JPS61141619A - Production of zirconia fine powder - Google Patents

Production of zirconia fine powder

Info

Publication number
JPS61141619A
JPS61141619A JP26179484A JP26179484A JPS61141619A JP S61141619 A JPS61141619 A JP S61141619A JP 26179484 A JP26179484 A JP 26179484A JP 26179484 A JP26179484 A JP 26179484A JP S61141619 A JPS61141619 A JP S61141619A
Authority
JP
Japan
Prior art keywords
compound
precipitate
water
sulfate
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26179484A
Other languages
Japanese (ja)
Other versions
JPH0238527B2 (en
Inventor
Hideki Abe
阿部 秀来
Hiroaki Murashima
村島 弘明
Kiroku Oka
岡 紀六
Mitsuteru Toishi
光輝 戸石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DOWA CHEM KK
Dowa Holdings Co Ltd
Original Assignee
DOWA CHEM KK
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DOWA CHEM KK, Dowa Mining Co Ltd filed Critical DOWA CHEM KK
Priority to JP26179484A priority Critical patent/JPS61141619A/en
Publication of JPS61141619A publication Critical patent/JPS61141619A/en
Publication of JPH0238527B2 publication Critical patent/JPH0238527B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To produce zirconia fine powder containing uniformly dispersed stabilizer, by heating an aqueous solution containing dissolved Zr and sulfate radical to form an insoluble precipitate composed mainly of basic Zr sulfate, wherein a specific stabilizer is adsorbed to the precipitate during the formation of the precipitate. CONSTITUTION:One or more water-soluble compounds selected from Y compound, Ca compound, Mg compound Al compound and rare earth element compound and a water-soluble Zr compound are dissolved in water to obtain an aqueous solution containing sulfate radical. The solution is heated to obtain a pulpy mixture of the precipitate composed mainly of basic Zr sulfate. The pH of the mixture is raised to >=8 by the addition of an alkaline substance. The pulpy mixture is separated into solid and liquid, and the solid substance is optionally washed with an alkali, dried, and calcined to obtain the objective zirconia fine powder.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ジルコニアの微粉体、特に部分安定化または
安定化ジルコニアの微粉体の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing fine zirconia powder, particularly partially stabilized or stabilized zirconia fine powder.

〔従来の技術〕[Conventional technology]

ジルコニア粉は、酸化ジルコニウムの粉体であるが、特
に最近のファインセラミックスの分野において、その耐
熱特性の面で重要視されている物質であり、この粉体は
通常は焼結用に供される。
Zirconia powder is a powder of zirconium oxide, and it is a substance that has become important in terms of its heat resistance properties, especially in the recent field of fine ceramics, and this powder is usually used for sintering. .

ジルコニア粉体は焼成されると正方晶主体の焼結体とな
るが、粉体粒度が大きくなると、また酸化ジルコニウム
単味の場合では、常温に冷却される過程で相転移が起こ
り、4〜5%の体積膨張が通常化じる。この焼結晶の体
積変化は精密焼結晶の製造において、その寸法変化はも
とより強度並びに靭性の面で好ましいことではない、こ
のため。
When zirconia powder is fired, it becomes a sintered body mainly consisting of tetragonal crystals, but as the powder particle size increases, and in the case of zirconium oxide alone, a phase transition occurs during the process of cooling to room temperature. % volume expansion becomes normal. This change in the volume of the fired crystal is not desirable in the production of precision fired crystals, not only in terms of dimensional changes but also in terms of strength and toughness.

従来より、イツトリウム酸化物、カルシウム化合物、マ
グネシウム化合物、アルミニウム化合物。
Traditionally, yttrium oxide, calcium compounds, magnesium compounds, and aluminum compounds.

および稀土類元素化合物などの安定化剤を少量配合した
部分安定化ジルコニア粉または比較的多量に配合した安
定化ジルコニア粉(以下、これらを安定化ジルコニア粉
と総称する)が常用に供されている。このような安定化
剤を適量配合すると。
Partially stabilized zirconia powder containing a small amount of a stabilizer such as a rare earth element compound, or stabilized zirconia powder containing a relatively large amount of a stabilizer (hereinafter collectively referred to as stabilized zirconia powder) is commonly used. . When an appropriate amount of such a stabilizer is mixed.

正方晶から単斜晶への転移エネルギーが内部に蓄えられ
、高強度且つ高靭性の焼結体とすることが可能であり、
また安定剤を多く配合したものでは相転移の無い焼結晶
とすることも可能であるが。
The transition energy from tetragonal to monoclinic is stored inside, making it possible to create a sintered body with high strength and high toughness.
Furthermore, if a large amount of stabilizer is blended, it is possible to obtain sintered crystals without phase transition.

この場合の条件として、ジルコニア粉が十分に微粉であ
ることと、安定化剤が均一に分散していることが必要で
ある。 かような安定化ジルコニア粉体を製造する方法
として、従来においては、ジルコニウム水溶液にインド
リウムなどの安定化剤を溶存させた液を出発原料とし。
In this case, the conditions are that the zirconia powder is sufficiently fine and that the stabilizer is uniformly dispersed. Conventionally, as a method for producing such stabilized zirconia powder, a solution in which a stabilizer such as indolium is dissolved in an aqueous zirconium solution is used as a starting material.

(l)、アンモニア水等のアルカリを添加して共沈させ
る方法。
(l) A method of coprecipitating by adding an alkali such as aqueous ammonia.

(2)、加水分解したうえ有機溶媒中に沈澱を置換する
方法。
(2) A method in which the precipitate is hydrolyzed and then replaced in an organic solvent.

(3)、高温高圧下で加水分解する方法。(3) A method of hydrolysis under high temperature and high pressure.

(4)、アルコキシド化合物を合成してこれを加水分解
する方法。
(4) A method of synthesizing an alkoxide compound and hydrolyzing it.

等が提案されていた。etc. were proposed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、ジルコニア粉を製造する場合の従来の方法に
おける次のような問題、すなわち。
The present invention solves the following problems in conventional methods for producing zirconia powder.

T1)の方法の場合には、得られる水酸化物が固く。In the case of method T1), the obtained hydroxide is hard.

微粉にするにはかなりの粉砕を要する。(2)の方法で
は加水分解の速度が遅くこれに100 Hr程度も要し
、また有機溶媒の回収設備や防爆設備が必要でエネルギ
ーコストも高くなる。(3)の方法ではオートクレーブ
を必要とし設備費やエネルギーコストが高くなる。そし
て、(4)の方法では有機金属化合物を合成する過程を
採るので薬品費用がかなり必要とする。といった諸問題
を解決しようとするものであり、粉砕を行わすとも易焼
結性の微粉を得る経済的な安定化ジルコニア微粉体の製
造法の開発を目的としたものである。
It takes a lot of grinding to make it into a fine powder. In method (2), the rate of hydrolysis is slow, requiring about 100 hours, and requires equipment for recovering organic solvents and explosion-proof equipment, resulting in high energy costs. Method (3) requires an autoclave and increases equipment and energy costs. Furthermore, method (4) involves a process of synthesizing an organometallic compound, which requires considerable chemical costs. The purpose of this study is to develop an economical method for producing stabilized zirconia fine powder that can be easily sintered even after pulverization.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、前記の問題点を効果的に解決する安定化ジル
コニア微粉体の製造法として。
The present invention provides a method for producing stabilized zirconia fine powder that effectively solves the above problems.

インドリウム化合物、カルシウム化合物、マグネシウム
化合物、アルミニウム化合物、または稀土類元素化合物
のうちの少な(とも1種の水溶性化合物と、水溶性ジル
コニウム化合物とを水に溶解し、且つ硫酸根を含有した
水溶液を準備し。
An aqueous solution containing at least one water-soluble compound of an indolium compound, a calcium compound, a magnesium compound, an aluminum compound, or a rare earth element compound and a water-soluble zirconium compound and containing a sulfate group. Prepare.

この水溶液の温度を上昇させることにより該溶液から不
溶性の沈澱(実質上ジルコニウム塩基性硫酸塩の沈澱)
を析出させてこの沈澱が分散したパルプを得たうえ。
By increasing the temperature of this aqueous solution, an insoluble precipitate (substantially a precipitate of zirconium basic sulfate) is formed from the solution.
was precipitated to obtain a pulp in which this precipitate was dispersed.

このパルプにアルカリ性物質を添加してパルプ液のpH
を8以上としたあと。
An alkaline substance is added to this pulp to adjust the pH of the pulp liquid.
After setting it to 8 or more.

該パルプを固液分離して固体物質を採取し、この固体物
質をアルカリ洗浄するかまたはせずして乾燥し、そして
仮焼する。
The pulp is subjected to solid-liquid separation to collect the solid material, which is dried with or without alkaline washing and calcined.

ことからなるジルコニア微粉体の製造法を提供するもの
である。
The present invention provides a method for producing fine zirconia powder consisting of the following.

以下に本発明法を詳述する。The method of the present invention will be explained in detail below.

本発明で採用する最°も特徴的な処決は、ジルコニウム
が溶存し且つ硫酸根が存在する水溶液から加熱操作だけ
でジルコニウム塩基性硫酸塩が主体の不溶性の沈澱を生
成させる点と、このジルコニウム塩基性硫酸塩がイオン
吸着能を持つ特性を利用して、この沈澱生成時に、イツ
トリウム、カルシウム化合物、マグネシウム、アルミニ
ウム、または稀土類元素の少なくとも1種を、この沈澱
に吸着させる点、更には沈澱生成後にpHm節してイツ
トリウム、カルシウム、マグネシウム、アルミニウム、
または稀土類元素の少なくとも1種をこの沈澱に固定す
る点にある。
The most characteristic solution employed in the present invention is that an insoluble precipitate consisting mainly of zirconium basic sulfate is generated by simply heating an aqueous solution in which zirconium is dissolved and sulfate radicals are present, and this zirconium Utilizing the property of basic sulfate having ion adsorption ability, at least one of yttrium, calcium compounds, magnesium, aluminum, or rare earth elements is adsorbed to the precipitate during the formation of the precipitate; After generation, adjust the pH to yttrium, calcium, magnesium, aluminum,
Alternatively, at least one rare earth element may be fixed to the precipitate.

本発明の実施にあたり、先ず。In carrying out the present invention, first.

水溶性ジルコニウム化合物9例えば、オキシ塩化ジルコ
ニウム、オキシ硝酸ジルコニウム等と共に5次のような
安定化元素の水溶性化合物の少なくとも1種、すなわち
Water Soluble Zirconium Compound 9 For example, at least one water soluble compound of a stabilizing element such as zirconium oxychloride, zirconium oxynitrate, etc.

水溶性インドリウム化合物1例えば塩化イツトリウム、
硝酸イツトリウム、硫酸イツトリウム等;水溶性カルシ
ウム化合物1例えば塩化カルシウム、硝酸カルシウムな
ど; 水溶性マグネシウム化合物9例えば塩化マグネシウム、
硝酸マグネシウムなど; 水溶性アルミニウム化合物2例えば塩化アルミニウム、
硝酸アルミニウム、硫酸アルミニウム等;水溶性稀土類
元素化合物1例えば稀土類元素の塩化物、硝酸塩、硫酸
塩など: を水に溶解させると共に、硫酸根の調整剤として硫酸ア
ンモニウム、硫酸ナトリウム、硫酸マグネシウム、硫酸
アルミニウムなどを添加し、液中のジルコニウム濃度が
0.1〜1.0 ’sol/ It 、液中の硫酸根濃
度がジルコニウム濃度1 o+olに対して0.4〜0
.8  molの程度となるように調整した実質上固体
状物質の存在しない水溶液を作成する。この水溶液の調
液操作は30℃以下で行う、この温度範囲で調液すれば
、沈澱剤となる硫酸根を添加しても液は透明のままに維
持され、沈澱の生成は抑えられる。本発明において、こ
のようにジルコニウムと共に、イツトリウム、カルシウ
ム、マグネシウム、アルミニウム、稀土類元素の少なく
とも1種が完全に熔解し且つ硫酸根含有の水溶液を得る
ことがまず重要である。この水溶液のpHは通常は2以
下である。
Water-soluble indolium compound 1 such as yttrium chloride,
Yttrium nitrate, yttrium sulfate, etc.; Water-soluble calcium compounds 1, such as calcium chloride, calcium nitrate, etc.; Water-soluble magnesium compounds 9, such as magnesium chloride,
Magnesium nitrate, etc.; Water-soluble aluminum compound 2, such as aluminum chloride,
Aluminum nitrate, aluminum sulfate, etc.; water-soluble rare earth element compounds 1, such as rare earth element chlorides, nitrates, sulfates, etc.: are dissolved in water, and ammonium sulfate, sodium sulfate, magnesium sulfate, sulfuric acid are added as sulfate group regulators. Aluminum etc. are added, and the zirconium concentration in the liquid is 0.1 to 1.0 'sol/It, and the sulfate group concentration in the liquid is 0.4 to 0 per zirconium concentration 1 o + ol.
.. An aqueous solution containing substantially no solid substance is prepared so as to have a concentration of about 8 mol. The preparation operation of this aqueous solution is carried out at a temperature of 30° C. or below. If the solution is prepared within this temperature range, the solution will remain transparent even when a sulfuric acid group serving as a precipitant is added, and the formation of precipitates will be suppressed. In the present invention, it is first important to obtain an aqueous solution in which at least one of yttrium, calcium, magnesium, aluminum, and rare earth elements is completely dissolved in addition to zirconium and contains sulfate radicals. The pH of this aqueous solution is usually 2 or less.

この透明な水溶液を加熱してゆくと、液温の上昇ととも
に液に濁りを生じ、約80℃以上ともなると完全にジル
コニウム塩基性硫酸塩の沈澱が生じる。この−互生じた
沈澱は液の温度を低下させても再び溶解するような現象
は殆ど起こらず、従って加熱操作によるだけでこの不溶
性の沈澱が分散したバルブを得ることができる0本発明
の場合には、加熱操作だけで沈澱を生成させるのである
から、生成する沈澱は液のどの部分をとっても均一であ
り、また沈澱生成時のpHも変動しないので、結果的に
非常に均一性の高い微細なものが得られる。加熱操作は
大気圧下で十分である。
When this transparent aqueous solution is heated, the solution becomes cloudy as the temperature rises, and when the temperature reaches about 80° C. or higher, zirconium basic sulfate completely precipitates. This mutually generated precipitate hardly dissolves again even if the temperature of the liquid is lowered, and therefore a bulb in which this insoluble precipitate is dispersed can be obtained simply by heating operation.In the case of the present invention Since the precipitate is generated only by heating, the precipitate that is formed is uniform in all parts of the liquid, and the pH during precipitate formation does not change, resulting in a highly uniform fine grain. You can get something. The heating operation is sufficient under atmospheric pressure.

このジルコニウム塩基性硫酸塩は、一般式。This zirconium basic sulfate has the general formula.

(ZrO) n  (SO4) ta ・x HzOで
表されるものであるが、この沈澱は金属イオンを吸着す
る特性がある。従って、水溶液中にジルコニア粉体の安
定化剤(酸化インドリウム、酸化カルシウム、rR化マ
グネシウム、酸化アルミニウム、稀土類元素酸化物など
)の先駆体であるインドリウムイオンや、カルシウムイ
オン、マグネシウムイオン、アルミニウムイオン、稀土
類元素イオンなどを溶存させておくと、この沈澱の生成
の過程または生成後において、これらのイオンがこの沈
澱に吸着される。pHの変動のない加熱操作だけで粒子
形状を決定するジルコニウム塩基性硫酸塩の不溶性沈澱
を生成させ、且つ、そのさいにイツトリウム、カルシウ
ム、マグネシウム、アルミニウム、稀土類元素などをこ
の沈澱に吸着させる点に本発明の大きな特徴がある。
This precipitate is expressed as (ZrO) n (SO4) ta ·x HzO, and has the property of adsorbing metal ions. Therefore, indium ions, which are precursors of zirconia powder stabilizers (indolium oxide, calcium oxide, RR magnesium, aluminum oxide, rare earth element oxides, etc.), calcium ions, magnesium ions, When aluminum ions, rare earth element ions, etc. are dissolved, these ions are adsorbed to the precipitate during or after the precipitate is formed. The point is that an insoluble precipitate of zirconium basic sulfate, which determines the particle shape, is generated only by a heating operation without pH fluctuation, and at the same time, yttrium, calcium, magnesium, aluminum, rare earth elements, etc. are adsorbed to this precipitate. This is a major feature of the present invention.

次に、このようにして得られたバルブに、アルカリ性物
質を添加し、最終的にはパルプ液のpHが8以上となる
ようにpHm整する。このアルカリ剤添加によるpHm
整により、液中になお溶存しているイツトリウム、カル
シウム、マグネシウム、アルミニウム、稀土類元素など
を水酸化物としてジルコニウム化合物に共沈させること
ができるし、またジルコニウム塩基性硫酸塩から硫酸根
を親離させることができる。例えば、該バルブにpHが
9以上となるようにアルカリ性物質例えばアンモニア水
やアンモニアガスを加えると、液中のイツトリウム、カ
ルシウム、マグネシウム、アルミニウム、稀土類元素な
どは水酸化物となって該沈澱に固定される。またこのア
ルカリ添加によって沈澱から硫酸根を離脱させることが
できる。
Next, an alkaline substance is added to the valve thus obtained, and the pH of the pulp liquid is finally adjusted to 8 or higher. pHm due to the addition of this alkaline agent
By this process, yttrium, calcium, magnesium, aluminum, rare earth elements, etc. still dissolved in the liquid can be co-precipitated as hydroxides into the zirconium compound, and the sulfate group can be converted from the zirconium basic sulfate to parenterized sulfate groups. You can let go. For example, when an alkaline substance such as ammonia water or ammonia gas is added to the valve so that the pH becomes 9 or higher, yttrium, calcium, magnesium, aluminum, rare earth elements, etc. in the liquid become hydroxides and are added to the precipitate. Fixed. Also, by adding this alkali, sulfate radicals can be removed from the precipitate.

この硫酸根の離脱は、パルプにアルカリ剤を添加しても
よいが、pHが8以上の洗浄水を用意し。
To remove the sulfate radicals, an alkaline agent may be added to the pulp, but washing water with a pH of 8 or higher should be prepared.

この洗浄水によるパルプのデカント洗浄、あるいはパル
プの濾過洗浄を行うのが実際上は好適である。このよう
なアルカリ液による洗浄を、洗液に硫酸根が検出されな
くなるまで行うことにより硫酸根の実質止金てを離脱さ
せることができる。硫酸根が離脱され且つ固液分離によ
り液を分離した微粒子は、ジルコニウムの水酸化物Zr
O(OH) 2に、インドリウムの水酸化物Y (OR
) 3カルシウムの水酸化物 Ca (OR) 21 
マグネシウムの水酸化物 Mg (OH) 2 、アル
ミニウムの水酸化物^1(OH) 3 、稀土類元素の
水酸化物などが固定されたものであると考えられる。
In practice, it is preferable to perform decant washing of the pulp or filtration washing of the pulp with this washing water. By carrying out such washing with an alkaline solution until no sulfate radicals are detected in the washing solution, the sulfuric acid radicals can be effectively removed. The fine particles from which the sulfate group has been removed and the liquid separated by solid-liquid separation are zirconium hydroxide Zr.
O(OH) 2, indolium hydroxide Y (OR
) 3 Calcium hydroxide Ca (OR) 21
It is thought that magnesium hydroxide Mg (OH) 2 , aluminum hydroxide ^1(OH) 3 , rare earth element hydroxide, etc. are fixed.

この水酸化物からなる微粒子は、乾燥したあとこれを常
法による仮焼処理に付すことにより安定化ジルコニア微
粉体の成品とすることができる。
After drying, the fine particles of hydroxide can be made into a stabilized zirconia fine powder by subjecting them to a conventional calcining treatment.

このジルコニア微粉体成品の平均粒子径は、出発液であ
る水溶液を得るさいの硫酸根濃度と所定の関係をもつこ
とがわかった。従って、この硫酸根濃度の調整によりジ
ルコニア微粉体成品の粒子径の調整ができる。またジル
コニア微粉体の粒子中の結晶子径は仮焼するさいの加熱
温度によって調整できる。
It has been found that the average particle diameter of this zirconia fine powder product has a predetermined relationship with the sulfate radical concentration when obtaining the aqueous starting solution. Therefore, by adjusting the sulfate radical concentration, the particle size of the zirconia fine powder product can be adjusted. Further, the crystallite size in the particles of the zirconia fine powder can be adjusted by adjusting the heating temperature during calcining.

第1表は1本発明法に従ってy2 o3を3 ggo1
%で配合したジルコニア粉を製造した場合の出発液であ
る水溶液の硫酸根濃度を変化させた場合のジルコニア粉
の平均粒径並びに正方晶率を示す。
Table 1 shows how y2 o3 is converted to 3 ggo1 according to the method of the present invention.
The graph shows the average particle size and tetragonal crystal ratio of zirconia powder when the sulfate group concentration of the aqueous solution which is the starting solution was changed when producing zirconia powder mixed in %.

また第2表は同じ<Y2O3を3 so1%で配合した
ジルコニア粉を製造した場合の仮焼時の加熱温度と結晶
子径並びに比表面積の関係を示す。
Further, Table 2 shows the relationship between the heating temperature during calcination, the crystallite diameter, and the specific surface area when zirconia powder containing the same <Y2O3 at 3so1% is produced.

第1表 第2表 第1表より明らかなように、最終成品のジルコニア粉体
の粒径は水溶液の硫酸根濃度を高くするほど大きくなる
傾向にあり、微細な粒径を得ようとするば9例えば1μ
醜以下の粒径を得たい場合には、 Sot/ ZrO2
のモル比で0.5以下となるような硫酸根濃度に調整す
ればよい。そして、この微細な粒径の場合にはイツトリ
ヤの量が一定であっても正方晶率を高くすることができ
る。また。
As is clear from Table 1 and Table 2, the particle size of the zirconia powder in the final product tends to increase as the concentration of sulfate groups in the aqueous solution increases, and when trying to obtain a fine particle size, 9 For example 1μ
If you want to obtain a particle size smaller than Ugly, use Sot/ZrO2
The concentration of sulfate radicals may be adjusted to a molar ratio of 0.5 or less. In the case of this fine grain size, the tetragonal crystal ratio can be increased even if the amount of ittriya is constant. Also.

第2表に見られるように仮焼温度の調節によって結晶子
径や比表面積の調整が可能である。
As shown in Table 2, the crystallite diameter and specific surface area can be adjusted by adjusting the calcination temperature.

なお、安定化剤としてジルコニア粉に配合するイツトリ
ヤの配合量の調整は、安定化剤として必要な量のイツト
リウムを当初の水溶液に溶存させておけばよく、これに
、よって水酸化ジルコニウムに必要量の水酸化インドリ
ウムを固定することができると共に、このイツトリウム
は微粒子各々に均一に分散した状態で固定させることが
できることになる。
The amount of yttriya added to zirconia powder as a stabilizer can be adjusted by dissolving the required amount of yttrium as a stabilizer in the initial aqueous solution. In addition to being able to fix indium hydroxide, this yttrium can also be fixed in a uniformly dispersed state in each of the fine particles.

以上のように本発明法によると、湿式1程においては原
料以外に使用する調整剤としてはアルカリ剤だけでよく
、また沈澱生成もpHに影響をあたえない液の加熱操作
だけであり、特別の設備を要することもないので、非常
に経済的にこれを実施できると共に、得られる微粒子は
硫酸根が親離された水酸化物であるから、これをジルコ
ニアに仮焼する処理においても亜硫酸ガスの発生が無い
点でも有利なものとなる。そして、最終成品のジルコニ
ア粉体の粒径や正方晶率の調整並びに安定他剤配合量の
調整も良好に実施でき、平均粒径が小さく且つ安定化剤
が均一に分散配合されたジルコニア微粉体を有利に製造
できる。
As described above, according to the method of the present invention, in the first step of the wet process, only an alkaline agent is required as a regulator used in addition to the raw materials, and precipitation is only caused by heating the liquid, which does not affect the pH. Since no equipment is required, this process can be carried out very economically, and since the fine particles obtained are hydroxides from which the sulfuric acid groups have been separated, sulfur dioxide gas is not emitted during the process of calcining them into zirconia. It is also advantageous in that it does not occur. Furthermore, the particle size and tetragonal crystal ratio of the final product zirconia powder can be well adjusted, as well as the amount of other stabilizing agents blended, and the zirconia fine powder has a small average particle size and the stabilizer is evenly dispersed. can be manufactured advantageously.

〔実施例〕〔Example〕

実施例1 オキシ塩化ジルコニウム(Zr0C1z ・8)+20
 )を純水で溶解し、  ZrO2濃度で310.9 
g/ lの液を1001得てこれを原液とした。この液
を12.871とり、別に酸化イツトリウム(Y203
 99.9%)を226.9gr秤量し塩酸に溶解して
塩化イツトリウムとしたイツトリウム液と混合し、水で
希釈して全量を80 βとした。この時のZrO2濃度
は50 g/ lである。この液に1928 grの硫
酸アンモニウムを固体のまま添加し、攪拌を行って透明
な混合溶液を得た。この液を加熱し液温を80〜85℃
に保持して沈澱を生成させ、沈澱生成反応を完結させた
Example 1 Zirconium oxychloride (Zr0C1z ・8) +20
) was dissolved in pure water, and the ZrO2 concentration was 310.9.
1001 g/l solution was obtained and used as a stock solution. Take 12.871 of this liquid and separately add yttrium oxide (Y203
99.9%) was weighed, 226.9g was dissolved in hydrochloric acid to make yttrium chloride, and mixed with a yttrium solution, which was diluted with water to make the total amount 80 β. The ZrO2 concentration at this time was 50 g/l. To this liquid, 1928 gr of ammonium sulfate was added in solid form and stirred to obtain a transparent mixed solution. Heat this liquid to a temperature of 80-85℃
The mixture was maintained at a temperature of 100 mL to form a precipitate, and the precipitate-forming reaction was completed.

このようにして得たパルプ液に、アンモニア水を添加し
て液のpHを9以上とした。そして、沈澱物を濾過し、
pHが9以上に調節した洗浄液でこの沈澱物を洗浄した
Aqueous ammonia was added to the pulp liquid thus obtained to adjust the pH of the liquid to 9 or higher. Then filter the precipitate,
This precipitate was washed with a washing solution whose pH was adjusted to 9 or higher.

次いでこれを乾燥し、900℃の温度で仮焼してY2O
3が3 mo1%の安定化ジルコニア微粉体を得た。こ
の微粉体の物性は、嵩密度0.43  g/d。
This is then dried and calcined at a temperature of 900°C to form Y2O.
Stabilized zirconia fine powder containing 3 mo1% of 3 was obtained. The physical properties of this fine powder are a bulk density of 0.43 g/d.

タップ密度0.90  g/aJ、平均粒子径0.32
μ−9比表面積24 //gr、正方晶率97%であっ
た。
Tap density 0.90 g/aJ, average particle size 0.32
The μ-9 specific surface area was 24//gr, and the tetragonal crystal ratio was 97%.

この微粉体を簡単な成形を行ってから1450℃で焼結
したところ、密度が5.95  g/dの純白の焼結体
が得られ・た、また、該微粉体を3時間振動ミルで粉砕
してから1500℃で焼結した場合にはその焼結体の密
度は6.05  g/−であった。
When this fine powder was briefly molded and sintered at 1450°C, a pure white sintered body with a density of 5.95 g/d was obtained. When the powder was pulverized and then sintered at 1500°C, the density of the sintered body was 6.05 g/-.

実施例2 実施例1で調整したジルコニウムの原液12.872を
とり、これに、酸化イツトリウムを226.9gr秤量
し塩酸に溶解して塩化イツトリウムとしたイツトリウム
液を混合し水で希釈して全量を801とした。この液の
ZrO2濃度は50g/jtである。
Example 2 Take 12.872 grams of the zirconium stock solution prepared in Example 1, mix it with a yttrium solution in which 226.9 grams of yttrium oxide was weighed and dissolved in hydrochloric acid to make yttrium chloride, and diluted with water to make up the entire amount. It was set to 801. The ZrO2 concentration of this liquid is 50 g/jt.

この液に2357 grの硫酸アンモニウムを固体のま
ま添加し、攪拌を行って透明な混合溶液を得た。
To this liquid, 2357 gr of ammonium sulfate was added as a solid and stirred to obtain a transparent mixed solution.

この液を加熱し液温を80〜85℃に保持して沈澱を生
成させ、沈澱生成反応を完結させた。ここまでの所要時
間は約5時間であった。
This liquid was heated and the liquid temperature was maintained at 80 to 85°C to form a precipitate, thereby completing the precipitation reaction. The time required up to this point was approximately 5 hours.

このようにして得たパルプ液に、アンモニア水を添加し
て液のpHを9以上とした。そして、沈澱物を濾過し、
pHが9以上に関節した洗浄液でこの沈澱物を洗浄した
Aqueous ammonia was added to the pulp liquid thus obtained to adjust the pH of the liquid to 9 or higher. Then filter the precipitate,
This precipitate was washed with a washing solution having a pH of 9 or higher.

次いでこれを乾燥し、900℃の温度て仮焼してY2O
3が3−01%の安定化ジルコニア微粉体を得た。この
微粉体の物性は、嵩密度0.69  g/ai。
Next, this was dried and calcined at a temperature of 900°C to form Y2O.
A stabilized zirconia fine powder containing 3-01% of No. 3 was obtained. The physical properties of this fine powder are a bulk density of 0.69 g/ai.

タップ密度1.47  g/d、平均粒子径1.23μ
m。
Tap density 1.47 g/d, average particle size 1.23μ
m.

比表面積22 td/gr、正方晶率74%であった。The specific surface area was 22 td/gr, and the tetragonal crystal ratio was 74%.

この微粉体を1450℃で2Hr焼結したときの焼結密
度は5.56  g/dであった。また、該微粉体を3
時間振動ミルで粉砕してから1500℃で焼結した場合
にはその焼結体の密度は6.01  g/aJであり、
この焼結体の正方晶率は98%であった。
When this fine powder was sintered at 1450° C. for 2 hours, the sintered density was 5.56 g/d. In addition, the fine powder was
When pulverized with a time vibration mill and sintered at 1500°C, the density of the sintered body is 6.01 g/aJ,
The tetragonal crystal ratio of this sintered body was 98%.

実施例3 実施例1で調整したジルコニウムの原液12.871を
とり、これに無水塩化カルシウム190grを添加して
液量を80j!とじた0次に、この混合溶液に、加温し
ない状態で、硫酸アンモニウム192.8gr添加した
。そのさい、液は完全に透明になり。
Example 3 Take 12.871 g of the zirconium stock solution prepared in Example 1 and add 190 g of anhydrous calcium chloride to the solution to bring the liquid volume to 80 j! Then, 192.8g of ammonium sulfate was added to this mixed solution without heating. At that time, the liquid becomes completely clear.

石膏の析出は見られなかった。硫酸アンモニウムが完全
に溶解した時点で加温を始め、80〜85℃に2時間保
持することによって沈澱を生成させ且つこの沈澱生成反
応を完結した。このようにして得たパルプ液にアンモニ
ア水を添加して液のpHを10以上とした。そして、沈
澱物を濾過し、この沈澱をpH10以上に調整した洗浄
液で洗浄した。
No gypsum precipitation was observed. When ammonium sulfate was completely dissolved, heating was started, and the temperature was maintained at 80 to 85°C for 2 hours to form a precipitate and complete the precipitation reaction. Aqueous ammonia was added to the pulp liquid thus obtained to adjust the pH of the liquid to 10 or higher. Then, the precipitate was filtered, and the precipitate was washed with a washing liquid adjusted to have a pH of 10 or higher.

ついで、これを乾燥し、900℃の温度で仮焼してCa
O安定化ジルコニア微粉体を得た。この微粉体の物性は
、平均粒径1.20μ請、嵩密度0.70g / d 
、タップ密度1.12  g/cg1.比表面積22r
d / g *正方晶率52%、 1600℃での焼結
密度は5.65 g/aj、抗折力は7.0ksr/m
2であった。
Next, this was dried and calcined at a temperature of 900°C to produce Ca.
O-stabilized zirconia fine powder was obtained. The physical properties of this fine powder include an average particle size of 1.20 μm and a bulk density of 0.70 g/d.
, tap density 1.12 g/cg1. Specific surface area 22r
d/g *Tetragonal crystal ratio 52%, sintered density at 1600℃ 5.65 g/aj, transverse rupture strength 7.0ksr/m
It was 2.

実施例4 塩化カルシウムの代わりに、塩化マグネシウム(MgC
1z 6H20)を587gr添加した以外は、実施例
3と同じ処決で?1gO安定化ジルコニア微粉体を作製
した。得られた微粉体の物性は、平均粒径0.35μ鋼
、嵩密度0.39  g/d、タップ密度0.84  
g/cd、比表面積20 rd/g 、正方晶率35%
Example 4 Magnesium chloride (MgC
Same treatment as Example 3 except that 587 gr of 1z 6H20) was added. A 1gO stabilized zirconia fine powder was produced. The physical properties of the obtained fine powder are as follows: average particle diameter: 0.35μ steel, bulk density: 0.39 g/d, tap density: 0.84
g/cd, specific surface area 20 rd/g, tetragonal crystal ratio 35%
.

1600℃での焼結密度5.43  g/aj、抗折力
は18眩/鶴2であった。
The sintered density at 1600° C. was 5.43 g/aj, and the transverse rupture strength was 18 dazzles/tsuru 2.

Claims (1)

【特許請求の範囲】 イットリウム化合物、カルシウム化合物、マグネシウム
化合物、アルミニウム化合物、または稀土類元素化合物
のうちの少なくとも1種の水溶性化合物と、水溶性ジル
コニウム化合物とを水に熔解し、且つ硫酸根を含有した
水溶液を準備し、この水溶液の温度を上昇させることに
より該溶液から不溶性の沈澱を析出させてこの沈澱が分
散したパルプを得たうえ、 このパルプにアルカリ性物質を添加してパルプ液のpH
を8以上としたあと、 該パルプを固液分離して固体物質を採取し、この固体物
質をアルカリ洗浄するかまたはせずして乾燥し、そして
■焼することからなるジルコニア微粉体の製造法。
[Scope of Claims] At least one water-soluble compound selected from a yttrium compound, a calcium compound, a magnesium compound, an aluminum compound, or a rare earth element compound and a water-soluble zirconium compound are dissolved in water, and a sulfuric acid radical is dissolved in water. An insoluble precipitate is precipitated from the solution by increasing the temperature of the aqueous solution to obtain a pulp in which the precipitate is dispersed, and an alkaline substance is added to the pulp to adjust the pH of the pulp liquid.
8 or higher, the pulp is solid-liquid separated to collect a solid substance, the solid substance is dried with or without alkaline washing, and then sintered. .
JP26179484A 1984-12-13 1984-12-13 Production of zirconia fine powder Granted JPS61141619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26179484A JPS61141619A (en) 1984-12-13 1984-12-13 Production of zirconia fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26179484A JPS61141619A (en) 1984-12-13 1984-12-13 Production of zirconia fine powder

Publications (2)

Publication Number Publication Date
JPS61141619A true JPS61141619A (en) 1986-06-28
JPH0238527B2 JPH0238527B2 (en) 1990-08-30

Family

ID=17366800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26179484A Granted JPS61141619A (en) 1984-12-13 1984-12-13 Production of zirconia fine powder

Country Status (1)

Country Link
JP (1) JPS61141619A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62226815A (en) * 1986-03-27 1987-10-05 Nippon Shokubai Kagaku Kogyo Co Ltd Production of zirconia base colloidal sol
JPS632809A (en) * 1986-06-19 1988-01-07 Nippon Shokubai Kagaku Kogyo Co Ltd Production of high-purity zirconia sol
JP2003206137A (en) * 2002-01-11 2003-07-22 Dowa Mining Co Ltd Partially stabilized or stabilized zirconia fine powder, precursor thereof and production method therefor
JP2010143813A (en) * 2008-12-22 2010-07-01 Dai Ichi Kogyo Seiyaku Co Ltd Zirconium oxide, precursor of the same and method for producing them
JP2012504095A (en) * 2008-09-30 2012-02-16 サン−ゴベン・セントル・ドゥ・レシェルシェ・エ・デチュード・ユーロペアン Method for producing a derivative, hydrate or oxide of zirconium
JP2013527032A (en) * 2010-05-19 2013-06-27 ロデイア・オペラシヨン Compositions based on cerium, zirconium and tungsten, methods of preparation and applications in catalysts
WO2014115835A1 (en) * 2013-01-25 2014-07-31 Dowaハイテック株式会社 Stabilized zirconia powder and method for manufacturing precursor thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB112973A (en) * 1917-01-29 1918-01-29 Imp Trust For The Encouragemen Manufacture of a New Compound of Zirconium and its application in the Production of Pure Zirconia.
US2387046A (en) * 1941-07-31 1945-10-16 Titanium Alloy Mfg Co Preparation of zirconium dioxide
US2564522A (en) * 1945-03-29 1951-08-14 Rohden Charles De Process for preparing zirconium compounds
FR1375076A (en) * 1965-01-27
JPS5939367A (en) * 1982-08-30 1984-03-03 Nec Corp Automatic rotary coater
JPS5978928A (en) * 1982-10-25 1984-05-08 Agency Of Ind Science & Technol Manufacture of zirconia powder
JPS59111922A (en) * 1982-12-14 1984-06-28 Dowa Chem Kk Production of fine powder of zirconium oxide

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1375076A (en) * 1965-01-27
GB112973A (en) * 1917-01-29 1918-01-29 Imp Trust For The Encouragemen Manufacture of a New Compound of Zirconium and its application in the Production of Pure Zirconia.
US2387046A (en) * 1941-07-31 1945-10-16 Titanium Alloy Mfg Co Preparation of zirconium dioxide
US2564522A (en) * 1945-03-29 1951-08-14 Rohden Charles De Process for preparing zirconium compounds
JPS5939367A (en) * 1982-08-30 1984-03-03 Nec Corp Automatic rotary coater
JPS5978928A (en) * 1982-10-25 1984-05-08 Agency Of Ind Science & Technol Manufacture of zirconia powder
JPS59111922A (en) * 1982-12-14 1984-06-28 Dowa Chem Kk Production of fine powder of zirconium oxide

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62226815A (en) * 1986-03-27 1987-10-05 Nippon Shokubai Kagaku Kogyo Co Ltd Production of zirconia base colloidal sol
JPH0355413B2 (en) * 1986-03-27 1991-08-23
JPS632809A (en) * 1986-06-19 1988-01-07 Nippon Shokubai Kagaku Kogyo Co Ltd Production of high-purity zirconia sol
JPH0355414B2 (en) * 1986-06-19 1991-08-23
JP2003206137A (en) * 2002-01-11 2003-07-22 Dowa Mining Co Ltd Partially stabilized or stabilized zirconia fine powder, precursor thereof and production method therefor
JP2012504095A (en) * 2008-09-30 2012-02-16 サン−ゴベン・セントル・ドゥ・レシェルシェ・エ・デチュード・ユーロペアン Method for producing a derivative, hydrate or oxide of zirconium
JP2010143813A (en) * 2008-12-22 2010-07-01 Dai Ichi Kogyo Seiyaku Co Ltd Zirconium oxide, precursor of the same and method for producing them
JP2013527032A (en) * 2010-05-19 2013-06-27 ロデイア・オペラシヨン Compositions based on cerium, zirconium and tungsten, methods of preparation and applications in catalysts
WO2014115835A1 (en) * 2013-01-25 2014-07-31 Dowaハイテック株式会社 Stabilized zirconia powder and method for manufacturing precursor thereof
JP2014141383A (en) * 2013-01-25 2014-08-07 Dowa Hightech Co Ltd Method for manufacturing stabilized zirconia powder and precursor thereof
CN104837774A (en) * 2013-01-25 2015-08-12 同和高科技有限公司 Stabilized zirconia powder and method for manufacturing precursor thereof
KR20150109326A (en) 2013-01-25 2015-10-01 도와 하이테크 가부시키가이샤 Stabilized zirconia powder and method for manufacturing precursor thereof

Also Published As

Publication number Publication date
JPH0238527B2 (en) 1990-08-30

Similar Documents

Publication Publication Date Title
JP2523776B2 (en) Composition for zirconia ceramic material
US4619817A (en) Hydrothermal method for producing stabilized zirconia
JPH02296727A (en) Sinterable zirconium oxide powder and production thereof
US4769351A (en) Hydrothermal process for preparing zirconia-alumina base ultra-fine powders of high purity
JP3284413B2 (en) Method for producing hydrated zirconia sol and zirconia powder
KR101121876B1 (en) Process for preparing zirconium oxides and zirconium-based mixed oxides
JPS61141619A (en) Production of zirconia fine powder
JP3906352B2 (en) Method for producing YAG transparent sintered body
JPH0346407B2 (en)
JP2003206137A (en) Partially stabilized or stabilized zirconia fine powder, precursor thereof and production method therefor
JPH04280815A (en) Fine particulate alkali titanate and its production
KR100473399B1 (en) Process for the preparation of fine ceramic powders
JP2882040B2 (en) Method for producing hydrated zirconia sol
JP2004344878A (en) Zirconium group oxide catalyst and its production method
JPS60166226A (en) Preparation of zirconium oxide powder containing rare earth element as solid solution
JPH0834613A (en) Production of high homogeneity and high purity yttrium-containing zirconia powder
JP3237140B2 (en) Method for producing hydrated zirconia sol and zirconia powder
JPH06171944A (en) Production of zirconium oxide powder
KR20040038443A (en) Preparation of Nano-sized Crystalline Titanic Acid Strontium Powder from Aqueous Titanium Tetrachloride and Strontium Carbonate Solutions Prepared by Use of Inorganic Acids
JP2004345942A (en) Zirconium based composite oxide and method for manufacturing the same
KR20060102928A (en) Manufacturing method of barium titanate powder
KR100503857B1 (en) Preparation of Nano-sized Crystalline Titanic Acid Barium Powder from Aqueous Titanium Tetrachloride and Barium Chloride Solutions Prepared by Use of Inorganic Acids
JPS6051617A (en) Preparation of zirconium oxide powder containing yttrium in the state of solid solution
JPS62128924A (en) Production of zirconium oxide series fine powder
JPS62212224A (en) Production of zirconia solid solution crystal fine powder

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term