JPS6320374B2 - - Google Patents

Info

Publication number
JPS6320374B2
JPS6320374B2 JP55036600A JP3660080A JPS6320374B2 JP S6320374 B2 JPS6320374 B2 JP S6320374B2 JP 55036600 A JP55036600 A JP 55036600A JP 3660080 A JP3660080 A JP 3660080A JP S6320374 B2 JPS6320374 B2 JP S6320374B2
Authority
JP
Japan
Prior art keywords
region
gate
mask
main surface
cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55036600A
Other languages
Japanese (ja)
Other versions
JPS56133873A (en
Inventor
Junichi Nishizawa
Kenji Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3660080A priority Critical patent/JPS56133873A/en
Publication of JPS56133873A publication Critical patent/JPS56133873A/en
Publication of JPS6320374B2 publication Critical patent/JPS6320374B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】 本発明は、半導体装置において半導体表面より
垂直方向に切り込んだ側面(壁面)の任意の箇所
に任意の大きさの拡散窓等を開ける加工技術を用
いた半導体装置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to manufacturing a semiconductor device using a processing technique that opens a diffusion window of any size at any location on a side surface (wall surface) cut in a direction perpendicular to the semiconductor surface. It is about the method.

最近半導体装置の開発は目ざましいものがあ
り、特に静電誘導型、半導体装置はその基本的に
すぐれた特性を生かして、高速、低消費電力化を
目標として次々に新しい構想の基に新しい構造の
トランジスタ、サイリスタ、IC、メモリ等が提
案されている。例えば静電誘導トランジスタ(以
下SITと称す)の例として第1図、第2図に表面
ゲート型の構造例を示す。第1図はゲートとソー
スとが同一平面上に配置された平面ゲート型SIT
の構造例であり、n+チヤンネルSITの4チヤンネ
ル分の断面を図示してある。n+領域1はドレイ
ン、n-領域2はチヤンネル及びチヤンネル−ド
レイン間領域、p+領域3はゲート、n+領域4は
ソース、表面保護領域5は酸化膜等の絶縁物、金
属電極6はゲート電極、7はソース電極、8はド
レイン電極を示す。この構造は製作が容易である
が、ゲートが比較的大きくソースと近接すること
によりソース・ゲート間容量、ドレイン・ゲート
間容量が大きい欠点を有する。これに対してソー
ス・ゲート間容量、ドレイン・ゲート間容量を減
少させるために第2図に示す様にゲートが半導体
表面より切り込まれた位置に小さく形成された構
造のものが提案されている。領域1〜8は第1図
と同様の領域を示し、領域9は絶縁物又は空隙で
ある。この構造にすることにより各寄生容量を減
少させることができ、高周波用高速用動作に適し
ている。
Recently, the development of semiconductor devices has been remarkable, especially electrostatic induction type semiconductor devices. Taking advantage of their basically excellent characteristics, new structures are being developed based on new concepts one after another with the goal of achieving higher speeds and lower power consumption. Transistors, thyristors, ICs, memories, etc. have been proposed. For example, as an example of a static induction transistor (hereinafter referred to as SIT), an example of a surface gate type structure is shown in FIGS. 1 and 2. Figure 1 shows a planar gate type SIT in which the gate and source are placed on the same plane.
This is an example of the structure, and the cross section of four channels of n + channel SIT is illustrated. n + region 1 is the drain, n - region 2 is the channel and channel-drain region, p + region 3 is the gate, n + region 4 is the source, surface protection region 5 is an insulator such as an oxide film, and metal electrode 6 is A gate electrode, 7 a source electrode, and 8 a drain electrode. Although this structure is easy to manufacture, it has the disadvantage that the gate is relatively large and close to the source, resulting in large source-gate capacitance and drain-gate capacitance. On the other hand, in order to reduce the source-gate capacitance and drain-gate capacitance, a structure has been proposed in which the gate is formed small at a position cut below the semiconductor surface, as shown in Figure 2. . Regions 1 to 8 represent the same regions as in FIG. 1, and region 9 is an insulator or a void. This structure can reduce each parasitic capacitance and is suitable for high frequency and high speed operation.

ところが、第1図のような立体的構造は平面加
工のみの従来のプレナー型の半導体装置の製造技
術で製作できるが第2図の構造は従来の平面加工
技術ではその製作が困難であつた。特に主表面と
垂直な側壁部に加工を行なうことは従来の平面加
工技術とは両立しなかつた。
However, while the three-dimensional structure shown in FIG. 1 can be manufactured using conventional planar semiconductor device manufacturing technology that requires only planar processing, the structure shown in FIG. 2 is difficult to manufacture using conventional planar processing technology. In particular, machining the side walls perpendicular to the main surface is incompatible with conventional flat surface machining techniques.

半導体表面より切り込みを有する立体的半導体
装置において、その切り込みの側面(壁面)への
拡散窓、コンタクト窓等の加工は従来のホトリソ
グラフ技術ではほとんど不可能であつたため第2
図の構造のSITを製作する場合においてゲートの
拡散窓の形成には、プラズマエツチ、Si3N4CVD
膜形成、選択酸化等の工程を組み合わせて行なう
方法がとられている。この方法ではほとんどホト
リソグラフ技術を必要としないが工程数が多く、
問題が多い欠点を有していた。
In a three-dimensional semiconductor device that has a cut from the semiconductor surface, it is almost impossible to process a diffusion window, contact window, etc. on the side surface (wall surface) of the cut using conventional photolithography technology.
When manufacturing a SIT with the structure shown in the figure, plasma etching, Si 3 N 4 CVD, and Si 3 N 4 CVD are used to form the gate diffusion window.
A method is used in which processes such as film formation and selective oxidation are combined. This method requires almost no photolithography technology, but it involves a large number of steps.
It had many problematic drawbacks.

本発明は前述のような切り込みを有する半導体
装置の切り込みの側面(壁面)への拡散窓、コン
タクト窓を形成するにおいて従来の平面加工技術
をそのまま応用することにより、ホトリソグラフ
技術により形成する方法を提供するものである。
特に切り込んだ凹部側壁が主表面とほぼ垂直をな
す場合にも、精度良く、側壁上に加工を行なうこ
とができる。
The present invention provides a method for forming a diffusion window and a contact window on the side surface (wall surface) of a notch in a semiconductor device having a notch as described above by directly applying the conventional planar processing technology and by photolithography technology. This is what we provide.
In particular, even when the side wall of the cut recess is substantially perpendicular to the main surface, processing can be performed on the side wall with high precision.

以下図面を参照して説明する。この実施例で
は、nチヤンネルSITの製造工程例により順次説
明する。
This will be explained below with reference to the drawings. In this embodiment, an example of the manufacturing process of n-channel SIT will be sequentially explained.

(1) 第3図aに示す様にn+基板(不純物密度約
1018/cm3)1の上にエピタキシヤル成長等によ
りn-領域(不純物密度約1×1013/cm3)2を
10μ程度成長する。次に通常の熱酸化等により
酸化膜5を5000Å程度形成し通常のホトリソグ
ラフによりホトレジスト9を切り込み部以外に
選択的に形成する。
(1) As shown in Figure 3a, n + substrate (impurity density approximately
10 18 /cm 3 ) 1 by epitaxial growth etc. to form an n - region (impurity density approximately 1×10 13 /cm 3 ) 2.
It grows about 10μ. Next, an oxide film 5 of about 5000 Å is formed by conventional thermal oxidation, and a photoresist 9 is selectively formed in areas other than the cut portions by conventional photolithography.

(2) 第3図bに示す様に指向性プラズマエツチ等
によりn領域2をn-基板に到達するまで約10μ
エツチし、ホトレジスト9を除去し、通常の熱
酸化等により酸化膜5を5000Å程度形成し切り
込み部分の側面(壁面)、底面にも酸化膜を形
成する。
(2) As shown in Figure 3b, the n region 2 is etched by about 10 μm until it reaches the n - substrate by directional plasma etching, etc.
The photoresist 9 is removed, and an oxide film 5 of about 5000 Å is formed by ordinary thermal oxidation, and the oxide film is also formed on the side surfaces (wall surfaces) and the bottom surface of the cut portion.

(3) 第3図cに示す様にポジタイプのホトレジス
ト9(例えばAZ−1350)を塗布して、マスク
ガラス板10を密着配置してマスクと切り込み
部分との位置合わせを行なう。なお、この位置
合わせ露光の方法は本願発明者が昭和55年2月
15日に出願した「マスク位置合わせ露光装置」
を用いることにより行なうのがよい。マスク
は、ガラス基板10とCr等のマスク材11と
マスク開孔部12を有し、図示のように切り込
まれた部分と位置合わせを行なう。露光用の光
13を斜め方向(角度Θ)より照射することに
よりホトレジスト9を感光する。なお、ガラス
板中の光の屈折は図示していない。またこの図
では切り込まれた側面(壁面)への露光は右側
面のみしか図示していないが同様に左側面(壁
面)へも行なう。マスクの開孔部が切り込み部
中央からずれている構成で示したが左右対称に
配置することもできるし、左右同時に露光する
こともできる。
(3) As shown in FIG. 3c, a positive type photoresist 9 (for example, AZ-1350) is applied, and a mask glass plate 10 is closely placed to align the mask and the cut portion. This positioning exposure method was developed by the inventor of the present invention in February 1980.
“Mask positioning exposure device” filed on the 15th
It is best to do this by using The mask has a glass substrate 10, a mask material 11 such as Cr, and a mask opening 12, and is aligned with the cut portion as shown in the figure. The photoresist 9 is exposed by irradiating the exposure light 13 from an oblique direction (angle Θ). Note that the refraction of light in the glass plate is not illustrated. Further, although only the right side surface is shown in this figure, exposure to the cut side surface (wall surface) is also performed on the left side surface (wall surface). Although the configuration is shown in which the opening of the mask is offset from the center of the notch, it can also be arranged symmetrically, or both the left and right sides can be exposed at the same time.

(4) 第3図dに示す様に、ホトレジスト9を現像
処理したのち、プラズマエツチ等で酸化膜5を
エツチし、窓を開けて、通常の拡散等により
p+領域(表面密度約1019/cm3)3のゲートを形
成する。窓の位置はマスクと露光の角度Θによ
つて任意に選べるので所望の深さの所に形成で
きる。たとえば上記表面より約1μmの深さに
する。
(4) As shown in Fig. 3d, after developing the photoresist 9, the oxide film 5 is etched by plasma etching, etc., a window is opened, and the oxide film 5 is etched by normal diffusion, etc.
A gate of p + region (surface density approximately 10 19 /cm 3 ) 3 is formed. Since the position of the window can be arbitrarily selected depending on the mask and the exposure angle Θ, it can be formed at a desired depth. For example, the depth should be about 1 μm from the above surface.

(5) 第3図eに示す様に通常のホトリソグラフ技
術により上部表面部の酸化膜5を除去して通常
の拡散等によりn+領域(表面密度約1021/cm3
4のソースを0.5μの深さに形成する。続いて通
常のエミツタウオツシユ法又は前述のホトリソ
グラフ技術を用いてp+領域3及びn+領域4に
コンタクト孔を形成する。
(5) As shown in Figure 3e, the oxide film 5 on the upper surface is removed using normal photolithography technology, and an n + region (surface density of approximately 10 21 /cm 3 ) is formed by normal diffusion, etc.
4 sources are formed to a depth of 0.5μ. Subsequently, contact holes are formed in the p + region 3 and the n + region 4 using the usual emitter washing method or the above-mentioned photolithography technique.

(6) 第3図fに示す様に絶縁物9としてポリイミ
ド又はホトレジストを全面塗布し、スパツタ、
プラズマエツチ等により切り込み部分の底部よ
りゲート開孔部を残して不要部を除去し、蒸
着、メツキ及び通常のホトリソグラフ技術によ
り金属電極6,7を形成する。又は絶縁物9を
形成せずに両ゲートよりメツキにより金属電極
6を形成すればその下の領域は空隙とすること
ができる。又n+基板1上にも同様に金属電極
8を形成する。
(6) As shown in Fig. 3f, polyimide or photoresist is applied to the entire surface as the insulating material 9, and
Unnecessary parts are removed from the bottom of the incision by plasma etching, leaving a gate opening, and metal electrodes 6 and 7 are formed by vapor deposition, plating, and conventional photolithography techniques. Alternatively, if the metal electrode 6 is formed by plating from both gates without forming the insulator 9, the area below can be made into a void. Further, a metal electrode 8 is similarly formed on the n + substrate 1.

以上の様な方法によりゲートが半導体表面より
切り込まれた位置に形成されたSITが従来の平面
ゲート型SITと同様の工程で製作できるため工程
数が少なくできる利点を有している。
The above method has the advantage that the SIT, in which the gate is formed at a position cut from the semiconductor surface, can be manufactured in the same process as a conventional planar gate type SIT, and the number of process steps can be reduced.

この実施例においてはnチヤンネルSITについ
て説明したがpチヤンネルについても同様にでき
ることは明白であり、サイリスタ、SITL、メモ
リ等にも応用できる。本発明は、静電誘導型半導
体装置に限らず、主表面より内部に向つて切り込
んだ凹部を有し、その凹部側壁に不純物添加領域
を有する半導体装置の製造に有効である。
In this embodiment, an n-channel SIT was explained, but it is obvious that the same can be done for a p-channel, and it can also be applied to thyristors, SITL, memories, etc. The present invention is effective in manufacturing not only electrostatic induction type semiconductor devices but also semiconductor devices having a recess cut inward from the main surface and having an impurity doped region on the sidewall of the recess.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は平面ゲート型SITの断面図、第2図は
切り込みゲート型SITの断面図、第3図a乃至f
は本発明による切り込みゲート型SITの製造工程
を示す断面図である。 1……n+基板、2……n-領域のチヤンネルな
いしチヤンネル−ドレイン間領域、3……p+
域のゲート、4……n+領域のソース、5……酸
化膜等の絶縁物、6……ゲート金属電極、7……
ソース金属電極、8……ドレイン金属電極、9…
…絶縁物又は空隙。
Figure 1 is a cross-sectional view of the planar gate type SIT, Figure 2 is a cross-sectional view of the notched gate type SIT, and Figures 3 a to f.
FIG. 2 is a cross-sectional view showing the manufacturing process of the cut gate type SIT according to the present invention. 1... n + substrate, 2... channel in n - region or channel-drain region, 3... gate in p + region, 4... source in n + region, 5... insulator such as oxide film, 6... Gate metal electrode, 7...
Source metal electrode, 8... Drain metal electrode, 9...
...Insulator or void.

Claims (1)

【特許請求の範囲】 1 1主表面を有する半導体チツプに、前記主表
面から内部に向う幅d、深さhの凹部を形成する
工程と、少なくとも前記凹部表面にホトレジスト
膜を形成する工程と、前記主表面上に少なくとも
一辺の寸法WがW<dである部分を有する所定の
パターンを有するマスクを配置する工程と、前記
主表面の法線との角度が>arctan(W/h)をな す方向から前記マスクを介し前記凹部側壁部のホ
トレジスト膜のみを選択露光し、前記所定のパタ
ーン寸法と前記角度とによつて決定される寸法お
よび前記所定のパターンの形状のみに対応した窓
を形成する工程と、前記窓を介して不純物を添加
する工程とを含むことを特徴とする半導体装置の
製造方法。
[Scope of Claims] 1. Forming a recess inward from the main surface with a width d and a depth h in a semiconductor chip having a main surface; and forming a photoresist film on at least the surface of the recess. arranging on the main surface a mask having a predetermined pattern having a portion where the dimension W of at least one side satisfies W<d, and the angle between the mask and the normal to the main surface forming >arctan (W/h); selectively exposing only the photoresist film on the side wall of the concave portion from the direction through the mask to form a window corresponding only to the size determined by the predetermined pattern size and the angle and the shape of the predetermined pattern. A method for manufacturing a semiconductor device, comprising: a step of adding an impurity through the window.
JP3660080A 1980-03-21 1980-03-21 Manufacture of semiconductor device Granted JPS56133873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3660080A JPS56133873A (en) 1980-03-21 1980-03-21 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3660080A JPS56133873A (en) 1980-03-21 1980-03-21 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS56133873A JPS56133873A (en) 1981-10-20
JPS6320374B2 true JPS6320374B2 (en) 1988-04-27

Family

ID=12474278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3660080A Granted JPS56133873A (en) 1980-03-21 1980-03-21 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS56133873A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008091793A (en) * 2006-10-04 2008-04-17 Tohoku Univ Exposure method and exposure device

Also Published As

Publication number Publication date
JPS56133873A (en) 1981-10-20

Similar Documents

Publication Publication Date Title
JPH0358173B2 (en)
KR960026895A (en) Ipyrom cell and preparation method thereof
JPH04348077A (en) Thin-film transistor
JP2510599B2 (en) Field effect transistor
US5523605A (en) Semiconductor device and method for forming the same
JPS6320374B2 (en)
US4967257A (en) Semiconductor device having field effect transistors
JPS6315467A (en) Semiconductor device
JPH0964195A (en) Manufacture of field effect type semiconductor device
JPH03173175A (en) Semiconductor device
JP2754202B2 (en) Method for manufacturing semiconductor device
JPH0629476A (en) Thin film cmos transistor
JP3257940B2 (en) Method for manufacturing semiconductor device
US4138781A (en) Method for manufacturing semiconductor device
JPS5834934B2 (en) How to form microstructures
JP2556619B2 (en) Method for manufacturing semiconductor device
JP2708878B2 (en) Method for manufacturing semiconductor device
JPH0369168A (en) Thin film field effect transistor
JPS63313866A (en) Manufacture of semiconductor device
KR100192474B1 (en) Method of manufacturing mosfet
JPS63229747A (en) Manufacture of semiconductor device
JPS61185974A (en) Manufacture of semiconductor device
JPS61189653A (en) Semiconductor integrated device and manufacture thereof
JPH05152536A (en) Manufacture of semiconductor memory
JPS5810857A (en) Complementary type mos semiconductor device