JPH0355414B2 - - Google Patents

Info

Publication number
JPH0355414B2
JPH0355414B2 JP61141488A JP14148886A JPH0355414B2 JP H0355414 B2 JPH0355414 B2 JP H0355414B2 JP 61141488 A JP61141488 A JP 61141488A JP 14148886 A JP14148886 A JP 14148886A JP H0355414 B2 JPH0355414 B2 JP H0355414B2
Authority
JP
Japan
Prior art keywords
sol
colloidal
zirconia
washing
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61141488A
Other languages
Japanese (ja)
Other versions
JPS632809A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14148886A priority Critical patent/JPS632809A/en
Publication of JPS632809A publication Critical patent/JPS632809A/en
Publication of JPH0355414B2 publication Critical patent/JPH0355414B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は高純度のジルコルアゾルおよびこれを
用いてなる分散性にすぐれたジルコニア系微粉末
の製造方法に関する。 ジルコニアは単斜晶系、正方晶系および立法晶
系の3種類の結晶構造を有し、また耐蝕性、強靭
性、酸素イオン伝導性等他の材料にない特性を有
していることから酸素センサー、電子部品、各種
構造材、あるいは生体材料等いろいろな用途に応
用され素材として今後増々重要視されることが予
測されている。そして本発明が提供するような、
高純度のジルコニアゾルや分散性にすぐれた微粉
末はさらに以下のごとき用途が見出されるもので
ある。すなわちセラミツクスあるいは金属に分散
させて強化セラミツクスあるいは分散強化合金用
に使用され、さらにまたガラス、プラスチツク成
形品、シート、フイルム等の基材に本発明が提供
するようなゾルや微粉末を分散させ、あるいは本
発明が提供するようなゾルよ微粉末を含むコーテ
イング膜を上記基材に製膜し、基材に耐熱性、反
応防止、導電性、紫外線吸収、硬度、耐薬品性、
耐久性等の機能を付与し、あるいは向上させるた
めに使用される。とくに、これらのコロイドゾル
や微粉末を透明基材に適用した場合に基材の透明
性を損なうことなく上記の機能の付与向上がはか
れる利点がある。 [従来の技術] ジルコニウム塩水溶液からジルコニアゾルを製
造する方法としては、ジルコニウム塩水溶液と塩
基性物質との反応によつて生じた沈殿物を酸によ
つて解膠するかあるいはジルコニウム塩水溶液に
塩基性物質を沈殿が生じない程度のPHまで注入混
合し、ゾルを生成させる方法が知られている。 さらにジルコニウム塩を含む水溶液を常圧ある
いは加圧下で加熱して加水分解することによりジ
ルコニア系コロイドゾルをえる方法が公知であ
る。 [発明が解決しようとする問題点] しかしながら、上記の方法により製造されるゾ
ルあるいはコロイドゾルを使用する場合、反応後
えられるこれらゾル溶液中の陰イオンや未反応の
金属イオンの除去することが必要となる。このゾ
ルの洗浄方法としては、半透膜による拡散透析ま
たは電気透析による方法、あるいはイオン交換樹
脂を使用する方法が知られているが、これらの方
法は洗浄に長時間必要としたり、洗浄操作が煩雑
であるという欠点がある。 近年限外過技術の進歩により、上記の方法よ
り簡便かつ効率の良いゾルの洗浄が可能となつ
た。しかしながら、この方法で純水を使用してジ
ルコニアゾルの洗浄を行うと、ゾルの洗浄が進む
につれ洗浄効果が低下するという現象が見られ
た。これはゾル粒子とイオンの間に何らかの親和
力が存在し洗い流されるべきイオンがゾル粒子に
強く残存付着しているためと思われる。 かくして本発明は限外過膜を用いるジルコニ
アゾルの洗浄においてゾルの凝集をおこさないよ
うに塩基性物質を添加するこにより、上記親和力
を破壊して洗浄効率をあげ、ゾル中のイオン濃度
を極めて低くさせ、かくして高純度でかつ貯蔵安
定性の高いジルコニアゾルを製造しようとするも
のである。 [手段] 塩化ジルコニル、硝酸ジルコニル、硫酸ジルコ
ニルまたは酢酸ジルコニルなどの有機酸ジルコニ
ル等の水可溶性ジルコリウム塩類から選ばれるジ
ルコニウム塩水溶液からジルコニアゾルを調製す
る。このゾルの製法には、従来公知方法が用いら
れ、上述の酸による解膠法、塩基添加法、加熱加
水分解法が適宜用いられる。しかる後、このゾル
溶液を限外過装置に導き洗滌を行なう。過装
置は膜の目詰りの少ないことから循環式のものを
使用することか望ましく陰イオンや金属イオンを
含む溶媒を系外に排出させ濃縮されたコロイドゾ
ル溶液に溶媒を追加して連続的に洗滌を行なう。
この際、ゾル溶液中にゾル粒子の凝集を起こさな
い塩基性物質を添加して洗浄を行なう。好適には
まず純水のみでゾルの洗浄をある程度行なつた後
該塩基性物質を添加し、洗浄を継続する方法が採
用される。該塩基性物質の添加量はゾル溶液のPH
が中性から弱アルカリ性、すなわち5.0〜9.0の範
囲となるまでの量で充分である。又該塩基性物質
の添加効果をより確実なものとするため該塩基性
物質を水とともに連続的にあるいは2回以上添加
しながら洗浄を行なつてもよい。洗浄後必要なゾ
ル濃度まで濃縮し高純度ジルコニアゾルをえる。 このような洗浄の結果えられたゾルは広いPH領
域で又高純度でも長期間安定であり、ジルコニア
ゾルとしての用途に供される。又、このようなゾ
ルのうち塩基性の有機塩類で処理したものは特に
これらの性質において優れている。 該ゾル溶液から通常の加熱乾燥、誘電加熱法、
連結乾燥法、あるいはスプレイドライ法等により
溶媒をきわめてほぐれやすい高分散性を有する微
粉末が容易にえられる。さらに乾燥以前に別途調
製したイツトリア、カルシア、マグネシア、セリ
アのうち少なくとも一種類のゾルを加えておくこ
とによりえた粉体は成形焼成することにより高密
度化体とするこができる。 なお、ゾルの洗滌に溶媒として純水を使用した
場合水洗を終えたゾルを濃縮後、多価アルコール
を含む各種アルコールに加え加熱蒸留により脱水
したり、もしくは他の有機溶媒系脱水剤により水
分を除去することにより、有機溶媒中に分散され
た高純度のゾルを調製することができる。又、該
有機溶媒ゾルを乾燥した粉体は水又は適当な有機
溶媒に分散させ再びコロイド溶液とすることがで
きる。又、該乾燥粉体を焼成したものはほぐれや
すく、とくに溶媒中において単分散に高い状態に
分散せしめることができ高分散性を有する。 [作用] 限外渦膜を用いたジルコニアゾルの洗滌は、
効率の良い洗浄方法であるが、洗浄が進行してく
るに従つて洗滌効率が低下してくる傾向にあり、
不用イオンをあるレベル以下とすることは実際上
困難である。これはゾル粒子と不用イオンとの間
に何らかの親和力が存在し、このため不用イオン
の透過が妨げられているためと考えられる。本発
明は、洗浄中のゾルに少量の塩基性物質を加える
ことにより、この親和力を断ち切りゾルの洗浄効
率を向上させるものである。ただし、ここで加え
る塩基性物質は、ゾルの凝集を引きおこさないも
のである必要があり、具体的には以下のものがあ
げられる。水酸化ナトリウム、水酸化カリウムの
ような強塩基性物質又は炭酸ナトリウムや炭酸カ
リウム等、強塩基と弱酸の塩、あるいはギ酸、酢
酸、酒石酸などのカルボン酸のアルカリ金属塩類
やアセチルアセトン、2,4−ヘキサジオンなど
のβ−ジケトン類のアルカリ金属塩のごとき塩基
性有機塩がこの要求を満す。又ここで用いられる
塩類は洗浄操作により容易に除去され上記過膜
による洗浄後にゾルにはほとんど残留しないよう
にすることができる。かくしてえられる高度に洗
浄されたゾルは、高濃度で又広いPH領域で安定で
ある。特に塩基性物質として上記の有機塩類を用
いた場合えられたゾルの有機溶媒に対する分散性
が向上するという効果も見られ、本発明でえられ
る高純度ジルコニアゾルは他の素材と複合して用
いる場合その使用条件を大幅に広げられるという
利点を有する。 比較実施例 硝酸ジルコニル水溶液(濃度0.2モル/)を
6調製し、これを還流下100時間煮沸して加水
分解し乳白色のコロイドゾルを生成させた。この
加水分解後のコロイドゾルのPHは0.7であつた。
ついで全過面積が8000cm2の平均通過孔約100Å
の過膜がセツトされた過装置にコロイドゾル
をポンプにより送入した過を行ない、膜を通過
した液は排出し、過されないコロイド粒子を
含む液を元にもどし連続的に過・濃縮を行なつ
た。コロイドゾルが約2となつたとき、純水を
追加し全体を15とした。これを再び約2まで
過・濃縮を行つた。この過程をコロイドゾアル
中のNO- 3イオンが10ppm以下になるまで繰り返
し最後にコロイド溶液を2まで過・濃縮し
た。 洗浄に伴なうゾル中の硝酸イオン(NO- 3)濃
度の変化を表1に示した。過膜による洗浄効果
の大きいことは認められるもののゾル中のNO- 3
イオン濃度が低下してくると洗滌効率が低下し、
ゾル中のNO- 3イオン濃度を10ppm以下とするに
は純水の使用量が増加し、又洗浄時間も長時間必
要となる。 実施例 1 硝酸ジルコニル水溶液(濃度0.2モル/)を
6調製し、これを還流下100時間煮沸して加水
分解し乳白色のコロイドゾルを生成させた。この
加水分解後のコロイドゾルのPHは0.7であつた。
ついで全過面積が8000cm2の平均通過孔約100Å
の過膜がセツトされた過装置にコロイドゾル
をポンプにより送入し、過を行ない、膜を通過
した液は排出し、過されないコロイド粒子を
含む液を元にもどし連続的に過・濃縮を行なつ
た。コロイドゾルが約2となつたとき純水を追
加し全体を15とした。これを再び約2まで
過・濃縮を行なつた。この過程を繰り返しコロイ
ドゾル中のNO- 3イオンが100ppm以下となつた時
10%の炭酸ナトリウム水溶液にアセチルアセトン
を溶解した後、冷却過した溶液をコロイドゾル
に加えPHを7.5に調製した。その後ゾル中のNO- 3
イオンが1ppm以下となるまで洗浄を繰り返した。 洗浄に伴なうゾル中のNO- 3イオン濃度の変化
を表2に示した。塩基性物質を添加すると急激に
ゾル中のNO- 3イオン濃度が低下し実質的にNO- 3
イオンを含まない状態へ比較的短時間でかつ経済
的に移行させることができた。 洗浄後、コロイド溶液を1.5まで過・濃縮
した。かくしてえられたコロイドゾルの一部を凍
結乾燥することによりジルコニア微粉末をえた。
えられた微粉末の比表面積は140m2/gであり、
又、示差熱分析の結果450℃近辺での発熱は認め
られず該微粉末は結晶微粉末であつた。 また、残りのコロイドゾルにエチレングリコー
ルを加え加熱することにより水を留出してエチレ
ングリコールに分散したジルコニアコロイドゾル
とした。次いで該コロイドゾルを減圧下加熱する
ことによりエチレングリコールを除去し微粉末を
えた。かくしてえられた微粉末を水又はアルコー
ル類に加え、軽く攪拌することにより容易に水又
はアルコール類に再分散した。
[Industrial Field of Application] The present invention relates to a highly pure zirconia sol and a method for producing zirconia fine powder with excellent dispersibility using the same. Zirconia has three types of crystal structures: monoclinic, tetragonal, and cubic, and has properties not found in other materials, such as corrosion resistance, toughness, and oxygen ion conductivity. It is predicted that it will become increasingly important as a material in the future, with applications in a variety of applications such as sensors, electronic components, various structural materials, and biomaterials. And as the present invention provides,
High-purity zirconia sol and fine powder with excellent dispersibility can be used for the following purposes. That is, the sol or fine powder provided by the present invention is dispersed in ceramics or metals and used for reinforced ceramics or dispersion-strengthened alloys, and furthermore, the sol or fine powder provided by the present invention is dispersed in base materials such as glass, plastic molded products, sheets, films, etc. Alternatively, a coating film containing a sol or fine powder as provided by the present invention is formed on the above substrate, and the substrate has properties such as heat resistance, reaction prevention, conductivity, ultraviolet absorption, hardness, and chemical resistance.
Used to add or improve functions such as durability. In particular, when these colloidal sols and fine powders are applied to transparent substrates, there is an advantage that the above functions can be improved without impairing the transparency of the substrate. [Prior Art] As a method for producing zirconia sol from an aqueous zirconium salt solution, a precipitate produced by a reaction between an aqueous zirconium salt solution and a basic substance is peptized with an acid, or an aqueous zirconium salt solution is injected with a base. A known method is to generate a sol by injecting and mixing a chemical substance to a pH level that does not cause precipitation. Furthermore, a method is known in which a zirconia-based colloidal sol is obtained by heating and hydrolyzing an aqueous solution containing a zirconium salt under normal pressure or increased pressure. [Problems to be solved by the invention] However, when using the sol or colloidal sol produced by the above method, it is necessary to remove anions and unreacted metal ions from the sol solution obtained after the reaction. becomes. Known methods for cleaning this sol include diffusion dialysis or electrodialysis using a semipermeable membrane, and methods using ion exchange resins, but these methods require a long time for cleaning or require a long cleaning operation. The disadvantage is that it is complicated. Recent advances in ultrafiltration technology have made it possible to wash sol more easily and efficiently than the above methods. However, when the zirconia sol was cleaned using pure water in this method, a phenomenon was observed in which the cleaning effect decreased as the sol was cleaned. This seems to be because some kind of affinity exists between the sol particles and the ions, and the ions that should be washed away remain strongly attached to the sol particles. Thus, in the present invention, when cleaning zirconia sol using an ultrafiltration membrane, by adding a basic substance to prevent sol aggregation, the above-mentioned affinity is destroyed, the cleaning efficiency is increased, and the ion concentration in the sol is extremely increased. In this way, the aim is to produce a zirconia sol with high purity and high storage stability. [Means] A zirconia sol is prepared from an aqueous solution of a zirconium salt selected from water-soluble zirconium salts such as zirconyl chloride, zirconyl nitrate, zirconyl sulfate, or zirconyl organic acids such as zirconyl acetate. Conventionally known methods are used to produce this sol, and the above-mentioned acid peptization method, base addition method, and thermal hydrolysis method are appropriately used. Thereafter, this sol solution is introduced into an ultrafiltration device and washed. It is preferable to use a circulation type filtration device because it reduces membrane clogging, and the solvent containing anions and metal ions is discharged from the system, and the concentrated colloidal sol solution is continuously washed by adding the solvent. Do this.
At this time, washing is performed by adding a basic substance that does not cause aggregation of sol particles to the sol solution. Preferably, a method is adopted in which the sol is first washed to some extent with pure water only, then the basic substance is added, and washing is continued. The amount of the basic substance added is determined by the pH of the sol solution.
It is sufficient that the amount is from neutral to slightly alkaline, that is, in the range of 5.0 to 9.0. Further, in order to further ensure the effect of the addition of the basic substance, washing may be carried out while adding the basic substance together with water continuously or twice or more. After washing, concentrate to the required sol concentration to obtain high purity zirconia sol. The sol obtained as a result of such washing is stable over a wide pH range and at high purity for a long period of time, and can be used as a zirconia sol. Among these sols, those treated with basic organic salts are particularly excellent in these properties. From the sol solution, ordinary heating drying, dielectric heating method,
A highly dispersible fine powder that can easily loosen a solvent can be easily obtained by a coupled drying method, a spray drying method, or the like. Furthermore, the powder obtained by adding a separately prepared sol of at least one of itria, calcia, magnesia, and ceria before drying can be made into a densified powder by shaping and firing. In addition, when pure water is used as a solvent for washing the sol, after concentrating the washed sol, it is added to various alcohols including polyhydric alcohols and dehydrated by heated distillation, or other organic solvent-based dehydrating agents are used to remove water. By removing it, a highly pure sol dispersed in an organic solvent can be prepared. Further, the powder obtained by drying the organic solvent sol can be dispersed in water or a suitable organic solvent to form a colloidal solution again. In addition, the fired dry powder is easily loosened, and can be particularly dispersed in a highly monodisperse state in a solvent, and has high dispersibility. [Effect] Cleaning of zirconia sol using an ultravortex membrane is as follows:
Although it is an efficient cleaning method, the cleaning efficiency tends to decrease as cleaning progresses.
It is practically difficult to reduce unnecessary ions below a certain level. This is thought to be because some kind of affinity exists between the sol particles and unnecessary ions, which prevents the unnecessary ions from passing through. The present invention improves the cleaning efficiency of the sol by adding a small amount of a basic substance to the sol during cleaning to break off this affinity. However, the basic substance added here needs to be one that does not cause aggregation of the sol, and specific examples include the following. Strong basic substances such as sodium hydroxide and potassium hydroxide, or salts of strong bases and weak acids such as sodium carbonate and potassium carbonate, or alkali metal salts of carboxylic acids such as formic acid, acetic acid, and tartaric acid, acetylacetone, 2,4- Basic organic salts such as alkali metal salts of β-diketones such as hexadione meet this requirement. Further, the salts used here can be easily removed by a washing operation, so that almost no salts remain in the sol after washing with the membrane. The highly cleaned sol thus obtained is stable at high concentrations and over a wide pH range. In particular, when the above-mentioned organic salts are used as basic substances, the dispersibility of the obtained sol in organic solvents is improved, and the high-purity zirconia sol obtained by the present invention can be used in combination with other materials. It has the advantage that the conditions for its use can be greatly expanded. Comparative Example Six aqueous zirconyl nitrate solutions (concentration: 0.2 mol/min) were prepared and hydrolyzed by boiling under reflux for 100 hours to produce a milky white colloidal sol. The pH of this colloidal sol after hydrolysis was 0.7.
Then, the average passage hole is about 100 Å with a total passing area of 8000 cm 2
The colloidal sol is pumped into a filtration device equipped with a filtration membrane, and the liquid that has passed through the membrane is discharged, and the liquid containing colloid particles that is not filtrated is returned to its original state for continuous filtration and concentration. Ta. When the colloidal sol reached about 2, pure water was added to bring the total to 15. This was again concentrated and concentrated to about 2. This process was repeated until the NO - 3 ion in the colloidal zoal was reduced to 10 ppm or less, and finally the colloidal solution was concentrated to 2. Table 1 shows the change in nitrate ion (NO - 3 ) concentration in the sol due to washing. Although it is recognized that the cleaning effect of the membrane is large, NO - 3 in the sol
As the ion concentration decreases, the cleaning efficiency decreases,
In order to reduce the NO - 3 ion concentration in the sol to 10 ppm or less, the amount of pure water used increases and a long cleaning time is also required. Example 1 Six zirconyl nitrate aqueous solutions (concentration: 0.2 mol/min) were prepared and hydrolyzed by boiling under reflux for 100 hours to produce a milky white colloidal sol. The pH of this colloidal sol after hydrolysis was 0.7.
Then, the average passage hole is about 100 Å with a total passing area of 8000 cm 2
The colloidal sol is pumped into a filtration device equipped with a filtration membrane, and the sol is filtered.The liquid that has passed through the membrane is discharged, and the liquid containing colloid particles that is not filtrated is returned to its original state for continuous filtration and concentration. Summer. When the colloidal sol reached about 2, pure water was added to bring the total to 15. This was again concentrated and concentrated to about 2. Repeat this process until the NO - 3 ions in the colloidal sol are below 100ppm.
After dissolving acetylacetone in a 10% aqueous sodium carbonate solution, the cooled solution was added to the colloidal sol to adjust the pH to 7.5. Then NO - 3 in the sol
Washing was repeated until the ions were below 1 ppm. Table 2 shows the change in NO - 3 ion concentration in the sol due to washing. When a basic substance is added, the concentration of NO - 3 ions in the sol rapidly decreases, and NO - 3 is effectively reduced.
It was possible to transition to an ion-free state in a relatively short time and economically. After washing, the colloid solution was filtered and concentrated to 1.5. A part of the thus obtained colloidal sol was freeze-dried to obtain zirconia fine powder.
The specific surface area of the obtained fine powder was 140 m 2 /g,
Further, as a result of differential thermal analysis, no heat generation was observed at around 450°C, indicating that the fine powder was a crystalline fine powder. In addition, ethylene glycol was added to the remaining colloidal sol and heated to distill off water, resulting in a zirconia colloidal sol dispersed in ethylene glycol. Next, the colloidal sol was heated under reduced pressure to remove ethylene glycol and obtain a fine powder. The thus obtained fine powder was easily redispersed in water or alcohol by adding it to water or alcohol and stirring gently.

【表】【table】

【表】 実施例 2 オキシ塩化ジルコニル水溶液(濃度0.2モル/
)を6調製し、これを還流下100時間煮沸し
て加水分解し乳白色のコロイドゾルを生成させ
た。この加水分解後のコロイドゾルのPHは0.7で
あつた。ついで全過面積が8000cm2の平均通過孔
約100Åの過膜がセツトされ過装置にコロイ
ドゾルをポンプにより送入し、過を行ない、膜
を通過した液は排出し、過されないコロイド
粒子を含む液を元にもどし連続的に過・濃縮を
行なつた。コロイドゾルが約2となつたとき純
水を追加し全体を15とした。さらにこれを再び
約2まで過・濃縮を行なつた。この過程を繰
り返しコロイドゾル中の塩素イオン(Cl-)が
100ppm以下となつたとき1%の水酸化ナトリウ
ム水溶液を加えPHを6.8に調製した。その後ゾル
中の塩素イオン(Cl-)が1ppm以下となるまで洗
浄ぽ繰り返した。最後にコロイドゾルを2まで
過・濃縮した。ゾル中に残留するナトリウムイ
オン(Na+)は0.6ppmであつた。 実施例 3 オキシ塩化ジルコニル水溶液(濃度0.25モル/
)を2調製し、これに尿素30.05g、酢酸2.4
mlを加えた。この溶液を5時間煮沸して加水分解
し、薄紫色の透明ゾルを生成させた。この反応後
のゾルのPHは4.1であつた。ついでこのゾルを15
に稀釈した後全過面積が8000cm2の平均通過孔
約60Åの過膜がセツトされた過装置に該ゾル
をポンプにより送入し、過を行ない、膜を通過
した液は排出し、過されないゾル粒子を含む
液を元にもどし連続的に過・濃縮を行なつた。
ゾルが約2となつたとき純水を追加し全体を15
とした。さらにこれを再び約2まで過・濃
縮を行なつた。この過程を繰り返しゾル中の塩素
イオン(Cl-)が100ppm以下となつたとき1%の
水酸化ナトリウム水溶液を加えPHを6.0に調製し
た。その後ゾル中の塩素イオンが1ppm以下とな
るまで洗浄を繰り返した。 最後にゾルを2まで過・濃縮した。ゾル中
に残留するナトリウムインオン(Na+)は
0.3ppmであつた。
[Table] Example 2 Zirconyl oxychloride aqueous solution (concentration 0.2 mol/
) was prepared and hydrolyzed by boiling under reflux for 100 hours to produce a milky white colloidal sol. The pH of this colloidal sol after hydrolysis was 0.7. Then, a membrane with a total filtration area of 8000 cm 2 and an average passage hole of about 100 Å is set, and the colloidal sol is pumped into the filtration device to conduct filtration. was returned to its original state and continuously over-condensed. When the colloidal sol reached about 2, pure water was added to bring the total to 15. Furthermore, this was again subjected to over-concentration to a concentration of about 2. This process is repeated until the chloride ions (Cl - ) in the colloidal sol
When the pH was below 100 ppm, a 1% aqueous sodium hydroxide solution was added to adjust the pH to 6.8. Thereafter, washing was repeated until the chlorine ion (Cl - ) in the sol was 1 ppm or less. Finally, the colloidal sol was concentrated to 2. The amount of sodium ions (Na + ) remaining in the sol was 0.6 ppm. Example 3 Zirconyl oxychloride aqueous solution (concentration 0.25 mol/
) to which 30.05g of urea and 2.4g of acetic acid were prepared.
Added ml. This solution was boiled for 5 hours to hydrolyze and produce a light purple transparent sol. The pH of the sol after this reaction was 4.1. Then add this sol to 15
After diluting the sol to The liquid containing sol particles was returned to its original state and continuously over-concentrated.
When the sol is about 2, add pure water and reduce the total to 15
And so. Furthermore, this was again subjected to over-concentration to a concentration of about 2. This process was repeated until the chlorine ion (Cl - ) in the sol was 100 ppm or less, and a 1% aqueous sodium hydroxide solution was added to adjust the pH to 6.0. Thereafter, washing was repeated until the chlorine ions in the sol were reduced to 1 ppm or less. Finally, the sol was concentrated to 2. The sodium ion (Na + ) remaining in the sol is
It was 0.3ppm.

Claims (1)

【特許請求の範囲】[Claims] 1 ジルコニウム塩水溶液を用いてジルコニアゾ
ルを生成させ、ついで該ゾルを限外ろ過膜を使用
して洗滌するに際し、先ず純水のみで洗滌し、次
いで該ゾルに塩基性物質を添加して洗滌すること
を特徴とする高純度ジルコニアゾルの製造方法。
1. When a zirconia sol is generated using an aqueous zirconium salt solution and then the sol is washed using an ultrafiltration membrane, the sol is first washed with pure water only, and then a basic substance is added to the sol for washing. A method for producing a high-purity zirconia sol.
JP14148886A 1986-06-19 1986-06-19 Production of high-purity zirconia sol Granted JPS632809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14148886A JPS632809A (en) 1986-06-19 1986-06-19 Production of high-purity zirconia sol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14148886A JPS632809A (en) 1986-06-19 1986-06-19 Production of high-purity zirconia sol

Publications (2)

Publication Number Publication Date
JPS632809A JPS632809A (en) 1988-01-07
JPH0355414B2 true JPH0355414B2 (en) 1991-08-23

Family

ID=15293077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14148886A Granted JPS632809A (en) 1986-06-19 1986-06-19 Production of high-purity zirconia sol

Country Status (1)

Country Link
JP (1) JPS632809A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2690084B2 (en) * 1987-09-25 1997-12-10 日産化学工業株式会社 Method for producing zirconia sintered body
JP2560490B2 (en) * 1988-09-30 1996-12-04 日産化学工業株式会社 Method for producing zirconia sol
US5275759A (en) * 1989-02-10 1994-01-04 Nippon Shokubai Kagaku Kogyo Co., Ltd. Zirconia sol, method for production thereof, porous ceramic-producing slurry, and porous ceramic product obtained by use thereof
JP2547477B2 (en) * 1989-02-10 1996-10-23 株式会社日本触媒 Zirconia sol and method for producing the same
WO1990009350A1 (en) * 1989-02-10 1990-08-23 Nippon Shokubai Kagaku Kogyo Co., Ltd. Zirconia sol, preparation thereof, slurry for use in the production of porous ceramic, and porous ceramic produced from said slurry
JP5512934B2 (en) * 2008-05-09 2014-06-04 住友化学株式会社 Sol comprising amorphous Zr-O-based particles as a dispersoid, method for producing the same, photocatalyst coating liquid using the sol as a binder, and method for producing a photocatalytic functional product coated with the photocatalyst coating liquid
JP5701474B2 (en) * 2008-06-13 2015-04-15 富士フイルム株式会社 Inorganic fine particle dispersion, organic-inorganic composite composition, molded article and optical component

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141619A (en) * 1984-12-13 1986-06-28 Dowa Mining Co Ltd Production of zirconia fine powder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141619A (en) * 1984-12-13 1986-06-28 Dowa Mining Co Ltd Production of zirconia fine powder

Also Published As

Publication number Publication date
JPS632809A (en) 1988-01-07

Similar Documents

Publication Publication Date Title
KR100485955B1 (en) Titanium dioxide ceramic paint and methods of producing same
JP4918880B2 (en) Method for producing zirconia sol
JPH01103904A (en) Production of inorganic globular particulates
JPH03500527A (en) Continuous manufacturing method for fine-grained ceramics
US20110226427A1 (en) Method of Recovering Aqueous N-methylmorpholine-N-Oxide Solution Used in Production of Lyocell Fiber
CN101659673B (en) Processing technology for recovering and utilizing mother solution of glyphosate as resource
TW201034967A (en) Zirconium oxide dispersion and method for producing the same
JPH0355414B2 (en)
TWI252215B (en) Zirconia sol and method of preparing the same
US4695439A (en) Yttrium oxide stabilized zirconium oxide
CN1186261C (en) Preparation method of nano alumina material
JPS6348358A (en) Sol for use in coating ceramic and coating method using same
JPH0355413B2 (en)
JP2742449B2 (en) High performance zirconia sol and method for producing the same
CN1403464A (en) Prepn of dibasic alkoxide of titanium
JPH0233652B2 (en) JIRUKONIAGANJUBIFUNMATSUNOSEIZOHOHO
JPH05155616A (en) Transparent yttria sol and its production
JP2001096140A (en) Regeneration method of ultrafiltration membrane module for zirconia powder production
KR20090003140A (en) Process for preparing zirconia sol
JPS6283305A (en) Production of transparent metal oxide
CN108622947B (en) Nano ruthenium dioxide liquid phase dispersion and preparation method thereof
JPH0753575B2 (en) Method for producing cerium oxide sol
JPH0248418A (en) Zirconia composite sol
CN105753047A (en) Novel method of preparing nano zirconium oxide powder for dentistry
JP4320852B2 (en) Hydrated zirconia dry powder, production method thereof and use thereof