JPS6348358A - Sol for use in coating ceramic and coating method using same - Google Patents

Sol for use in coating ceramic and coating method using same

Info

Publication number
JPS6348358A
JPS6348358A JP19048486A JP19048486A JPS6348358A JP S6348358 A JPS6348358 A JP S6348358A JP 19048486 A JP19048486 A JP 19048486A JP 19048486 A JP19048486 A JP 19048486A JP S6348358 A JPS6348358 A JP S6348358A
Authority
JP
Japan
Prior art keywords
sol
relative humidity
colloidal
coating
colloidal zirconia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19048486A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Noma
野間 義幸
Takehiko Suzuki
武彦 鈴木
Shigemi Osaka
大坂 重美
Hideki Imai
秀樹 今井
Norikazu Aikawa
規一 相川
Tsukasa Takahashi
典 高橋
Kazuo Hata
和男 秦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP19048486A priority Critical patent/JPS6348358A/en
Publication of JPS6348358A publication Critical patent/JPS6348358A/en
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H23/00Processes or apparatus for adding material to the pulp or to the paper

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Surface Treatment Of Glass (AREA)
  • Paints Or Removers (AREA)
  • Paper (AREA)

Abstract

PURPOSE:To provide the title sol which gives a coating film having a thickness which can be easily controlled without causing cracking and forming any void or any pinhole, containing colloidal zirconia sol obtd. by hydrolyzing an aq. zirconium salt soln. CONSTITUTION:An aq. soln. of a water-soluble zirconium salt such as zirconyl chloride, zirconyl acetate, etc. is hydrolyzed. The solvent contg. anions and unreacted metal ions is removed by filtration, and the residue is washed with pure water. The pH thereof is adjusted to 5-9 by adding a basic matcrial (e.g., NaOH) and the resulting product is washed with pure water and dehydrated by adding an alcohol including polyhydric clcohol to obtain an org. solvent (A) contg. 0.01-20wt% (in terms of ZrO2 colloidal zirconia sol having an average particle size of 300-1,500Angstrom . If desired, 0.01-0.5wt% at least one sol (B) selected from the group consisting of alumina sol, silica sol and titania sol is added to the component A. The mixture is applied to a substrate and exposed to an atmosphere at a relative humidity of 70-95% and 30-70 deg.C for one hr or longer. The relative humidity is lowered to 10-40% and the substrate is heated to 100-500 deg.C at a heating rate of 0.2-5 deg.C/min to form a coating film having a thickness of 0.5-10mum.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は平均粒子径300〜1500Xの範囲であるコ
ロイド状ジルコニアゾルが含有されてなるセラミックコ
ーティング用ゾルおよびそれを用いたセラミックコーテ
ィング方法に関するものである。
Detailed Description of the Invention <Industrial Application Field> The present invention relates to a ceramic coating sol containing a colloidal zirconia sol having an average particle size in the range of 300 to 1500X, and a ceramic coating method using the same. It is.

ノルフェアは耐食性2強靭性、酸素イオン伝導性等、他
の素材にないすぐれた特性を有していることから酸素セ
ンサー、電子部品、各種構造材あるいは生体材料等いろ
いろな用途に応用され今後増々重要視されることが予想
されている。
Because Norphea has excellent properties not found in other materials, such as corrosion resistance, toughness, and oxygen ion conductivity, it is being applied to a variety of applications such as oxygen sensors, electronic components, various structural materials, and biomaterials, and will become increasingly important in the future. It is expected that it will be seen.

そして本発明が提供するコロイド状ジルコニアゾルにつ
いても以下の如き用途が見い出されるものである。すな
わち、金属、セラミックス、ガラス、紙やプラスチック
成型品、シート、高分子フィルム、樹脂のような有機高
分子材料等の基材表面に本発明によるセラミックコーテ
ィング用ゾルを本発明による方法でコートし基材に耐熱
性9反射防止、導電性、紫外線吸収、遠赤外線放射、硬
度、耐薬品性、耐食性、耐久性1等の機能を付与しある
いは向上させるために使用される。特にエレクトロニク
ス部品のプリント回路のボイドやピンポールの塗膜化2
表面弾性波デバイスのセラミック圧電薄膜にまた金型の
離型膜や・ンイプの保護膜、アルミナ繊維へのコート化
などに利用することが可能であり上記の機能の付与向上
が計れる利点がある。
The colloidal zirconia sol provided by the present invention can also be found to have the following uses. That is, the ceramic coating sol of the present invention is coated by the method of the present invention on the surface of a base material such as metal, ceramics, glass, paper, plastic molded products, sheets, polymer films, organic polymer materials such as resins, etc. It is used to impart or improve functions such as heat resistance (9), anti-reflection, electrical conductivity, ultraviolet absorption, far-infrared radiation, hardness, chemical resistance, corrosion resistance, and durability (1). Especially coating voids and pin poles in printed circuits of electronic parts 2
It can be used as a ceramic piezoelectric thin film for surface acoustic wave devices, as a release film for molds, as a protective film for molds, as a coating on alumina fibers, etc., and has the advantage of being able to improve the above-mentioned functions.

さらに金属あるいはセラミックスに本発明になるコーテ
ィング用ゾルを分散させて分散強化合金あるいは強化セ
ラミックス用としても当然使用することが可能である。
Furthermore, it is naturally possible to disperse the coating sol of the present invention in metals or ceramics and use it for dispersion-strengthened alloys or reinforced ceramics.

〈従来の技術〉 耐熱性無機質塗料としてアルカリ金属ケイ酸塩や金属の
酸性リン酸塩等がまた耐熱用用地剤や耐摩耗用コート剤
や耐薬品用ライニング剤としてZ rO2や5i02 
k主成分とするペーストが一部使用されている。さらに
プラスチックなどの有機高分子材料には多官能シリコン
レシンが用いられ、耐候性耐薬品性の向上が計られてい
る。
<Prior art> Alkali metal silicates and metal acid phosphates are used as heat-resistant inorganic paints, and ZrO2 and 5i02 are used as heat-resistant base agents, wear-resistant coating agents, and chemical-resistant lining agents.
Some pastes containing k as the main component are used. Furthermore, polyfunctional silicone resin is used in organic polymer materials such as plastics to improve weather resistance and chemical resistance.

これらの場合、塗布はスプレーガンや刷毛を用いである
いはロールコーティングやスクリーン印刷などによって
なされており、その塗膜の厚さは一般に20〜100μ
mであシ膜には亀裂(crack)が生じており、膜厚
も均一でなく、上記のようなエレクトロニクス部品等へ
薄膜塗布には適さないものであった。
In these cases, application is done using a spray gun or brush, or by roll coating or screen printing, and the thickness of the coating film is generally 20 to 100 μm.
Cracks were formed in the film, and the film thickness was not uniform, making it unsuitable for thin film application to electronic parts such as those mentioned above.

一方、金属アルコキシド溶液と用いたゾルケ°ル法では
常温において浸漬法が適用でき、又、基板の金属の酸化
、ガラスやプラスチックなどの軟化がおこる温度より低
い温度で処理できる利点があるが、1回の浸漬では0.
1〜0.5μm程度の膜厚のものしか得られず、膜厚の
調整には困難なものであったO 〈発明が解決しようとする問題点〉 セラミックコーティングによる膜厚が20〜100μm
と厚くなる場合乾燥工程における乾燥速度の差などによ
ってコート面に大きな亀裂が認められるようになり、コ
ート面がたとえガラス化されてもその表面は不均一でや
はシ亀裂ができており、2〜5μm程度のボイドやピン
ホールの生成を防止することは容易ではない。
On the other hand, the sol-kel method using a metal alkoxide solution has the advantage that the immersion method can be applied at room temperature, and that it can be processed at a temperature lower than the temperature at which oxidation of the metal of the substrate and softening of glass, plastic, etc. occur. 0.
Only a film thickness of about 1 to 0.5 μm could be obtained, and it was difficult to adjust the film thickness.O <Problems to be solved by the invention> Film thickness of ceramic coating is 20 to 100 μm.
If the coated surface becomes thicker, large cracks will appear on the coated surface due to differences in drying speed during the drying process, and even if the coated surface is vitrified, the surface will be uneven and cracks will form. It is not easy to prevent the generation of voids and pinholes of about 5 μm.

又、金属アルコキシド溶液を用いた場合はアルコキシド
が高価であると共に1μm以上の膜厚を得るために複数
回コーティングする必要があり、コストに影響を及ぼす
Furthermore, when a metal alkoxide solution is used, the alkoxide is expensive and it is necessary to coat the film multiple times to obtain a film thickness of 1 μm or more, which affects the cost.

そこで本発明の目的は、−回のコーティングで膜厚を0
.5μmから10μm程度まで自由に調整できるセラミ
ックコーティング用ゾル及び該ゾルを用いてコートされ
た膜に亀裂やボイド、ピンホールがなく、かつ平滑な塗
布面を得るセラミックコーティング方法を提供すること
にある。
Therefore, the purpose of the present invention is to reduce the film thickness to 0 with - times of coating.
.. To provide a sol for ceramic coating which can be freely adjusted from about 5 μm to about 10 μm, and a ceramic coating method in which a film coated using the sol is free from cracks, voids, and pinholes and a smooth coated surface is obtained.

く問題点を解決するための手段〉 本発明のセラミックコーティング用ゾルはジルコニウム
塩水溶液から加水分解法によって得られたコロイド状ジ
ルコニアゾル、しかも該ゾルの平均粒子径が300〜1
500Xの範囲であることを特徴とするものである。ま
た、本発明のセラミックコーティング方法は、前記のセ
ラミックコーティング用ゾルを基材に塗布後、30〜7
0℃の温度の範囲かつ相対湿度70〜95%の範囲の雰
囲気に塗布された基材を少なくとも1時間以上さらした
後、相対湿度を10〜40%に低下せしめる湿式乾燥工
程次いで0.2〜b で100〜500℃まで塗布された基材が加熱される加
熱処理工程を含むことを特徴とするものである。
Means for Solving Problems> The sol for ceramic coating of the present invention is a colloidal zirconia sol obtained by a hydrolysis method from an aqueous zirconium salt solution, and the sol has an average particle size of 300 to 1.
It is characterized by a range of 500X. Further, in the ceramic coating method of the present invention, after applying the above-mentioned ceramic coating sol to a base material,
After exposing the coated substrate to an atmosphere having a temperature of 0° C. and a relative humidity of 70 to 95% for at least one hour, a wet drying step is performed to reduce the relative humidity to 10 to 40%, followed by a wet drying step of 0.2 to 95%. It is characterized in that it includes a heat treatment step in which the coated substrate is heated to 100 to 500°C.

以下本発明を具体的に説明する。The present invention will be specifically explained below.

本発明に使用されるコロイド状ジルコニアゾルは水可溶
性の塩化ジルコニル、硝酸ノルコニル、硫酸ジルコニル
また酢酸ジルコニルなどの有機酸ジAzコニル等のジル
コニウム塩水溶液から、酸による解膠法、塩基添加法や
加熱加水分解法など公知の方法によって調整される。
The colloidal zirconia sol used in the present invention is prepared from an aqueous solution of a zirconium salt such as water-soluble zirconyl chloride, norconyl nitrate, zirconyl sulfate, or organic acid diAzconyl such as zirconyl acetate, by peptizing with an acid, adding a base, or heating. It is adjusted by known methods such as hydrolysis.

得られたコロイド状ゾルは陰イオンと未反応の金属イオ
ンを含有しており、濾過装置に導き洗浄と行なう。テ過
装置は膜の目詰シの少ないことから循環式のものを使用
することが望ましく陰イオンや金属イオンを含む溶媒を
系外に排出させ、濃縮されたコロイドゾル溶液に溶媒を
追加して連続的に洗浄と行なう。この際特に、ゾル溶液
中にゾル粒子の凝集を起こさない塩基性物質を添加して
洗浄を行なうことが好ましい。好適にはまず純水のみで
ゾルの洗浄tある程度性なった後膣塩基性物質を添加し
、洗浄を継続する方法が採用される。
The obtained colloidal sol contains anions and unreacted metal ions, and is introduced into a filtration device and washed. It is preferable to use a circulation type filtration device to avoid clogging of the membrane.The solvent containing anions and metal ions is discharged from the system, and the solvent is added to the concentrated colloidal sol solution. Clean thoroughly. At this time, it is particularly preferable to perform washing by adding a basic substance that does not cause aggregation of sol particles to the sol solution. Preferably, a method is adopted in which the sol is washed with pure water only, and after the sol has become a certain degree of consistency, a vaginal basic substance is added and washing is continued.

塩基性物質としては、水酸化ナトリウム、水酸化カリウ
ムのような強塩基性物質又は炭酸ナトリウムや炭酸カリ
ウム等、強塩基と弱酸の塩、あるイldギ酸、酢酸、酒
石酸などのカルデン酸のアルカリ金属塩類やアセチルア
セトン、2,4−ヘキサジオンなどのβ−ジケトン類の
アルカリ金属塩が好ましく、その添加量はゾルの−が中
性から弱アルカリ性、すなわち5.0〜9.0の範囲と
なるまでの量で充分である。又、該塩基性物質の添加効
果をより確実なものとするため該塩基性物質を水ととも
に連続的にあるいは2回以上添加しながら洗浄を行なっ
てもよい。洗浄後必要なゾル濃度まで調整して、高純度
コロイド状ノルコニアシルを得る。
Basic substances include strong basic substances such as sodium hydroxide and potassium hydroxide, salts of strong bases and weak acids such as sodium carbonate and potassium carbonate, and alkali metals such as caldic acids such as formic acid, acetic acid, and tartaric acid. Salts and alkali metal salts of β-diketones such as acetylacetone and 2,4-hexadione are preferable, and the amount added is such that the - of the sol is from neutral to weakly alkaline, that is, from 5.0 to 9.0. The quantity is sufficient. Further, in order to make the effect of adding the basic substance more reliable, washing may be performed while adding the basic substance together with water continuously or twice or more. After washing, the sol concentration is adjusted to the required level to obtain highly pure colloidal norconiacil.

なお、ゾルの洗浄に溶媒として純水を使用した場合水洗
を終えたゾルと濃縮後、エチレングリコールなどの多価
アルコールを含む各種アルコールに加え加熱蒸留等によ
シ脱水したり、もしくは他の有機溶媒系脱水剤により水
分と除去することによシ、有機溶媒中に分散された高純
度のゾルを調製することもできる。
In addition, when pure water is used as a solvent for washing the sol, the washed sol and after concentration are added to various alcohols including polyhydric alcohols such as ethylene glycol, dehydrated by heating distillation, etc., or other organic A highly purified sol dispersed in an organic solvent can also be prepared by removing water with a solvent-based dehydrating agent.

このようにして得られたコロイド状ジルコニアゾルは3
00〜1500Xの平均粒子径を有し、広い一領域で、
又高濃度でも長期間安定である。
The colloidal zirconia sol thus obtained was 3
With an average particle diameter of 00 to 1500X, in one wide area,
It is also stable for a long time even at high concentrations.

さらに金属、セラミックス、ガラス、紙、有機高分子材
料などの基材、特に金属、セラミックス。
Furthermore, base materials such as metals, ceramics, glass, paper, and organic polymer materials, especially metals and ceramics.

ガラスとの密着性にも優れたものであり、ゾル濃度−2
粘度等を最適に選択することにより、良好なセラミック
コーティング用ゾルとなシコート層の薄厚を0.5〜1
0μm程度まで自由に調整することが可能となる。
It also has excellent adhesion to glass, and the sol concentration is -2
By optimally selecting the viscosity, etc., the thin thickness of the cycort layer, which is a good ceramic coating sol, can be reduced from 0.5 to 1.
It becomes possible to freely adjust the thickness to about 0 μm.

例えば、1μm以下の薄膜と得ようとする場合、ゾルの
濃度はZ r O2として溶媒に対して0.01〜20
重量%、好ましくは0.1〜5重量%の範囲、声は基材
にもよるが4〜10好ましくは6〜8の範囲、粘度は1
〜50センチポイズ好ましくは2〜25センチポイズの
範囲である。
For example, when trying to obtain a thin film of 1 μm or less, the concentration of the sol is 0.01 to 20% as Z r O2 relative to the solvent.
Weight %, preferably in the range of 0.1 to 5 weight %, voice depending on the base material, but preferably in the range of 4 to 10, preferably 6 to 8, viscosity of 1
-50 centipoise, preferably 2-25 centipoise.

このコロイド状ジルコニアゾルにマグネシウム。Magnesium in this colloidal zirconia sol.

カルシウム、イツトリウムおよびセリウムよシなる群か
ら選ばれた少なくとも一種の金属のゾルを添加して用い
ることも可能であり、あるいは、ジルコニウム塩トマグ
ネシウム、カルシウム、イツトリウムおよびセリウムよ
りなる群から選ばれた少なくとも一種の金属の塩とを含
む水溶液から加水分解法によって得られたコロイド状ジ
ルコニア系ゾルとして用いることも可能である。
It is also possible to use a sol of at least one metal selected from the group consisting of calcium, yttrium and cerium, or a sol of at least one metal selected from the group consisting of zirconium salt magnesium, calcium, yttrium and cerium. It is also possible to use it as a colloidal zirconia-based sol obtained by a hydrolysis method from an aqueous solution containing a metal salt.

さらには、ぬれの接触角の問題で基材との密着性が弱い
場合にはバインダーとしてアルミナゾル。
Furthermore, alumina sol can be used as a binder if the adhesion to the substrate is weak due to contact angle issues.

シリカゾルおよびチタニアゾルよりなる群から選ばれた
少なくとも一種のゾルをコロイド状ノルコニアシルに添
加してセラミックコーティング用ゾルとして適宜使用す
ることができる。この場合、各ゾルの添加量はAt20
5 、 S 402およびT i O2としてZ rO
2に対してそれぞれ0.01〜0.5(重量比)特に0
.03〜0.3の範囲が好ましい。各ゾルの添加量が0
.01(重量比)を下回る場合あるいは0.5(重量比
)を上回る場合は、塗布された時コート層に亀裂が生じ
たシ、膜厚の調整が不可能になり、コロイド状ノルコニ
アシルの特徴が発揮されなくなる。
At least one sol selected from the group consisting of silica sol and titania sol can be added to colloidal norconia sil and used as a sol for ceramic coating. In this case, the amount of each sol added is At20
5, S 402 and Z rO as T i O2
2 to 0.01 to 0.5 (weight ratio), especially 0
.. A range of 0.03 to 0.3 is preferable. Addition amount of each sol is 0
.. If it is less than 0.01 (weight ratio) or more than 0.5 (weight ratio), cracks will occur in the coating layer when applied, making it impossible to adjust the film thickness, and the characteristics of colloidal norconium sil It will no longer be effective.

アルミナゾルとしてはベーマイト系のアルミナ水和物溶
液、シリカゾルとしてはコロイド状シリカゾルやエチル
シリケートゾル、チタニアゾルとしてはチタニア水和物
コロイド液等が用いられる。
As the alumina sol, a boehmite-based alumina hydrate solution is used, as the silica sol, a colloidal silica sol or ethyl silicate sol, and as the titania sol, a titania hydrate colloidal solution is used.

このようにして得られたセラミックコーティング用ゾル
を用いて各基材に塗布する場合基材板面の汚れ、ゴミ、
サビなどを除去し、付着する油分はアルカリ洗浄や界面
活性剤によって脱脂する必要がある。
When applying the ceramic coating sol obtained in this way to each base material, dirt, dust, etc.
It is necessary to remove rust, etc., and degrease adhering oil using alkaline cleaning or surfactant.

脱脂洗浄された基材にはディッピング、刷毛塗シ、スク
リーン印刷Iスプレーがン、ロールコーティング法等に
よって塗布せしめられ、基材の形状等によって最適に選
択される。
The coating is applied to the degreased and cleaned substrate by dipping, brush coating, screen printing, I-spray gun, roll coating, etc., and the optimum method is selected depending on the shape of the substrate, etc.

ディッピングによる塗布を例にとると脱泡されたコーテ
ィング用ゾルに真空下で浸漬せしめたのち、5調〜20
0mm/分程度の一定速度で基材をゾルから引き上げら
れ、次いで恒温恒湿器による湿式乾燥工程、加熱炉等に
よる加熱処理工程を経てセラミックコート層が完成され
る。
Taking application by dipping as an example, after immersing it in a defoamed coating sol under vacuum,
The base material is pulled up from the sol at a constant speed of about 0 mm/min, and then undergoes a wet drying process using a constant temperature and humidity chamber, and a heat treatment process using a heating furnace, etc., to complete the ceramic coat layer.

湿式乾燥では基材にゾルを塗布後30〜70℃の温度範
囲かつ相対湿度70〜95%の雰囲気に塗布された基材
乞少なくとも1時間さらされるが、70℃を越え、又、
相対湿度が70%を下回る条件では塗布されたゾルが急
激に乾燥されてrル化し亀裂が生じ易くなる。30℃を
下回る条件では長時間の乾燥が必要となり、1時間未満
ではrル化が不十分で満足するセラミックコーティング
層は得られない。
In wet drying, after applying the sol to the substrate, the coated substrate is exposed to an atmosphere with a temperature range of 30 to 70°C and a relative humidity of 70 to 95% for at least 1 hour, but if the temperature exceeds 70°C,
When the relative humidity is less than 70%, the applied sol is rapidly dried and turned into a sol, which tends to cause cracks. If the temperature is lower than 30° C., a long drying time is required, and if the temperature is less than 1 hour, the drying will be insufficient and a satisfactory ceramic coating layer will not be obtained.

又、加熱処理工程では0.5〜b 度で100〜500’Cまで塗布された基材が加熱され
る。この場合2℃/分以上の速度では亀裂が生じやすく
なり好ましくない。条件によっては加熱処理のあとさら
に焼成せしめてセラミックコート層を完成させてもよい
In the heat treatment step, the coated substrate is heated at 0.5 to 100 to 500'C. In this case, a speed of 2° C./min or higher is undesirable because cracks tend to occur. Depending on the conditions, the ceramic coat layer may be completed by further firing after the heat treatment.

く作用〉 通常、ゾルダル法でディッピングによってコーテイング
膜をつくる場合1回の操作でできる膜の厚さは0.1〜
0.2μm以下であシ、操作を繰シ返すことによって厚
くすることが可能であるが、非常に繁雑になり、またコ
ーテイング膜に亀裂が生じゃすくなシ、2〜3μm以上
の膜厚にすることは事実上不可能であった。
Normally, when a coating film is made by dipping using the Zoldal method, the thickness of the film produced in one operation is 0.1~
The film thickness should be 0.2 μm or less, and it is possible to increase the thickness by repeating the operation, but it would be very complicated and the coating film should not be cracked, so the film thickness should be 2 to 3 μm or more. That was virtually impossible.

しかし、本発明になるジルコニアゾルは平均粒子径30
0〜1500Xの範囲であり、粒子径分布は100〜2
000^と最適に調整できるコロイド状ゾルであるため
、ゾル濃度や粘度等によってコートされた塗膜の膜厚が
0.5μmから10μm程度まで自由に調整できるよう
になシ、シかも1回の操作で簡便に金属、セラミックス
、ガラス。
However, the zirconia sol of the present invention has an average particle diameter of 30
The range is 0 to 1500X, and the particle size distribution is 100 to 2
Since it is a colloidal sol that can be optimally adjusted to 0.000^, the thickness of the coated film can be freely adjusted from 0.5 μm to 10 μm depending on the sol concentration and viscosity. Metals, ceramics, and glass can be easily manipulated.

紙、有機高分子材料にコートすることが可能になった。It has become possible to coat paper and organic polymer materials.

さらに本発明になるセラミックコーティング方法によっ
てセラミックコート層に亀裂が認められない、あるいは
かなり防止された平滑面を得ることができるようになり
、また基材に生じている2〜5μm程度のボイドやピン
ホールにも塗膜することが可能に2なったものである。
Furthermore, by the ceramic coating method of the present invention, it is possible to obtain a smooth surface in which cracks are not observed or are considerably prevented in the ceramic coating layer, and voids and pins of about 2 to 5 μm that occur in the base material can be obtained. This makes it possible to coat holes as well.

〈実施例〉 以下、実施例を上げて本発明をよシ具体的に説明するが
、本発明はこれらに限定されるものではない。
<Examples> Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto.

実施例1 硝酸ノルコニル水溶液(濃度0.2モル/l)を61調
製し、これを還流下100時間煮沸して加水分解し乳白
色のコロイドゾルを生成させた。この加水分解後のコロ
イドゾルの−は0.7であった。
Example 1 Six volumes of norconyl nitrate aqueous solution (concentration 0.2 mol/l) were prepared and hydrolyzed by boiling under reflux for 100 hours to produce a milky white colloidal sol. - of the colloidal sol after this hydrolysis was 0.7.

ついで全濾過面積が8,0OOcrn2の平均通過孔的
100Xの濾過膜がセットされた濾過装置にコロイドゾ
ルをポンプにより送入し、濾過を行ない、膜を通過した
F液は排出し、濾過されないコロイド粒子と含む液を元
にもどし連続的に濾過・濃縮を行なった。コロイドゾル
が約21となったとき純水を追加し全体を151とした
。これを再び約21まで濾過・濃縮を行なった。この過
程を繰シ返しコロイドゾル中のNO=イオンが100 
ppm以下となった時10%の炭酸す) IJウム水溶
液にアセチルアセトンを溶解した後、冷却濾過した溶液
をコロイドゾルに加えPHを7.5に調製した。その後
ゾル中のNO″5イオンが1 ppm以下となるまで洗
浄を繰シ返した。
Next, the colloidal sol is pumped into a filtration device equipped with a filtration membrane with a total filtration area of 8,000 crn2 and an average passing pore size of 100X, and filtration is performed. The F solution that has passed through the membrane is discharged, and the unfiltered colloidal particles The liquid containing the solution was returned to its original state and continuously filtered and concentrated. When the colloidal sol reached about 21, pure water was added to bring the total to 151. This was again filtered and concentrated to a concentration of about 21. This process is repeated until the NO=ion in the colloidal sol reaches 100
After dissolving acetylacetone in an aqueous IJ solution, the cooled and filtered solution was added to the colloidal sol to adjust the pH to 7.5. Thereafter, washing was repeated until the NO''5 ion in the sol became 1 ppm or less.

洗浄後さらにコロイド溶液を1.51まで濾過濃縮して
Z r O2として4,68重量係を有するコロイド状
ジルコニアゾルを得た。ゾル中に残留するNa+は0.
5 ppmであシ、ジルコニアの平均粒子径は700 
A %粒子径分布は300〜1200Xであった。
After washing, the colloidal solution was further filtered and concentrated to 1.51% to obtain a colloidal zirconia sol having a Z r O2 weight coefficient of 4.68. Na+ remaining in the sol is 0.
5 ppm, average particle size of zirconia is 700
The A% particle size distribution was 300-1200X.

このゾルに10〜20μmの粒子径を有するコロイド状
シリカ(SiO2として20重量係)を添加しさらに純
水を加えて粘度を4.2センチポイズに調整して、Z 
r O2として2.75重量%、S s O2として1
.25重量%を含有するセラミックコーティング用ジル
コニア−シリカ混合ゾルを得た。−は6.5であった。
Colloidal silica (20% by weight as SiO2) having a particle size of 10 to 20 μm was added to this sol, and pure water was added to adjust the viscosity to 4.2 centipoise.
2.75% by weight as r O2, 1 as S s O2
.. A zirconia-silica mixed sol for ceramic coating containing 25% by weight was obtained. - was 6.5.

この混合ゾルを真空下で脱泡したのち、脱脂酸洗された
ステンレス板(5US−316)をゾル中に2分間ディ
ッピングし、大気圧にもどし45−7分の一定速度で引
き上げた。
After degassing this mixed sol under vacuum, a degreased and pickled stainless steel plate (5US-316) was dipped into the sol for 2 minutes, returned to atmospheric pressure, and pulled up at a constant speed of 45-7 minutes.

その後50℃相対湿度90%の恒温恒湿器に入れ10時
間放置し、次いで相対湿度60チで3時間保持した後6
0℃相対湿度30チで3時間保持して湿式乾燥を行なっ
た。
After that, it was placed in a constant temperature and humidity chamber at 50℃ and relative humidity of 90% for 10 hours, and then kept at a relative humidity of 60℃ for 3 hours.
Wet drying was carried out by holding at 0° C. and relative humidity of 30° C. for 3 hours.

さらに塗布されたこのステンレス板を加熱炉に移し、1
℃/分の昇温速度で200℃まで昇温し同温度で3時間
保持して加熱処理してセラミックコーティングステンレ
ス板を得た。
Furthermore, this coated stainless steel plate was transferred to a heating furnace, and 1
The temperature was raised to 200° C. at a heating rate of ° C./min, and the temperature was maintained for 3 hours for heat treatment to obtain a ceramic coated stainless steel plate.

実施例2 実施例1で得たコロイド状ジルコニアゾルにエチレング
リコールを加え、加熱することによシ水を留出してエチ
レングリコールに分散したZ r O2として10重量
%を有するコロイド状ジルコニアゾルを得た。
Example 2 Ethylene glycol was added to the colloidal zirconia sol obtained in Example 1, and water was distilled off by heating to obtain a colloidal zirconia sol having 10% by weight of Z r O2 dispersed in ethylene glycol. Ta.

このゾルにエタノール分散チタニアゾルを添加して、さ
らにエタノールを添加して粘度を7.5センチポイズに
調整し、Z r O2として4.5重量% T r 0
2として1.5重量%を含有するセラミックコーティン
グジルコニア−チタニア混合ゾルを得た。−は6であっ
た。
Ethanol-dispersed titania sol was added to this sol, ethanol was further added to adjust the viscosity to 7.5 centipoise, and Z r O2 was 4.5% by weight T r 0
A ceramic coated zirconia-titania mixed sol containing 1.5% by weight of 2 was obtained. - was 6.

この混合ゾルにアルミナ板を浸漬させ実施例1と同様に
湿式乾燥、加熱処理と行なったあと500℃で3時間焼
成してセラミックスコーティングアルミナ板を得た。
An alumina plate was immersed in this mixed sol, subjected to wet drying and heat treatment in the same manner as in Example 1, and then fired at 500° C. for 3 hours to obtain a ceramic coated alumina plate.

実施例3 実施例2で得たコロイド状ツルコニアシルを用い、また
基材に石英ガラスを用いて実施例1と同様にしてセラミ
ックコーティング石英ガラスを得た。
Example 3 Ceramic-coated quartz glass was obtained in the same manner as in Example 1 using the colloidal turconia sil obtained in Example 2 and using quartz glass as the base material.

実施例4 実施例1で得たコロイド状ジルコニアゾルにイ、トリア
ゾルを添加してZ rO2として3.2重量%Y2O3
として0.2重量%を含有するセラミックコーティング
ジルコニア−イツトリア混合ゾルを得た。
Example 4 Triazol was added to the colloidal zirconia sol obtained in Example 1 to give 3.2% by weight of Y2O3 as ZrO2.
A ceramic-coated zirconia-yttoria mixed sol containing 0.2% by weight of 0.2% by weight was obtained.

この混合ゾルを5 % 5102含有アルミナ繊維(3
μmφ γ−アルミナ比表面積135m /jl )を
注いで実施例1と同様にしてセラミックコーティングア
ルミナ繊維を得た。
This mixed sol was mixed with 5% 5102-containing alumina fiber (3
Ceramic coated alumina fibers were obtained in the same manner as in Example 1 by pouring .mu.mφ .gamma.-alumina specific surface area 135 m/jl).

実施例5 実施例1〜4で得られたセラミックコーティング基材に
ついて光学顕微鏡、電子顕微鏡によシコート表面とコー
ト層断面の状態を観察し、結果を表−1に示した。
Example 5 The ceramic coating substrates obtained in Examples 1 to 4 were observed using an optical microscope and an electron microscope to observe the state of the coated surface and the cross section of the coat layer, and the results are shown in Table 1.

その結果、実施例1〜4の基材のコート表面には亀裂は
ほとんど認められず、実施例1,2の基材の端付近に〜
5μmまでの亀裂が一部認められただけであった。また
コート層の断面も0.5μm〜8μmと自由に調整でき
ていた。
As a result, almost no cracks were observed on the coated surfaces of the substrates of Examples 1 to 4, and ~
Only some cracks up to 5 μm were observed. Further, the cross section of the coating layer could be freely adjusted to 0.5 μm to 8 μm.

Claims (5)

【特許請求の範囲】[Claims] (1)ジルコニウム塩水溶液から加水分解法によって得
られたコロイド状ジルコニアゾルが含有されてなること
を特徴とするセラミックコーティング用ゾル。
(1) A sol for ceramic coating, characterized in that it contains a colloidal zirconia sol obtained by a hydrolysis method from an aqueous zirconium salt solution.
(2)該コロイド状ジルコニアゾルの平均粒子径が30
0〜1500Åの範囲であることを特徴とする特許請求
の範囲(1)記載のゾル。
(2) The average particle diameter of the colloidal zirconia sol is 30
The sol according to claim (1), characterized in that the sol has a thickness in the range of 0 to 1500 Å.
(3)アルミナゾル、シリカゾルおよびチタニアゾルよ
りなる群から選ばれた少なくとも一種のゾルが添加され
てなる特許請求の範囲(1)記載のゾル。
(3) The sol according to claim (1), to which at least one sol selected from the group consisting of alumina sol, silica sol, and titania sol is added.
(4)ジルコニウム塩水溶液から加水分解法によって得
られたコロイド状ジルコニアゾルが含有されてなるセラ
ミックコーティング用ゾルを基材に塗布後、30〜70
℃の温度範囲かつ相対湿度70〜95%の範囲の雰囲気
に塗布された基材を少なくとも1時間以上さらした後、
相対湿度を10〜40%に低下せしめる湿式乾燥工程次
いで0.2〜5℃/分の昇温速度で100〜500℃ま
で塗布された基材が加熱される加熱処理工程を含むこと
を特徴とするセラミックコーティング方法。
(4) After applying a ceramic coating sol containing a colloidal zirconia sol obtained from a zirconium salt aqueous solution by a hydrolysis method to a base material,
After exposing the coated substrate to an atmosphere in the temperature range of °C and the relative humidity range of 70 to 95% for at least 1 hour,
A wet drying step in which the relative humidity is lowered to 10-40%, followed by a heat treatment step in which the coated substrate is heated to 100-500°C at a heating rate of 0.2-5°C/min. Ceramic coating method.
(5)塗布される基材が金属、セラミックス、ガラス、
紙、有機高分子材料であることを特徴とする特許請求の
範囲(4)記載の方法。
(5) The base material to be coated is metal, ceramics, glass,
The method according to claim (4), characterized in that the material is paper or an organic polymer material.
JP19048486A 1986-08-15 1986-08-15 Sol for use in coating ceramic and coating method using same Pending JPS6348358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19048486A JPS6348358A (en) 1986-08-15 1986-08-15 Sol for use in coating ceramic and coating method using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19048486A JPS6348358A (en) 1986-08-15 1986-08-15 Sol for use in coating ceramic and coating method using same

Publications (1)

Publication Number Publication Date
JPS6348358A true JPS6348358A (en) 1988-03-01

Family

ID=16258864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19048486A Pending JPS6348358A (en) 1986-08-15 1986-08-15 Sol for use in coating ceramic and coating method using same

Country Status (1)

Country Link
JP (1) JPS6348358A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156086A (en) * 1986-12-19 1988-06-29 日産化学工業株式会社 Method of reforming ceramic moldings
JPH026334A (en) * 1988-06-22 1990-01-10 Murata Mfg Co Ltd Production of lead titanate zirconate thin film
JPH0243928A (en) * 1988-08-01 1990-02-14 Ngk Insulators Ltd Inorganic porous membrane
JPH0248418A (en) * 1988-08-05 1990-02-19 Catalysts & Chem Ind Co Ltd Zirconia composite sol
WO1990004322A2 (en) * 1990-01-10 1990-05-03 Sugitanikinzokukogyo Co. Ltd. Water-dispersible heat-resistant composition and application thereof
JPH0431359A (en) * 1990-05-23 1992-02-03 Kanebo Ltd Production of yttria-stabilized zirconia-based raw material powder
JPH05501850A (en) * 1990-08-03 1993-04-08 プロデュイット セルロシック イゾラン―プロセリ Method for producing rigid insulating fire-resistant material and material obtained thereby
US5411804A (en) * 1991-08-07 1995-05-02 Sugianikinzokukogyo Co. Ltd. Water-dispersible, heat-resistant composition and use thereof
US5618585A (en) * 1991-02-20 1997-04-08 Merck Patent Gesellschaft Mit Beschrankter Haftung Process for the production of a coated system
EP0897898A2 (en) * 1997-08-16 1999-02-24 MERCK PATENT GmbH Method for the deposition of optical layers
JP2004186222A (en) * 2002-11-29 2004-07-02 Murata Mfg Co Ltd Method for manufacturing ceramic electronic component
JP2004323976A (en) * 2003-04-22 2004-11-18 General Electric Co <Ge> Spot method for repairing thermal barrier coating, and composition
JP2007320776A (en) * 2006-05-30 2007-12-13 Univ Nihon Method for producing hard film and sol
JP2008120654A (en) * 2006-11-15 2008-05-29 Nihon Ceratec Co Ltd Ceramic-coated member and method of manufacturing the same

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156086A (en) * 1986-12-19 1988-06-29 日産化学工業株式会社 Method of reforming ceramic moldings
JP2550547B2 (en) * 1986-12-19 1996-11-06 日産化学工業株式会社 Modification method of ceramic molded products
JPH026334A (en) * 1988-06-22 1990-01-10 Murata Mfg Co Ltd Production of lead titanate zirconate thin film
JPH0243928A (en) * 1988-08-01 1990-02-14 Ngk Insulators Ltd Inorganic porous membrane
JPH0561969B2 (en) * 1988-08-01 1993-09-07 Ngk Insulators Ltd
JPH0248418A (en) * 1988-08-05 1990-02-19 Catalysts & Chem Ind Co Ltd Zirconia composite sol
WO1990004322A2 (en) * 1990-01-10 1990-05-03 Sugitanikinzokukogyo Co. Ltd. Water-dispersible heat-resistant composition and application thereof
WO1990004322A3 (en) * 1990-01-10 1990-05-31 Sugitani Kinzoku Kogyo Kk Water-dispersible heat-resistant composition and application thereof
EP0440013A2 (en) * 1990-01-10 1991-08-07 Sugitanikinzokukogyo Co., Ltd. Water-dispersible, heat-resistant composition and uses thereof
JPH0431359A (en) * 1990-05-23 1992-02-03 Kanebo Ltd Production of yttria-stabilized zirconia-based raw material powder
JPH05501850A (en) * 1990-08-03 1993-04-08 プロデュイット セルロシック イゾラン―プロセリ Method for producing rigid insulating fire-resistant material and material obtained thereby
US5618585A (en) * 1991-02-20 1997-04-08 Merck Patent Gesellschaft Mit Beschrankter Haftung Process for the production of a coated system
US5411804A (en) * 1991-08-07 1995-05-02 Sugianikinzokukogyo Co. Ltd. Water-dispersible, heat-resistant composition and use thereof
EP0897898A2 (en) * 1997-08-16 1999-02-24 MERCK PATENT GmbH Method for the deposition of optical layers
EP0897898A3 (en) * 1997-08-16 1999-03-10 MERCK PATENT GmbH Method for the deposition of optical layers
JP2004186222A (en) * 2002-11-29 2004-07-02 Murata Mfg Co Ltd Method for manufacturing ceramic electronic component
JP4506076B2 (en) * 2002-11-29 2010-07-21 株式会社村田製作所 Manufacturing method of ceramic electronic component
JP2004323976A (en) * 2003-04-22 2004-11-18 General Electric Co <Ge> Spot method for repairing thermal barrier coating, and composition
JP4651966B2 (en) * 2003-04-22 2011-03-16 ゼネラル・エレクトリック・カンパニイ Field methods and compositions for repairing thermal barrier coatings
JP2007320776A (en) * 2006-05-30 2007-12-13 Univ Nihon Method for producing hard film and sol
JP2008120654A (en) * 2006-11-15 2008-05-29 Nihon Ceratec Co Ltd Ceramic-coated member and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JPS6348358A (en) Sol for use in coating ceramic and coating method using same
JP3343119B2 (en) Method for producing thin film having optical characteristics
US4397666A (en) Method of producing glass from metal alkoxide solution
JP3186768B2 (en) Hydrophobic and abrasion resistant antireflective material and method of depositing an antireflective, hydrophobic and abrasion resistant coating on a substrate
EP1238030B1 (en) Self-cross-linking coating compositions on the basis of inorganic fluorine-containing polycondensates
US20010051213A1 (en) Process for depositing optical layers
CN108906557B (en) Long-acting super-hydrophilic polysilazane coating and preparation method thereof
JP4176647B2 (en) Method for producing hydrophilic membrane
KR19980703207A (en) Manufacturing Method of Ceramic Thick Film by Sol Gel Coating
JP2013256672A (en) Superhydrophobic coating
AU6309798A (en) Coating material for forming vitreous coating film, method of coating with the same, and coater
CN1316980A (en) Method for production of optical layers having uniform layer thickness
DE19828231C2 (en) Process for the deposition of porous optical layers
EP2172438A1 (en) Sanitary ware and process for production thereof
JP2007161770A (en) Coating fluid for forming hydrophilic film, its manufacturing method, hydrophilic film and method of forming hydrophilic film
JP2003301167A (en) Process for producing sol and method for water repellent treatment of base material
WO2003082998A1 (en) Water-based coating fluid
JPS6112734A (en) Manufacture of coated plastic molded article having excellent abrasion resisance
JPH08292301A (en) Hydrophilic glass and its production
WO2004039739A1 (en) Method of forming thin film on glass substrate and glass substrate coated with thin film
JPH03218928A (en) Zirconia organosol and production thereof
JP3794678B2 (en) Glass article and surface treatment method of glass article
KR102281837B1 (en) Method for forming nano-inorganic film
CN113950463B (en) Nano inorganic composition and coating method using the same
JP2000189795A (en) Surface treating agent for forming photocatalytic film and formation of photocatalytic film using the same