as shown in FIG. 1(f)
FET is obtained.

このように本実施例によれば、エピタキシャル成長時の
7アセツトの大きさが減少し、平坦性が向上した。さら
にエピタキシャル成長層の積層欠陥密度が低減したため
KnチャネルMO81T等のデバイスを作成した場合の
製造歩留りが向上したO 〈発明の効果〉 本発明を用いることによフ、露光の際の近接効果による
父差部の丸みを防止し、角型形状を有する微細パター7
形成が可能となった0
As described above, according to this example, the size of the 7 assets during epitaxial growth was reduced and the flatness was improved. Furthermore, since the stacking fault density of the epitaxial growth layer has been reduced, the manufacturing yield has improved when devices such as Kn channel MO81T are manufactured. Fine putter 7 that prevents roundness and has a square shape
It became possible to form 0

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例におけるMO8FFXTの製造
方法を順を追って断面構造あるいは平面構造を示す図で
、(IL (b)t (C)t (d)、 (e)t 
(f)は断面図、(f′)、(h′)、(L′)は平面
図。第2図(all (b)はレチクルパターンと従来
方法を用いたレジストパターンとの転写変化を示す模式
的平面図である。 図において l・・・シリコン基板  2・・・シリコン酸化膜3・
・・多結晶シリコン膜パターン(第1のマスク)4・・
・有機膜パターン(第2のマスク)5・・・エピタキシ
ャルシリコン層 6・・・ゲート酸化膜  7・・・ゲート電極8・・・
高濃度n型層  9・・・CVD8i0.膜lO・・・
アルミニウム配線 21・・・レチクルパターン 22・・・レジストパターン
FIG. 1 is a diagram showing the cross-sectional structure or planar structure of the MO8FFXT manufacturing method according to the embodiment of the present invention.
(f) is a sectional view, and (f'), (h'), and (L') are plan views. FIG. 2 (all (b) is a schematic plan view showing transfer changes between a reticle pattern and a resist pattern using a conventional method. In the figure, l...silicon substrate 2... silicon oxide film 3...
...Polycrystalline silicon film pattern (first mask) 4...
- Organic film pattern (second mask) 5...Epitaxial silicon layer 6...Gate oxide film 7...Gate electrode 8...
High concentration n-type layer 9...CVD8i0. Membrane lO...
Aluminum wiring 21...Reticle pattern 22...Resist pattern

Claims (1)

【特許請求の範囲】[Claims] 基板あるいは基板上に堆積された膜上に露光技術を用い
てマスクパターンを形成し、前記マスクパターンによっ
て被覆されていない基板あるいは基板上に堆積された膜
を異方性エッチングするパターン形成方法において、は
じめに第一のマスク材により直線パターンを形成し、次
いで前記直線パターンと交差する第二のマスク材からな
る直線パターンを形成し、次いで前記基板あるいは基板
上に堆積された膜を異方性エッチングし、交差パターン
を形成することを特徴とする微細パターン形成方法。
A pattern forming method in which a mask pattern is formed on a substrate or a film deposited on the substrate using an exposure technique, and the substrate not covered by the mask pattern or the film deposited on the substrate is anisotropically etched, First, a linear pattern is formed using a first mask material, then a linear pattern made of a second mask material that intersects with the linear pattern is formed, and then the substrate or the film deposited on the substrate is anisotropically etched. , a fine pattern forming method characterized by forming an intersecting pattern.
JP59277298A 1984-12-26 1984-12-26 Fine pattern formation method Expired - Lifetime JPH0821571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59277298A JPH0821571B2 (en) 1984-12-26 1984-12-26 Fine pattern formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59277298A JPH0821571B2 (en) 1984-12-26 1984-12-26 Fine pattern formation method

Publications (2)

Publication Number Publication Date
JPS61154037A true JPS61154037A (en) 1986-07-12
JPH0821571B2 JPH0821571B2 (en) 1996-03-04

Family

ID=17581583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59277298A Expired - Lifetime JPH0821571B2 (en) 1984-12-26 1984-12-26 Fine pattern formation method

Country Status (1)

Country Link
JP (1) JPH0821571B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102531A (en) * 1985-10-29 1987-05-13 Sony Corp Etching method
JP2001077325A (en) * 1999-08-06 2001-03-23 Samsung Electronics Co Ltd Method for forming trench exceeding resolution of picture process inside insulation film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58175830A (en) * 1982-04-08 1983-10-15 Matsushita Electric Ind Co Ltd Forming method for pattern

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58175830A (en) * 1982-04-08 1983-10-15 Matsushita Electric Ind Co Ltd Forming method for pattern

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102531A (en) * 1985-10-29 1987-05-13 Sony Corp Etching method
JP2001077325A (en) * 1999-08-06 2001-03-23 Samsung Electronics Co Ltd Method for forming trench exceeding resolution of picture process inside insulation film

Also Published As

Publication number Publication date
JPH0821571B2 (en) 1996-03-04

Similar Documents

Publication Publication Date Title
JPH0358173B2 (en)
JPS615580A (en) Manufacture of semiconductor device
JPH03114049A (en) Formation of silicon shadow mask
JPS6072268A (en) Method of producing bipolar transistor structure
US5393233A (en) Process for fabricating double poly high density buried bit line mask ROM
JPS5856268B2 (en) Manufacturing method of semiconductor device
JPH03296284A (en) Superconductive element and manufacture thereof
JPS61154037A (en) Fine pattern formation
JPH0324727A (en) Manufacture of semiconductor device
JPH0321030A (en) Manufacture of semiconductor device
JP2708878B2 (en) Method for manufacturing semiconductor device
JPH02192768A (en) Manufacture of semiconductor device
JPH06196691A (en) Forming method for gate electrode and gate electrode
JPS62115722A (en) Formation of fine pattern
JPS61107747A (en) Manufacture of semiconductor device
JPH02201922A (en) Manufacture of semiconductor device
JPS6142169A (en) Manufacture of semiconductor device
JPH0240924A (en) Manufacture of semiconductor device
KR100311485B1 (en) Method for forming isolation layer of semiconductor device
JPS58122769A (en) Manufacture of semiconductor device
KR970013046A (en) Manufacturing Method of Semiconductor Device
JPH01241172A (en) Manufacture of semiconductor device
JPH01187862A (en) Manufacture of semiconductor device
JPS62143470A (en) Manufacture of semiconductor device
JPS6320374B2 (en)