JP2004186222A - Method for manufacturing ceramic electronic component - Google Patents

Method for manufacturing ceramic electronic component Download PDF

Info

Publication number
JP2004186222A
JP2004186222A JP2002348560A JP2002348560A JP2004186222A JP 2004186222 A JP2004186222 A JP 2004186222A JP 2002348560 A JP2002348560 A JP 2002348560A JP 2002348560 A JP2002348560 A JP 2002348560A JP 2004186222 A JP2004186222 A JP 2004186222A
Authority
JP
Japan
Prior art keywords
ceramic element
ceramic
moisture
electronic component
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002348560A
Other languages
Japanese (ja)
Other versions
JP4506076B2 (en
Inventor
Kashiro Uchimura
可志郎 内村
Takeshi Sugata
武志 菅田
Fumiyasu Takahashi
文康 高橋
Takatomo Shibazaki
尚智 柴▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2002348560A priority Critical patent/JP4506076B2/en
Publication of JP2004186222A publication Critical patent/JP2004186222A/en
Application granted granted Critical
Publication of JP4506076B2 publication Critical patent/JP4506076B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a ceramic electronic component with which a ceramic element including moisture can surely be dried, occurrence of a failure such as a crack and a chip or peeling of an outer electrode due to sudden evaporation of moisture at the time of baking the outer electrode can be prevented and a ceramic electronic component can be manufactured with a sufficient yield. <P>SOLUTION: A process for performing a processing with which moisture adheres to and is stuck to the ceramic element is installed, and a drying process for drying the ceramic element by raising a temperature of the ceramic element to 200 to 400°C at temperature rising speed of not more than 10°C/min is installed between the process and a thermal treatment process for heating the ceramic element. Thus, occurrence of the failure such as the crack and the chip or peeling of the outer electrode due to sudden evaporation of moisture in a subsequent thermal treatment process can be prevented. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、セラミック電子部品の製造方法に関し、詳しくは、セラミック電子部品を構成するセラミック素子に、水分の付着や吸着が生じるような処理を施す工程と、該工程の後に、セラミック素子を加熱処理する工程を経て製造されるセラミック電子部品の製造方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
例えば、代表的なセラミック電子部品の一つである積層セラミックコンデンサは、図1に示すように、複数の内部電極1がセラミック層2を介して互いに対向するように配設され、かつ、交互に逆側の端面3a,3bに引き出されたセラミック素子5に、内部電極1と導通するように外部電極4a,4bが配設された構造を有している。
【0003】
ところで、図1に示すような構造を有する積層セラミックコンデンサは、例えば、以下に説明するような工程を経て製造されている(例えば、特許文献1参照)。
【0004】
(1)セラミックグリーンシートの表面に内部電極となる導電ペーストを印刷して電極印刷シートを形成する。
(2)この電極印刷シートと、導電ペーストの印刷されていないセラミックグリーンシート(上下両面側のカバーシート)を所定枚数積層し、圧着することにより、積層圧着体を形成する。
(3)それから、この積層圧着体を所定の位置でカットし、個々のセラミック素子(未焼成のセラミック素子)を切り出した後、所定の条件で脱脂、焼成を行う。
(4)次いで、焼成されたセラミック素子を水と研磨媒体の混合物とともにバレルに入れて攪拌し、その表面を研磨する、いわゆる湿式バレル研磨処理を施し、セラミック素子の表面を研磨するとともに面取りを行った後、例えば、130℃×60minの条件で温風乾燥を行う。
(5)それから、セラミック素子に導電ペーストを塗布、焼き付けして外部電極を形成する。
これにより、図1に示すような構造を有する積層セラミックコンデンサが得られる。
【0005】
しかしながら、上記特許文献1の製造方法では、(4)のバレル研磨の工程で、セラミック素子の空洞(ポア)に水分が入り込み、上記の130℃×60minというような条件で温風乾燥を行った場合には、表面付近は乾燥していても、ポアの内部には水分が残留する。その結果、(5)の外部電極の形成工程において、セラミック素子に塗布した導電ペーストを焼き付ける際に、ポア内の水分が急激に蒸発し、その衝撃でセラミック素子にクラックや欠けが発生したり、セラミック素子の表面に形成される外部電極の剥離が発生したりするという問題点がある。特に、セラミック素子の外部電極で覆われている領域のポア内に存在する水分は、外部電極に覆われてない部分に比べて、乾燥工程で除去されにくく、外部電極を焼き付ける際に発生する水分の蒸気が高圧になり、クラックやクレーター状の欠け、あるいは外部電極の剥離などが発生しやすいという問題点がある。
なお、図2に、積層セラミックコンデンサの外部電極4aに覆われた領域にクレーター状の欠け6が発生し、外部電極4aの一部が剥離した状態を模式的に示す。
【0006】
また、このような乾燥工程において、水分の除去を確実に行うために減圧下で温風乾燥を行なう方法も考えられている(例えば、特許文献2参照)。
この特許文献2のように減圧下において乾燥を行なう場合でも、温風の温度が150℃程度では水分を除去しきれないため、200〜300℃の高温の温風を吹き付けていた。この乾燥工程を経た後のセラミック素子では、外部電極を焼き付ける際のクラックや欠け、外部電極の剥離等の問題はほとんど生じない。
しかしながら、特許文献2の方法における乾燥工程では、乾燥工程中にセラミック素子のクラックや欠けが生じやすいという問題点がある。これは、減圧下において水分が抜けやすくなった状態で、200〜300℃の高温の温風を直接吹き付けるようにしているため、セラミック素子中の水分の蒸発が急激に進行し、そのときの衝撃により、セラミック素子にクラックや欠けが生じやすくなることによるものである。
【0007】
【特許文献1】
特開平5−101968号公報
【特許文献2】
特開2001−68372号公報
【0008】
本発明は上記問題点を解決するものであり、水分を含んだセラミック素子を確実に乾燥させることが可能で、外部電極を焼き付ける等の熱処理の際の、水分の急激な蒸発によるクラックや欠け、あるいは外部電極の剥離などの不良の発生を防止して、セラミック電子部品を歩留まりよく製造することが可能なセラミック電子部品の製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明(請求項1)のセラミック電子部品の製造方法は、
セラミック成形体を焼成してなるセラミック素子に対して、水分の付着や吸着が生じる処理を施す工程と、該工程の後にセラミック素子を加熱処理する熱処理工程を有するセラミック電子部品の製造方法において、
前記水分の付着や吸着が生じる処理を施す工程と、前記熱処理工程との間に、セラミック素子を10℃/min以下の昇温速度で200〜400℃まで昇温することによりセラミック素子を乾燥させる乾燥工程を備えていること
を特徴としている。
【0010】
水分の付着や吸着が生じる処理を施す工程と、熱処理工程との間に、セラミック素子を10℃/min以下の昇温速度で200〜400℃まで昇温することにより、セラミック素子を確実に乾燥させることが可能になる。すなわち、昇温速度を10℃/min以下として、徐々に200〜400℃まで昇温するようにした場合、セラミック素子の表面の水分だけではなく、セラミック素子に形成された空洞(ポア)の内部に入り込んだ水分も確実に除去することが可能になる。
したがって、セラミック素子に対して、水分の付着や吸着が生じる処理を施す工程を経たセラミック素子に外部電極を焼き付ける際の、水分の急激な蒸発によるクラックや欠け、あるいは外部電極の剥離などの不良の発生を防止して、セラミック電子部品を効率よく製造することができるようになる。
なお、本発明においては、200〜400℃まで昇温した後、その温度で所定時間保持するようにしてもよい。その場合、さらに確実にセラミック素子の乾燥を行うことが可能になり、さらに歩留まりよくセラミック電子部品を製造することができるようになる。
【0011】
なお、本発明において、乾燥工程での昇温速度を10℃/min以下としたのは、昇温速度が10℃/minを越えると、セラミック素子空洞(ポア)内に入り込んだ水分が急激に蒸気となるため、この圧力により、セラミック素子にクラックや欠けが生じやすくなることによる。また、乾燥工程に時間がかかりすぎないようにする見地からは、昇温速度は1℃/min以上とすることが望ましい。
また、200〜400℃まで昇温するようにしたのは、乾燥工程における最高温度が200℃を下回ると乾燥が不十分になり、400℃を超えて昇温しても効果の顕著な向上が認められず、しかも、その温度にまで昇温するのに時間を要し、乾燥工程に時間がかかることになるため望ましくない。
【0012】
また、請求項2のセラミック電子部品の製造方法は、前記水分の付着や吸着が生じる処理を施す工程が、前記セラミック素子をバレルに入れて水の存在下に研磨する湿式バレル研磨工程であることを特徴としている。
【0013】
セラミック電子部品の製造工程ではしばしば実施される湿式バレル研磨工程では、セラミック素子への水分の付着や吸着が生じることになるが、請求項2のように、かかる場合に本発明を適用することにより、セラミック素子から水分を確実に除去して、外部電極形成工程などの熱処理工程での水分の急激な蒸発によるクラックや欠け、あるいは外部電極の剥離などの不良の発生を防止して、セラミック電子部品を歩留まりよく製造することが可能になる。
【0014】
また、請求項3のセラミック電子部品の製造方法は、前記熱処理工程が、セラミック素子に導電ペーストを塗布して焼き付けることにより外部電極を形成する工程であることを特徴としている。
【0015】
セラミック素子に導電ペーストを塗布して焼き付けることにより外部電極を形成する工程においては、セラミック素子が600℃以上の温度に加熱されることから、セラミック素子に形成された空洞(ポア)に水分が入り込んでいると、導電ペーストを焼き付ける際にポア内の水分が急激に蒸発し、その衝撃でセラミック素子にクラックや欠けが発生したり、セラミック素子の表面に形成される外部電極に剥離が発生したりするおそれがあるが、本発明によれば、セラミック素子を十分に乾燥させることが可能になるので、このようなクラックや欠け、外部電極の剥離などの不良の発生を確実に防止することが可能になる。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を示して、その特徴とするところをさらに詳しく説明する。
【0017】
この実施形態では、セラミック電子部品として、図1に示すように、複数の内部電極1がセラミック層2を介して互いに対向するように配設され、かつ、交互に逆側の端面3a,3bに引き出されセラミック素子5に、内部電極1と導通するように外部電極4a,4bが配設された構造を有する積層セラミックコンデンサを製造する場合を例にとって説明する。
【0018】
(1)まず、セラミックグリーンシートの表面に内部電極となる導電ペーストを印刷して電極印刷シートを形成する。なお、この実施形態では、セラミックグリーンシートとして、チタン酸バリウム系の誘電体セラミックグリーンシートを用い、導電ペーストとしてNi粉末を導電成分とする卑金属導電ペーストを用いた。
(2)この電極印刷シートと、導電ペーストの印刷されていないセラミックグリーンシート(上下両面側のカバーシート)を所定枚数積層し、圧着することにより、33枚のセラミックグリーンシートが積層された構造を有する積層圧着体を形成する。
(3)それから、この積層圧着体を所定の位置でカットし、個々のセラミック素子(未焼成のセラミック素子)を切り出し、所定の条件で脱脂、焼成を行う。
【0019】
(4)次いで、焼成されたセラミック素子を水と研磨媒体の混合物とともにバレルに入れて攪拌し、その表面を研磨する、いわゆる湿式バレル研磨処理を施し、セラミック素子の表面を研磨するとともに面取りを行う。そして、水洗した後、セラミック素子を乾燥する。
そして、この実施形態では、セラミック素子を乾燥させるにあたって、3.33℃/minの昇温速度で400℃に達するまで加熱昇温し、400℃で1時間保持することにより乾燥を行った。なお、内部電極を構成するNiが酸化されないように、乾燥工程は窒素雰囲気中で実施した。
【0020】
(5)それから、セラミック素子に導電ペーストを塗布して焼き付けることにより外部電極を形成する。なお、この実施形態では、外部電極形成用の導電ペーストとして、Cu粉末を導電成分とする導電ペーストを用いて、600℃で焼き付けを行った。
【0021】
そして、上記の方法により製造した2.0mm×1.25mm×1.25mmの積層セラミックコンデンサについて、クラック、欠け、及び外部電極の剥離の発生率(不良発生率)を調べた。
また、比較のため、セラミック素子を湿式バレル研磨し、水洗した後、170℃の温風で15分間乾燥を行った後、上記実施形態と同様の方法で外部電極を形成した積層セラミックコンデンサ(比較例)についても、同様に不良発生率を調べた。
【0022】
その結果、比較例の積層セラミックコンデンサでは、不良発生率が162ppmと高かったのに対して、本発明の方法により製造された積層セラミックコンデンサでは不良発生率が0ppmであることが確認された。これは、本発明によりセラミック素子の乾燥が十分に行われ、外部電極の形成工程での水分の急激な蒸発が十分に抑制、防止されたことによるものである。
【0023】
ここで、セラミック素子に含まれる水分が蒸気となって放出される際の挙動について検証する。
図3は、外形寸法が2.0mm×1.25mm×1.25mm、積層数が33枚のセラミック素子を上記実施形態における製造方法と同様の方法で製造し、昇温速度10℃/minで加熱した場合の蒸気の発生量を発生ガス分圧で示したものである。
図3に示すように、70〜150℃で大きなピークがあり、その後、200〜400℃で小さなピークが頻発している。
このことから、上記比較例の場合には、200〜400℃で蒸気となる水分が除去しきれないため、外部電極焼き付けの際に不良が発生したものと考えられる。
これに対して、上記実施形態の場合には、200〜400℃において水分を除去するようにしているので、水分を十分に除去して、不良発生率を低減させることが可能になる。
なお、図3は、昇温速度を10℃/minとした場合の挙動を示しているが、昇温速度をさらに低下させた場合においても、各ピークが低温側に若干ずれる程度で、傾向が大きく変化することはない。
【0024】
次に、乾燥工程の昇温速度を種々変更して不良発生率を確認した。表1に、その結果を示す。なお、試料11ではセラミック素子に直接130℃の温風を吹き付け、試料12では、セラミック素子に直接300℃の温風を吹き付けるようにしているので、昇温速度の条件は特に示していない。
ただし、各試料は、外形寸法が2.0mm×1.25mm×1.25mm、積層数が33枚のセラミック素子を上記実施形態における製造方法と同様の方法で製造したものである。
【0025】
【表1】

Figure 2004186222
【0026】
表1に示すように、乾燥工程において、最高温度を200〜400℃とし、昇温速度を10℃/min以下とした試料1〜10では、外部電極を焼き付けた後の積層セラミックコンデンサの不良発生率(コンデンサ不良発生率)及び乾燥工程におけるセラミック素子の不良発生率(セラミック素子不良発生率)のどちらにおいても不良発生率は低く、良好な結果が得られている。
【0027】
これに対して、特許文献1の方法により製造される積層セラミックコンデンサに相当する試料11では、十分な乾燥ができていないことから、コンデンサ不良発生率が102ppmと高くなっており、好ましくないことがわかる。
一方、特許文献2の方法により製造される積層セラミックコンデンサに相当する試料12では、乾燥工程中にセラミック素子にクラックや欠けが生じており、セラミック素子不良発生率が34ppmと比較的多く生じており、好ましくないことがわかる。なお、試料12では、コンデンサ不良発生率は6ppmと低いが、このコンデンサ不良発生率は、セラミック素子不良が発生したものを除いた後の試料について調べたものであり、合計の不良発生率は40ppmと高くなっている。
【0028】
また、昇温速度が10℃/minを超える試料13、14では、昇温速度が比較的速く、セラミック素子中の水分が急激に蒸発するため、セラミック素子にクラックや欠けなどの不良が発生している。すなわち、試料13,14では、セラミック素子不良発生率がそれぞれ12ppm,11ppmと高く、セラミック素子不良が発生したものを除いた後の試料について調べたコンデンサ不良発生率も、試料13及び14のそれぞれにおいて3ppmとなっており、合計の不良発生率は15ppm(試料13),14ppm(試料14)と高くなっている。
【0029】
さらに、最高温度が200℃に満たない試料15では、十分な乾燥ができていないことから、コンデンサ不良発生率が28ppmと高くなっていることがわかる。
【0030】
以上の結果から、乾燥工程において、最高温度を200〜400℃とし、昇温速度を10℃/min以下とすることにより、不良の発生を防止して、セラミック電子部品を歩留まり良く製造できることがわかる。
【0031】
なお、上記実施形態では、積層セラミックコンデンサを例にとって説明したが、本発明は、積層セラミックコンデンサに限らず、セラミックインダクタ、セラミックバリスタ、サーミスタ、多層回路基板その他の種々のセラミック電子部品に適用することが可能であり、その場合にも上記実施形態の場合と同様の効果を得ることができる。
【0032】
また、上記実施形態では、乾燥工程を窒素雰囲気(非酸化性雰囲気)中で実施するようにしているが、本発明は大気中で乾燥を行う場合にも適用することが可能である。また、窒素雰囲気中や大気中に限らず、その他の雰囲気中で乾燥を行うことも可能である。
なお、セラミック素子が積層型であり、内部電極が卑金属である場合は、乾燥工程において酸化する可能性があるため、非酸化性雰囲気中で乾燥を行うことが望ましい。
【0033】
また、上記実施形態では、水分の付着や吸着が生じる処理を施す工程が湿式バレル研磨工程であり、熱処理工程が導電ペーストを焼き付けて外部電極を形成する工程である場合を例にとって説明したが、水分の付着や吸着が生じる処理を施す工程及び熱処理工程の種類はこれに限定されるものではなく、例えば、水分の付着や吸着が生じる処理を施す工程がめっき工程であったり、熱処理工程が外部電極の形成工程以外のアニール工程であったりしてもよい。
【0034】
さらに、上記実施形態では、徐々に昇温して乾燥させるようにした場合を例にとって説明したが、乾燥工程での乾燥方法はこれに限られるものではなく、例えば70〜170℃の温風でセラミック素子表面の水分を除去した後、徐々に昇温して乾燥させる複数段階の乾燥にしてもよい。この場合、効率的に水分が除去できるため、乾燥工程に要する時間を短縮することができる。
【0035】
また、本発明は、さらにその他の点においても上記実施形態に限定されるものではなく、セラミック素子を構成するセラミックの種類、内部電極及び外部電極の構成材料、セラミック素子の具体的な構造などに関し、発明の要旨の範囲内において、種々の応用、変形を加えることが可能である。
【0036】
【発明の効果】
上述のように、本発明(請求項1)のセラミック電子部品の製造方法は、水分の付着や吸着が生じる処理を施す工程と、熱処理工程との間に、セラミック素子を10℃/min以下の昇温速度で200〜400℃まで昇温することによりセラミック素子を乾燥させるようにしているので、セラミック素子の表面の水分だけではなく、セラミック素子に形成された空洞(ポア)の内部に入り込んだ水分も確実に除去することが可能になる。
したがって、セラミック素子に対して、水分の付着や吸着が生じる処理を施す工程を経たセラミック素子に外部電極を焼き付ける際の、水分の急激な蒸発によるクラックや欠け、乾燥の際の水分の急激な蒸発によるクラックや欠け、あるいは外部電極の剥離などの不良の発生を防止して、セラミック電子部品を効率よく製造することができる。
【0037】
また、セラミック電子部品の製造工程ではしばしば実施される湿式バレル研磨工程では、セラミック素子への水分の付着や吸着が生じることになるが、請求項2のように、かかる場合に本発明を適用することにより、セラミック素子から水分を確実に除去して、外部電極形成工程などの熱処理工程での水分の急激な蒸発によるクラックや欠け、あるいは外部電極の剥離などの不良の発生を防止して、セラミック電子部品を歩留まりよく製造することが可能になる。
【0038】
セラミック素子に導電ペーストを塗布して焼き付けることにより外部電極を形成する工程においては、セラミック素子が600℃以上の温度に加熱されることから、セラミック素子に形成された空洞(ポア)に水分が入り込んでいると、導電ペーストを焼き付ける際にポア内の水分が急激に蒸発し、その衝撃でセラミック素子にクラックや欠けが発生したり、セラミック素子の表面に形成される外部電極に剥離が発生したりするおそれがあるが、請求項3のように、かかる場合に本発明を適用することにより、セラミック素子を十分に乾燥させることが可能になるので、クラックや欠け、外部電極の剥離などの不良の発生を確実に防止して、セラミック電子部品を歩留まりよく製造することが可能になる。
【図面の簡単な説明】
【図1】本発明の一実施形態にかかる方法により製造される積層セラミック電子部品(積層セラミックコンデンサ)の例を示す断面図である。
【図2】積層セラミックコンデンサの外部電極にクレーター状の欠けが発生し、外部電極の一部が剥離した状態を模式的に示す図である。
【図3】セラミック素子から放出される蒸気量を示す図である。
【符号の説明】
1 内部電極
2 セラミック層
3a,3b 端面
4a,4b 外部電極
5 セラミック素子
6 クレーター状の欠け[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a ceramic electronic component, and more particularly, to a step of performing a process to cause adhesion or adsorption of moisture to a ceramic element constituting the ceramic electronic component, and heating the ceramic element after the step. The present invention relates to a method of manufacturing a ceramic electronic component manufactured through the steps of:
[0002]
Problems to be solved by the prior art and the invention
For example, as shown in FIG. 1, a multilayer ceramic capacitor, which is one of typical ceramic electronic components, has a plurality of internal electrodes 1 arranged so as to face each other via a ceramic layer 2 and alternately. It has a structure in which external electrodes 4a and 4b are arranged so as to be electrically connected to the internal electrode 1 on the ceramic element 5 drawn out to the opposite end faces 3a and 3b.
[0003]
By the way, a multilayer ceramic capacitor having a structure as shown in FIG. 1 is manufactured through, for example, the following steps (for example, see Patent Document 1).
[0004]
(1) A conductive paste serving as an internal electrode is printed on the surface of a ceramic green sheet to form an electrode printing sheet.
(2) A predetermined number of the electrode printing sheets and the ceramic green sheets (upper and lower side cover sheets) on which the conductive paste is not printed are laminated and crimped to form a laminated crimped body.
(3) Then, after cutting the laminated pressure-bonded body at a predetermined position and cutting out individual ceramic elements (unfired ceramic elements), degreasing and firing are performed under predetermined conditions.
(4) Next, the fired ceramic element is placed in a barrel together with a mixture of water and a polishing medium and stirred, and a so-called wet barrel polishing process is performed to polish the surface, so that the surface of the ceramic element is polished and chamfered. After that, for example, hot air drying is performed under the condition of 130 ° C. × 60 min.
(5) Then, a conductive paste is applied to the ceramic element and baked to form external electrodes.
Thus, a multilayer ceramic capacitor having a structure as shown in FIG. 1 is obtained.
[0005]
However, in the manufacturing method of Patent Document 1, in the barrel polishing step of (4), moisture enters the cavity (pore) of the ceramic element, and hot air drying is performed under the above conditions of 130 ° C. × 60 min. In this case, moisture remains inside the pores even when the surface is dry. As a result, in the step (5) of forming the external electrode, when the conductive paste applied to the ceramic element is baked, the moisture in the pores evaporates rapidly, and the impact causes cracks or chips in the ceramic element. There is a problem that the external electrodes formed on the surface of the ceramic element are peeled off. In particular, the moisture present in the pores of the area covered by the external electrodes of the ceramic element is less likely to be removed in the drying step than the portion not covered by the external electrodes, and the moisture generated when the external electrodes are baked. Has a problem that the pressure of the steam becomes high and cracks or crater-shaped chips are generated, or the external electrode is easily peeled off.
FIG. 2 schematically shows a state in which a crater-shaped chip 6 is generated in a region of the multilayer ceramic capacitor covered with the external electrode 4a, and a part of the external electrode 4a is peeled off.
[0006]
Further, in such a drying step, a method of performing hot air drying under reduced pressure in order to surely remove moisture has been considered (for example, see Patent Document 2).
Even when drying is performed under reduced pressure as in Patent Literature 2, when the temperature of the hot air is about 150 ° C., water cannot be completely removed, so high-temperature hot air of 200 to 300 ° C. has been blown. In the ceramic element after the drying step, there are almost no problems such as cracks and chips when the external electrodes are baked, and peeling of the external electrodes.
However, in the drying step in the method of Patent Document 2, there is a problem that cracks and chips are likely to occur in the ceramic element during the drying step. This is because a high-temperature hot air of 200 to 300 ° C. is directly blown in a state in which moisture easily escapes under reduced pressure, so that the evaporation of moisture in the ceramic element rapidly progresses, This is because cracks and chips are likely to occur in the ceramic element.
[0007]
[Patent Document 1]
JP-A-5-101968 [Patent Document 2]
JP-A-2001-68372
The present invention is to solve the above problems, it is possible to reliably dry the ceramic element containing water, at the time of heat treatment such as baking external electrodes, cracks and chips due to rapid evaporation of water, Alternatively, it is another object of the present invention to provide a method for manufacturing a ceramic electronic component capable of manufacturing a ceramic electronic component with high yield by preventing occurrence of a defect such as peeling of an external electrode.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a method for manufacturing a ceramic electronic component according to the present invention (claim 1) includes:
A method for producing a ceramic electronic component, comprising: a step of subjecting a ceramic element formed by firing a ceramic molded body to a treatment in which adhesion or adsorption of moisture occurs, and a heat treatment step of heating the ceramic element after the step.
The ceramic element is dried by raising the temperature of the ceramic element to 200 to 400 ° C. at a temperature increase rate of 10 ° C./min or less between the step of performing the treatment that causes the attachment or adsorption of moisture and the heat treatment step. It is characterized by having a drying step.
[0010]
The ceramic element is reliably dried by raising the temperature of the ceramic element to 200 to 400 ° C. at a rate of 10 ° C./min or less between the step of performing a process that causes the attachment or adsorption of moisture and the heat treatment step. It becomes possible to do. That is, when the temperature is gradually raised from 200 ° C. to 400 ° C. at a temperature rising rate of 10 ° C./min or less, not only the moisture on the surface of the ceramic element but also the inside of the cavity (pore) formed in the ceramic element is reduced. Moisture that has entered can be reliably removed.
Therefore, when the external electrode is baked on the ceramic element that has undergone a process of causing moisture to be attached or adsorbed to the ceramic element, cracks or chips due to rapid evaporation of water, or defects such as peeling of the external electrode may occur. The generation of the ceramic electronic component can be prevented and the ceramic electronic component can be manufactured efficiently.
In the present invention, after the temperature is raised to 200 to 400 ° C., the temperature may be maintained for a predetermined time. In this case, the ceramic element can be more reliably dried, and a ceramic electronic component can be manufactured with higher yield.
[0011]
In the present invention, the reason why the heating rate in the drying step is set to 10 ° C./min or less is that when the heating rate exceeds 10 ° C./min, the moisture that has entered the ceramic element cavities (pores) rapidly increases. This is because the pressure is likely to cause cracks and chips in the ceramic element due to the pressure. Further, from the viewpoint of preventing the drying step from taking too much time, it is desirable that the heating rate be 1 ° C./min or more.
In addition, the reason why the temperature is raised to 200 to 400 ° C. is that if the maximum temperature in the drying step is lower than 200 ° C., the drying becomes insufficient, and even if the temperature is raised above 400 ° C., the effect is remarkably improved. It is not recognized, and it takes time to raise the temperature to that temperature, which is not desirable because the drying process takes time.
[0012]
Further, in the method for manufacturing a ceramic electronic component according to claim 2, the step of performing the process of causing the adhesion or adsorption of moisture is a wet barrel polishing step of placing the ceramic element in a barrel and polishing in the presence of water. It is characterized by.
[0013]
In the wet barrel polishing step, which is often performed in the process of manufacturing ceramic electronic components, adhesion and adsorption of moisture to the ceramic element will occur. However, by applying the present invention to such a case as described in claim 2, In addition, it reliably removes water from the ceramic element to prevent cracks and chips due to rapid evaporation of water in the heat treatment process such as the external electrode forming process, or the occurrence of defects such as peeling of the external electrode. Can be manufactured with good yield.
[0014]
In the method for manufacturing a ceramic electronic component according to a third aspect, the heat treatment step is a step of forming an external electrode by applying and baking a conductive paste to a ceramic element.
[0015]
In the step of forming an external electrode by applying and baking a conductive paste to a ceramic element, moisture enters a cavity (pore) formed in the ceramic element because the ceramic element is heated to a temperature of 600 ° C. or higher. When the conductive paste is baked, the moisture in the pores evaporates rapidly when the conductive paste is baked, and the impact causes cracks or chips in the ceramic element or peels off the external electrodes formed on the surface of the ceramic element. However, according to the present invention, since the ceramic element can be sufficiently dried, it is possible to reliably prevent the occurrence of such defects as cracks, chips, and peeling of external electrodes. become.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described, and features thereof will be described in more detail.
[0017]
In this embodiment, as shown in FIG. 1, as a ceramic electronic component, a plurality of internal electrodes 1 are arranged so as to face each other via a ceramic layer 2 and are alternately provided on opposite end surfaces 3a and 3b. An example in which a multilayer ceramic capacitor having a structure in which external electrodes 4a and 4b are provided so as to be electrically connected to the internal electrode 1 in the drawn ceramic element 5 will be described.
[0018]
(1) First, a conductive paste serving as an internal electrode is printed on the surface of a ceramic green sheet to form an electrode printing sheet. In this embodiment, a barium titanate-based dielectric ceramic green sheet was used as the ceramic green sheet, and a base metal conductive paste containing Ni powder as a conductive component was used as the conductive paste.
(2) The electrode printed sheet and a predetermined number of ceramic green sheets (upper and lower side cover sheets) on which no conductive paste is printed are laminated and pressed to form a structure in which 33 ceramic green sheets are laminated. To form a laminated pressure-bonded body.
(3) Then, the laminated pressure-bonded body is cut at a predetermined position, individual ceramic elements (unfired ceramic elements) are cut out, and degreasing and firing are performed under predetermined conditions.
[0019]
(4) Next, the fired ceramic element is put into a barrel together with a mixture of water and a polishing medium and stirred, and a so-called wet barrel polishing process is performed to polish the surface, and the surface of the ceramic element is polished and chamfered. . After washing with water, the ceramic element is dried.
In this embodiment, when the ceramic element was dried, the ceramic element was heated at a heating rate of 3.33 ° C./min until the temperature reached 400 ° C., and the temperature was maintained at 400 ° C. for 1 hour to perform drying. The drying step was performed in a nitrogen atmosphere so that Ni constituting the internal electrodes was not oxidized.
[0020]
(5) Then, an external electrode is formed by applying and baking a conductive paste to the ceramic element. In this embodiment, baking was performed at 600 ° C. using a conductive paste containing Cu powder as a conductive component as a conductive paste for forming an external electrode.
[0021]
Then, with respect to the multilayer ceramic capacitor of 2.0 mm × 1.25 mm × 1.25 mm manufactured by the above method, the occurrence rate of cracks, chips, and peeling of the external electrodes (defect occurrence rate) was examined.
For comparison, the ceramic element was wet-barrel polished, washed with water, dried with hot air of 170 ° C. for 15 minutes, and then formed with a multilayer ceramic capacitor having external electrodes formed in the same manner as in the above embodiment (Comparative Example). Example), the defect occurrence rate was similarly examined.
[0022]
As a result, it was confirmed that the defect occurrence rate was as high as 162 ppm in the multilayer ceramic capacitor of the comparative example, whereas the defect occurrence rate was 0 ppm in the multilayer ceramic capacitor manufactured by the method of the present invention. This is because the ceramic element was sufficiently dried by the present invention, and rapid evaporation of water in the step of forming the external electrode was sufficiently suppressed and prevented.
[0023]
Here, the behavior when the moisture contained in the ceramic element is released as vapor is verified.
FIG. 3 shows that a ceramic element having an outer dimension of 2.0 mm × 1.25 mm × 1.25 mm and a lamination number of 33 is manufactured by the same method as the manufacturing method in the above embodiment, and the temperature is increased at a rate of 10 ° C./min. The amount of generated steam when heated is indicated by the generated gas partial pressure.
As shown in FIG. 3, there is a large peak at 70 to 150 ° C., and thereafter, a small peak frequently occurs at 200 to 400 ° C.
From the above, it is considered that in the case of the comparative example, since the water which becomes the vapor at 200 to 400 ° C. cannot be completely removed, a defect occurred at the time of external electrode baking.
On the other hand, in the case of the above-described embodiment, since the water is removed at 200 to 400 ° C., it is possible to sufficiently remove the water and to reduce the defect occurrence rate.
FIG. 3 shows the behavior when the heating rate is set to 10 ° C./min. However, even when the heating rate is further reduced, each peak slightly shifts to the low temperature side, and the tendency is small. It does not change much.
[0024]
Next, the rate of temperature rise in the drying step was variously changed, and the defect occurrence rate was confirmed. Table 1 shows the results. Note that, in Sample 11, warm air of 130 ° C. is directly blown to the ceramic element, and in Sample 12, hot air of 300 ° C. is blown directly to the ceramic element. Therefore, the condition of the heating rate is not particularly shown.
However, in each sample, a ceramic element having an outer dimension of 2.0 mm × 1.25 mm × 1.25 mm and the number of laminations of 33 was manufactured by the same method as the manufacturing method in the above embodiment.
[0025]
[Table 1]
Figure 2004186222
[0026]
As shown in Table 1, in the drying process, in Samples 1 to 10 in which the maximum temperature was 200 to 400 ° C. and the heating rate was 10 ° C./min or less, failure of the multilayer ceramic capacitor after baking the external electrode occurred. The defect occurrence rate is low in both the rate (the occurrence rate of the capacitor failure) and the failure occurrence rate of the ceramic element in the drying process (the occurrence rate of the ceramic element failure), and good results are obtained.
[0027]
On the other hand, in Sample 11 corresponding to the multilayer ceramic capacitor manufactured by the method of Patent Document 1, since the capacitor was not sufficiently dried, the failure rate of the capacitor was as high as 102 ppm, which was not preferable. Understand.
On the other hand, in Sample 12 corresponding to the multilayer ceramic capacitor manufactured by the method of Patent Document 2, cracks and chips were generated in the ceramic element during the drying process, and the failure rate of the ceramic element was relatively high at 34 ppm. It turns out that it is not preferable. In Sample 12, the capacitor failure rate was as low as 6 ppm. However, the capacitor failure rate was obtained by examining the samples after removing the ceramic element failure, and the total failure rate was 40 ppm. And is higher.
[0028]
Further, in Samples 13 and 14 having a heating rate exceeding 10 ° C./min, since the heating rate is relatively high and moisture in the ceramic element evaporates rapidly, defects such as cracks and chips occur in the ceramic element. ing. That is, in Samples 13 and 14, the ceramic element failure occurrence rates were as high as 12 ppm and 11 ppm, respectively. It is 3 ppm, and the total failure occurrence rate is as high as 15 ppm (sample 13) and 14 ppm (sample 14).
[0029]
Further, in Sample 15 having a maximum temperature of less than 200 ° C., since the sample was not sufficiently dried, it can be seen that the occurrence rate of capacitor failure was as high as 28 ppm.
[0030]
From the above results, it can be seen that, in the drying step, by setting the maximum temperature to 200 to 400 ° C. and the rate of temperature rise to 10 ° C./min or less, occurrence of defects can be prevented and ceramic electronic components can be manufactured with high yield. .
[0031]
In the above embodiment, a multilayer ceramic capacitor has been described as an example, but the present invention is not limited to a multilayer ceramic capacitor, but may be applied to a ceramic inductor, a ceramic varistor, a thermistor, a multilayer circuit board, and other various ceramic electronic components. Is possible, and in this case, the same effect as in the case of the above embodiment can be obtained.
[0032]
In the above embodiment, the drying step is performed in a nitrogen atmosphere (non-oxidizing atmosphere). However, the present invention can be applied to a case where drying is performed in the air. Drying can be performed not only in a nitrogen atmosphere or the atmosphere but also in other atmospheres.
When the ceramic element is a stacked type and the internal electrode is made of a base metal, it is preferable to perform the drying in a non-oxidizing atmosphere because the internal electrode may be oxidized in the drying step.
[0033]
Further, in the above embodiment, the case where the step of performing a process that causes the attachment or adsorption of moisture is a wet barrel polishing process and the case where the heat treatment process is a process of baking a conductive paste to form external electrodes has been described as an example. The type of the process of performing the process of causing the attachment or adsorption of moisture and the type of the heat treatment process are not limited to this. For example, the process of performing the process of causing the attachment or absorption of moisture is a plating process, or the process of performing the heat treatment is an external process. An annealing step other than the electrode forming step may be performed.
[0034]
Further, in the above-described embodiment, the case where the temperature is gradually increased and the drying is performed is described as an example. However, the drying method in the drying process is not limited to this. For example, hot air at 70 to 170 ° C. After removing the moisture on the surface of the ceramic element, drying may be performed in a plurality of stages in which the temperature is gradually increased and drying is performed. In this case, since the water can be efficiently removed, the time required for the drying step can be reduced.
[0035]
In addition, the present invention is not limited to the above embodiment in other respects, but relates to the type of ceramic constituting the ceramic element, the constituent materials of the internal and external electrodes, the specific structure of the ceramic element, and the like. Various applications and modifications can be made within the scope of the invention.
[0036]
【The invention's effect】
As described above, in the method for manufacturing a ceramic electronic component according to the present invention (claim 1), the ceramic element is heated at a rate of 10 ° C./min or less between the step of performing a process that causes adhesion and adsorption of moisture and the heat treatment process. Since the ceramic element is dried by increasing the temperature to 200 to 400 ° C. at a temperature increasing rate, not only the moisture on the surface of the ceramic element but also the inside of a cavity (pore) formed in the ceramic element is entered. Moisture can be reliably removed.
Therefore, when an external electrode is baked on a ceramic element that has undergone a process of causing moisture attachment or adsorption to the ceramic element, cracks or chips due to rapid evaporation of moisture, and rapid evaporation of moisture during drying. Therefore, it is possible to efficiently produce a ceramic electronic component by preventing the occurrence of defects such as cracks and chips due to the above, or peeling of external electrodes.
[0037]
Further, in the wet barrel polishing step often performed in the manufacturing process of the ceramic electronic component, adhesion and adsorption of moisture to the ceramic element occur, but the present invention is applied to such a case as in claim 2. This ensures that water is removed from the ceramic element, preventing cracks and chips due to rapid evaporation of water in heat treatment steps such as the external electrode formation step, and the occurrence of defects such as peeling of the external electrodes. Electronic components can be manufactured with high yield.
[0038]
In the step of forming an external electrode by applying and baking a conductive paste to a ceramic element, moisture enters a cavity (pore) formed in the ceramic element because the ceramic element is heated to a temperature of 600 ° C. or higher. When the conductive paste is baked, the moisture in the pores evaporates rapidly when the conductive paste is baked, and the impact causes cracks or chips in the ceramic element or peels off the external electrodes formed on the surface of the ceramic element. However, by applying the present invention in such a case, it is possible to sufficiently dry the ceramic element, so that defects such as cracks, chipping, and peeling of the external electrode can be prevented. Generation can be reliably prevented, and ceramic electronic components can be manufactured with high yield.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating an example of a multilayer ceramic electronic component (multilayer ceramic capacitor) manufactured by a method according to an embodiment of the present invention.
FIG. 2 is a view schematically showing a state in which a crater-shaped chip is generated in an external electrode of a multilayer ceramic capacitor and a part of the external electrode is peeled off.
FIG. 3 is a diagram showing an amount of steam released from a ceramic element.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Internal electrode 2 Ceramic layer 3a, 3b End surface 4a, 4b External electrode 5 Ceramic element 6 Crate-shaped chipping

Claims (3)

セラミック成形体を焼成してなるセラミック素子に対して、水分の付着や吸着が生じる処理を施す工程と、該工程の後にセラミック素子を加熱処理する熱処理工程を有するセラミック電子部品の製造方法において、
前記水分の付着や吸着が生じる処理を施す工程と、前記熱処理工程との間に、セラミック素子を10℃/min以下の昇温速度で200〜400℃まで昇温することによりセラミック素子を乾燥させる乾燥工程を備えていること
を特徴とするセラミック電子部品の製造方法。
A method for producing a ceramic electronic component, comprising: a step of subjecting a ceramic element formed by firing a ceramic molded body to a treatment in which adhesion or adsorption of moisture occurs, and a heat treatment step of heating the ceramic element after the step.
The ceramic element is dried by raising the temperature of the ceramic element to 200 to 400 ° C. at a temperature increase rate of 10 ° C./min or less between the step of performing the treatment that causes the attachment or adsorption of moisture and the heat treatment step. A method for manufacturing a ceramic electronic component, comprising a drying step.
前記水分の付着や吸着が生じる処理を施す工程が、前記セラミック素子をバレルに入れて水の存在下に研磨する湿式バレル研磨工程であることを特徴とする請求項1記載のセラミック電子部品の製造方法。2. The manufacturing of a ceramic electronic component according to claim 1, wherein the step of performing the treatment that causes the adhesion or adsorption of moisture is a wet barrel polishing step of placing the ceramic element in a barrel and polishing in the presence of water. Method. 前記熱処理工程が、セラミック素子に導電ペーストを塗布して焼き付けることにより外部電極を形成する工程であることを特徴とする請求項1又は2記載のセラミック電子部品の製造方法。3. The method for manufacturing a ceramic electronic component according to claim 1, wherein the heat treatment step is a step of forming an external electrode by applying and baking a conductive paste to the ceramic element.
JP2002348560A 2002-11-29 2002-11-29 Manufacturing method of ceramic electronic component Expired - Lifetime JP4506076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002348560A JP4506076B2 (en) 2002-11-29 2002-11-29 Manufacturing method of ceramic electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002348560A JP4506076B2 (en) 2002-11-29 2002-11-29 Manufacturing method of ceramic electronic component

Publications (2)

Publication Number Publication Date
JP2004186222A true JP2004186222A (en) 2004-07-02
JP4506076B2 JP4506076B2 (en) 2010-07-21

Family

ID=32751447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002348560A Expired - Lifetime JP4506076B2 (en) 2002-11-29 2002-11-29 Manufacturing method of ceramic electronic component

Country Status (1)

Country Link
JP (1) JP4506076B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019186396A (en) * 2018-04-11 2019-10-24 太陽誘電株式会社 Multilayer ceramic capacitor and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348358A (en) * 1986-08-15 1988-03-01 Nippon Shokubai Kagaku Kogyo Co Ltd Sol for use in coating ceramic and coating method using same
JPH05339072A (en) * 1992-06-10 1993-12-21 Toshiba Corp Cleaning method for ceramic part
JPH08306578A (en) * 1995-05-08 1996-11-22 Matsushita Electric Ind Co Ltd Manufacture of multilayer ceramic electronic part
JPH10163062A (en) * 1996-11-28 1998-06-19 Matsushita Electric Ind Co Ltd Manufacture of electronic component
JP2002284580A (en) * 2001-03-28 2002-10-03 Tdk Corp Method for manufacturing ceramic green sheet and ceramic electronic parts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348358A (en) * 1986-08-15 1988-03-01 Nippon Shokubai Kagaku Kogyo Co Ltd Sol for use in coating ceramic and coating method using same
JPH05339072A (en) * 1992-06-10 1993-12-21 Toshiba Corp Cleaning method for ceramic part
JPH08306578A (en) * 1995-05-08 1996-11-22 Matsushita Electric Ind Co Ltd Manufacture of multilayer ceramic electronic part
JPH10163062A (en) * 1996-11-28 1998-06-19 Matsushita Electric Ind Co Ltd Manufacture of electronic component
JP2002284580A (en) * 2001-03-28 2002-10-03 Tdk Corp Method for manufacturing ceramic green sheet and ceramic electronic parts

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019186396A (en) * 2018-04-11 2019-10-24 太陽誘電株式会社 Multilayer ceramic capacitor and manufacturing method thereof
TWI813665B (en) * 2018-04-11 2023-09-01 日商太陽誘電股份有限公司 Multilayer ceramic capacitor and manufacturing method of the same
JP7426771B2 (en) 2018-04-11 2024-02-02 太陽誘電株式会社 Manufacturing method of multilayer ceramic capacitor

Also Published As

Publication number Publication date
JP4506076B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
JP3562629B2 (en) Manufacturing method of electronic components with terminal electrodes
JPH08236393A (en) Manufacture of laminated ceramic capacitor
JP3781037B2 (en) Manufacturing method and manufacturing apparatus for ceramic electronic components
JP4506076B2 (en) Manufacturing method of ceramic electronic component
JP4059063B2 (en) Ceramic multilayer substrate and manufacturing method thereof
JP5177452B2 (en) Manufacturing method of multilayer electronic component
JP2002216540A (en) Electrode paste and method for manufacturing electronic part using it
JP3470651B2 (en) Manufacturing method of ceramic electronic component
JP3965953B2 (en) Method for firing multilayer ceramic electronic components
JP3514202B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2002270989A (en) Ceramic electronic part and manufacturing method therefor
JP2011151149A (en) Method for manufacturing laminated electronic component
JP2014212233A (en) Method for manufacturing multilayer ceramic electronic component
JP4088428B2 (en) Manufacturing method of multilayer electronic component
JP3954792B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2005183477A (en) Ceramic electronic component and manufacturing method therefor
JPH09129481A (en) Manufacture of laminated ceramic electronic component
JP4019859B2 (en) Manufacturing method of ceramic electronic component
JP2946868B2 (en) Manufacturing method of multilayer ceramic capacitor
JP4743411B2 (en) Manufacturing method of laminated electronic component
JP2007134377A (en) Process for manufacturing multilayer electronic component
JPH1197280A (en) Method of manufacturing multilayer ceramic capacitor
JP2005166759A (en) Method of manufacturing laminated electronic part
JP2010238872A (en) Method for manufacturing electronic component
JP2002359140A (en) Laminated ceramic electronic component and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4506076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

EXPY Cancellation because of completion of term