JP2005166759A - Method of manufacturing laminated electronic part - Google Patents

Method of manufacturing laminated electronic part Download PDF

Info

Publication number
JP2005166759A
JP2005166759A JP2003400728A JP2003400728A JP2005166759A JP 2005166759 A JP2005166759 A JP 2005166759A JP 2003400728 A JP2003400728 A JP 2003400728A JP 2003400728 A JP2003400728 A JP 2003400728A JP 2005166759 A JP2005166759 A JP 2005166759A
Authority
JP
Japan
Prior art keywords
drying
cutting
temperature
laminated substrate
residual solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003400728A
Other languages
Japanese (ja)
Inventor
Toshiyuki Anpo
敏之 安保
Tomoyuki Tatemori
知之 舘盛
Osami Kumagai
修美 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2003400728A priority Critical patent/JP2005166759A/en
Publication of JP2005166759A publication Critical patent/JP2005166759A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a laminated electronic part in which chipping in a cutting step, re-adhering of chips, or mist adhering to each chip can be prevented, and adhering or chipping of the chips to each other in a drying step after barrel polishing and which can improve productivity. <P>SOLUTION: In the method of manufacturing the laminated electronic part, a laminated substrate of green state before cutting is dried at a temperature and a time in a manner that a binder is not decomposed so that the residual solvent of the laminated substrate is set within 2.0-2.5 wt%. Thus, re-adhering of chips, or mist adhering to each chip can be prevented. Thereafter, the chip obtained by the cutting is dried at a temperature and a time in such a manner that the binder is not decomposed. Thus, the residual solvent of the laminated substrate is set within 0.2-1.5 wt%. Thus, the adhesion of the chips to each other can be prevented in the drying step after the barrel polishing thereafter or chipping. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、主として磁性体もしくは非磁性体により構成される積層体の内部にコイル、コンデンサもしくはコイルとコンデンサを有する表面実装構造の積層型電子部品を製造する方法に関する。   The present invention relates to a method of manufacturing a multilayer electronic component having a surface mount structure having a coil, a capacitor, or a coil and a capacitor inside a multilayer body mainly composed of a magnetic body or a non-magnetic body.

従来のこの種の積層型電子部品は、図12に示す工程により製造される。まず、グリーンシートの作製工程(S1)では、磁性体または非磁性体粉に樹脂バインダと溶剤等を加えたスラリーを所定の厚みに塗布して乾燥することによりグリーンシートを作製する。次のパンチング工程(S2)は、積層体内を導通させるスルーホールを形成する工程であり、この工程はコンデンサの場合には必要としない。次の導体パターンの形成工程(S3)ではコイル形成用あるいはコンデンサ電極形成用の導体ペーストを印刷等によりグリーンシート上に所定の形状および配列で形成する。続く積層工程(S4)では、導体パターンが形成されたグリーンシートを所定の寸法に切断し、所定の順番に積み重ねながら仮圧着してベースフィルムを剥離し、所定枚数積層する。   This type of conventional multilayer electronic component is manufactured by the process shown in FIG. First, in the green sheet production step (S1), a slurry obtained by adding a resin binder and a solvent to magnetic or non-magnetic powder is applied to a predetermined thickness and dried to produce a green sheet. The next punching step (S2) is a step of forming a through hole for conducting the laminated body, and this step is not necessary in the case of a capacitor. In the next conductor pattern forming step (S3), a conductor paste for coil formation or capacitor electrode formation is formed on the green sheet in a predetermined shape and arrangement by printing or the like. In the subsequent laminating step (S4), the green sheet on which the conductor pattern is formed is cut into a predetermined dimension, and is temporarily pressed while being stacked in a predetermined order to peel off the base film, and a predetermined number of layers are stacked.

次にプレス工程(S5)では、積層されたグリーン状態の積層基板を所定の圧力で圧着する。次に切断工程(S6)では、図13に示すように、固定用フィルム1上に圧着したグリーン状態の積層基板2を固定して昇降ブレードまたは図示のような回転ブレード3によって所定形状の個々のチップに切断する。次にバレル研磨工程(S7)では、個々のチップをバレル研磨機等のバレルに水等の液体を入れ、さらに場合によってはメディア等を入れ、バレル研磨機を作動させて所定時間研磨する。図14はチップ5をバレル研磨することにより、コーナー部5aに丸みを待たせた状態を示す。   Next, in the pressing step (S5), the laminated green laminated substrates are pressure-bonded with a predetermined pressure. Next, in the cutting step (S6), as shown in FIG. 13, the green laminated substrate 2 that is pressure-bonded onto the fixing film 1 is fixed, and each of the individual shapes having a predetermined shape is moved by the lifting blade or the rotating blade 3 as shown. Cut into chips. Next, in the barrel polishing step (S7), a liquid such as water is put into a barrel of a barrel polishing machine or the like, and a medium or the like is further put in some cases, and the barrel polishing machine is operated to polish each chip for a predetermined time. FIG. 14 shows a state in which the tip 5 is rounded by the barrel polishing of the chip 5.

次に乾燥工程(S8)では、バレル研磨で水分を含んだチップを乾燥する。そして焼成工程(S9)では、所定の温度プロファイルにより個々のチップを焼成し、積層体を完成する。その後、プリント基板に実装するための端子電極を形成するため、焼成された積層体に銀ペースト等を塗布した後、焼き付けし、さらに銀電極表面に電気めっきを行なう。   Next, in the drying step (S8), the chips containing moisture are dried by barrel polishing. And in a baking process (S9), each chip | tip is baked with a predetermined | prescribed temperature profile, and a laminated body is completed. Thereafter, in order to form a terminal electrode for mounting on a printed circuit board, a silver paste or the like is applied to the fired laminate, and then baked, and electroplating is performed on the surface of the silver electrode.

このような従来の積層型電子部品の製造方法においては、グリーン状態の積層基板を昇降ブレードにより切断する場合、切断状態のグリーン状態でのチップどうしが再付着するという問題点がある。また、図13に示すように、グリーン状態の積層基板2の切断を回転ブレード3により行なう場合、切断時にミスト(切断カス)4がチップに付着し、次のバレル研磨工程(S7)でもそのミスト4が取りきれず、頻繁に形状不良が発生するという問題点がある。また、バレル研磨を行なった後の乾燥工程(S8)にて、チップ5どうしの付着が発生するという問題点がある。   In such a conventional multilayer electronic component manufacturing method, when the green laminated substrate is cut by the lifting blade, there is a problem that the chips in the green state in the cut state are reattached. As shown in FIG. 13, when the laminated substrate 2 in the green state is cut by the rotating blade 3, mist (cutting residue) 4 adheres to the chip at the time of cutting, and the mist is also shown in the next barrel polishing step (S7). There is a problem that 4 cannot be completely removed and shape defects frequently occur. Further, there is a problem that the chips 5 adhere to each other in the drying step (S8) after barrel polishing.

このような問題点を解決するため、特許文献1においては、圧着したグリーン状態の積層基板2の切断前に350℃で3時間熱処理して、積層基板2内のバインダの一部を除去する例が示されている。また他の例として、積層基板を280℃で4時間熱処理して可塑剤を全部除去する製造方法が開示されている。   In order to solve such a problem, in Patent Document 1, an example of removing a part of the binder in the multilayer substrate 2 by performing heat treatment at 350 ° C. for 3 hours before cutting the laminated substrate 2 in a green state that has been crimped. It is shown. As another example, a manufacturing method is disclosed in which a laminated substrate is heat-treated at 280 ° C. for 4 hours to remove all plasticizers.

特開2002−260952号公報JP 2002-260952 A

しかし前記特許文献に記載のように、グリーン状態の積層基板2内のバインダの一部を除去したり、溶剤の全部を除去する方法を実施するには、熱処理温度を前記のように200℃を超える温度とする必要がある。例えば前記特許文献に記載のように、グリーン状態の積層基板2を350℃で3時間あるいは280℃で4時間熱処理した場合、積層基板内の残留溶剤(可塑剤を含む)はほぼ0%となり、基板強度が上がるため、昇降ブレードでは切断が不可能となり、一方、回転ブレードでは切断は可能であるが、チッピングが多発する上、基板が大きいことから、変形しやすくなる等の問題点がある。   However, as described in the above-mentioned patent document, in order to carry out a method of removing a part of the binder in the multilayer substrate 2 in the green state or removing all of the solvent, the heat treatment temperature is set to 200 ° C. as described above. The temperature must be exceeded. For example, as described in the above-mentioned patent document, when the laminated substrate 2 in the green state is heat-treated at 350 ° C. for 3 hours or 280 ° C. for 4 hours, the residual solvent (including the plasticizer) in the laminated substrate becomes almost 0%, Since the strength of the substrate is increased, cutting with the lifting blade is impossible, while cutting with the rotating blade is possible. However, there are problems such as frequent chipping and large deformation of the substrate.

本発明は、上記問題点に鑑み、切断工程でのチッピングまたはチップどうしの再付着、あるいは個々のチップへのミスト付着を防止することができると共に、バレル研磨後の乾燥工程において、チップどうしの付着やチッピングを防止し、生産性を向上しうる積層型電子部品の製造方法を提供することを目的とする。   In view of the above problems, the present invention can prevent chipping in the cutting process, reattachment of chips, or mist adhesion to individual chips, and adhesion of chips in the drying process after barrel polishing. Another object of the present invention is to provide a method for manufacturing a multilayer electronic component that can prevent chipping and improve productivity.

(1)本発明による積層型電子部品の製造方法は、磁性体または非磁性体からなる粉末と、バインダと、溶剤とを混合してグリーンシートを作製する工程と、
グリーンシートに導体パターンを形成する工程と、
複数枚のグリーンシートを積層し圧着してグリ−ン状態の積層基板を得る工程と、
前記グリーン状態の積層基板を、前記バインダが分解しない温度と時間で乾燥することにより、前記積層基板の残留溶剤を2.0〜2.5重量%以内とする工程と、
前記積層基板を個々のチップに切断する工程と、
前記切断により得られたチップをバインダが分解しない温度と時間で乾燥することにより、前記積層基板の残留溶剤を0.2〜1.5重量%以内とする工程と、
その後バレル研磨を行なう工程とを含む
ことを特徴とする。
(1) A method for producing a multilayer electronic component according to the present invention includes a step of producing a green sheet by mixing a powder made of a magnetic material or a non-magnetic material, a binder, and a solvent,
Forming a conductor pattern on the green sheet;
Laminating a plurality of green sheets and press-bonding them to obtain a green laminated substrate;
Drying the laminated substrate in the green state at a temperature and time at which the binder does not decompose, thereby setting the residual solvent of the laminated substrate within 2.0 to 2.5% by weight;
Cutting the laminated substrate into individual chips;
Drying the chip obtained by the cutting at a temperature and time at which the binder does not decompose, thereby setting the residual solvent of the laminated substrate within 0.2 to 1.5% by weight;
And subsequent barrel polishing.

本発明において、グリーン状態の積層基板内の残留溶剤量を乾燥により調整するには、乾燥機の能力や積層基板の体積、投入量、積層基板内の乾燥前の残留溶剤量に応じて乾燥時間や温度を調整する。   In the present invention, in order to adjust the residual solvent amount in the green laminated substrate by drying, the drying time depends on the capacity of the dryer, the volume of the laminated substrate, the input amount, and the residual solvent amount before drying in the laminated substrate. And adjust the temperature.

切断前の乾燥後の前記残留溶剤量が2.0重量%未満であると、切断を昇降ブレード、回転ブレードのいずれにより行なう場合もチッピングが発生しやすくなり、2.5重量%を超えると、昇降ブレードによる場合にはチップ付着による分離不良が発生しやすくなり、回転ブレードによる場合にはミストが発生しやすくなる。   When the amount of residual solvent after drying before cutting is less than 2.0% by weight, chipping is likely to occur when cutting is performed by either a lifting blade or a rotating blade, and when exceeding 2.5% by weight, In the case of the lifting blade, a separation failure due to chip attachment is likely to occur, and in the case of the rotating blade, mist is likely to occur.

さらに、本発明においては、チップを切断した後に、チップからバインダが分解(以下これを脱バイと称す。)しない温度で所定時間乾燥を行ない、該チップの残留溶剤量を0.2〜1.5重量%(より好ましくは0.5〜1.0重量%)とした後、バレル研磨を行なうことにより、バレル研磨後の乾燥工程でのチップどうしの付着の発生と、チッピングを防止できる。これはチップ表面の可塑剤の可塑性を乾燥により適度に低下させたことによる。この切断後の乾燥において、残留溶剤量が0.2重量%未満であるとチッピングが発生し易くなり、1.5重量%を超えるとチップどうしの付着が生じやすくなる。   Furthermore, in the present invention, after cutting the chip, drying is performed for a predetermined time at a temperature at which the binder does not decompose from the chip (hereinafter referred to as “de-buying”), and the residual solvent amount of the chip is 0.2 to 1. By setting the barrel polishing to 5 wt% (more preferably 0.5 to 1.0 wt%), it is possible to prevent chips from sticking and chipping in the drying process after barrel polishing. This is because the plasticity of the plasticizer on the chip surface was appropriately reduced by drying. In the drying after the cutting, chipping tends to occur when the residual solvent amount is less than 0.2% by weight, and the chips tend to adhere to each other when the amount exceeds 1.5% by weight.

(2)また、本発明による積層型電子部品の製造方法は、前記(1)において、
前記積層基板を切断する前の積層基板の乾燥を170℃以下で行ない、切断後の加熱を200℃以下で行う
ことを特徴とする。
(2) Moreover, the manufacturing method of the multilayer electronic component according to the present invention is as described in (1) above.
The laminated substrate is dried at 170 ° C. or lower before cutting the laminated substrate, and the heating after cutting is performed at 200 ° C. or lower.

本発明を実施する場合、切断前の好ましい乾燥温度は170℃以下であり、常圧におけるより好ましい乾燥温度は140〜170℃である。この乾燥温度の上限は、脱バイにも関係している。すなわち積層型電子部品におけるグリーン状態での脱バイ温度は、使用しているバインダや可塑剤の種類によっても若干異なるが、一般的には200〜240℃から脱バイが開始される。   When practicing the present invention, the preferable drying temperature before cutting is 170 ° C. or lower, and the more preferable drying temperature at normal pressure is 140 to 170 ° C. This upper limit of the drying temperature is also related to debuy. That is, the debuiling temperature in the green state of the multilayer electronic component is slightly different depending on the type of the binder and the plasticizer used, but generally debuying starts from 200 to 240 ° C.

したがって切断前の乾燥温度は脱バイしない200℃以下であることが好ましいわけであるが、切断前の乾燥工程では200℃で乾燥しようとすると、時間あたりの残留溶剤の減少度合が急激であって、ロットによる乾燥時間のばらつきによる残留溶剤量のばらつきが生じ易い上、脱バイ防止を考慮すると、170℃以下として単位乾燥時間当たりの残留溶剤量の減少度合を小さくすることが好ましい。しかし140℃未満、例えば130℃になると、乾燥時間が例えば3時間以上と長くなり、積層型電子部品の製造には不向きとなる。   Therefore, it is preferable that the drying temperature before cutting is 200 ° C. or less so as not to debuil. However, in the drying process before cutting, when attempting to dry at 200 ° C., the degree of decrease in residual solvent per hour is abrupt. In addition, variation in residual solvent amount due to variation in drying time among lots is likely to occur, and in consideration of prevention of de-bye, it is preferable to reduce the degree of decrease in residual solvent amount per unit drying time to 170 ° C. or less. However, when the temperature is lower than 140 ° C., for example, 130 ° C., the drying time becomes longer, for example, 3 hours or more, which is not suitable for the production of multilayer electronic components.

一方、切断前にすでに溶剤を一部除去しているので、切断後の乾燥では、単位時間当たりの残留溶剤の減少率が小さくなるので、前記範囲内に残留溶剤量を収めるには、切断前の乾燥温度より高い温度で乾燥することが好ましい。具体的には、200℃以下とすることが、脱バイを防止し、かつ乾燥時間が長時間となることを防止する上で好ましい。切断後における好ましい乾燥温度は150〜200℃である。切断後の乾燥温度が150℃未満になると、乾燥時間が長くなり、積層型電子部品の製造には不向きとなる。   On the other hand, since a part of the solvent has already been removed before cutting, the drying rate after cutting reduces the rate of decrease in residual solvent per unit time. It is preferable to dry at a temperature higher than the drying temperature. Specifically, a temperature of 200 ° C. or lower is preferable in order to prevent debuy and prevent the drying time from becoming long. A preferable drying temperature after cutting is 150 to 200 ° C. When the drying temperature after cutting is less than 150 ° C., the drying time becomes long, which is unsuitable for the production of multilayer electronic components.

(3)また、本発明による積層型電子部品の製造方法は、前記(1)において、
前記積層基板を切断する前および後の積層基板の乾燥を120℃以下の温度により、気圧が133Pa(1.0mmHg)以下の環境下で行う
ことを特徴とする。
(3) Further, in the method for manufacturing a multilayer electronic component according to the present invention,
The laminated substrate is dried before and after cutting the laminated substrate at a temperature of 120 ° C. or less in an environment having an atmospheric pressure of 133 Pa (1.0 mmHg) or less.

このように減圧状態で乾燥を行なうのは、乾燥時間を短縮し、かつ低温での乾燥を可能とする上で有利である。特に、使用している溶剤がDOA(アジピン酸ジオクチル)や、BBP(フタル酸ブチルベンジル)等は高沸点のため、グリーン状態であまり乾燥温度を上げることが好ましくない場合に有効な方法である。このような減圧状態で乾燥を行う場合の気圧は133Hg以下、好ましくは13〜133Paである。また、乾燥温度は切断前、切断後ともに脱バイしない温度の120℃以下、好ましくは80〜120℃である。80℃未満の乾燥温度であると、乾燥時間が長くなるという問題点がある。また、130℃以上になると溶液の急激は沸騰により層間剥離が発生しやすくなるので、このような層間剥離を防止する上において乾燥温度を80〜120℃の範囲内に設定することが好ましい。   Drying in such a reduced pressure state is advantageous in terms of shortening the drying time and enabling drying at a low temperature. In particular, DOA (dioctyl adipate), BBP (butyl benzyl phthalate), and the like used as solvents are high in boiling point and are effective when it is not preferable to raise the drying temperature in a green state. The air pressure when drying in such a reduced pressure state is 133 Hg or less, preferably 13 to 133 Pa. Further, the drying temperature is 120 ° C. or lower, preferably 80 to 120 ° C., at a temperature that does not debuil before and after cutting. When the drying temperature is less than 80 ° C., there is a problem that the drying time becomes long. In addition, when the temperature is 130 ° C. or higher, delamination is likely to occur due to the boiling of the solution. Therefore, in order to prevent such delamination, the drying temperature is preferably set in the range of 80 to 120 ° C.

(1)本発明においては、圧着したグリーン状態の積層基板を切断する前に、積層基板内のバインダが分解しない温度で所定時間乾燥を行ない、積層基板内の可塑剤を含む残留溶剤量を2.0〜2.5重量%とすることにより、切断を昇降ブレードにより行なう場合のチッピングやチップどうしの付着はなく、回転ブレードではチッピングと個々のチップへのミスト付着を防止できる。   (1) In the present invention, before cutting the pressure-bonded green laminated substrate, drying is performed for a predetermined time at a temperature at which the binder in the laminated substrate is not decomposed, and the amount of residual solvent containing the plasticizer in the laminated substrate is set to 2 By setting the content to 0.0 to 2.5% by weight, there is no chipping or chip-to-chip adhesion when cutting is performed with the lifting blade, and the rotating blade can prevent chipping and mist adhesion to individual chips.

また、切断後の乾燥を、積層基板内の可塑剤を含む残留溶剤量が0.2〜1.5重量%となるように行なうので、バレル研磨後の乾燥工程でのチップどうしの付着の発生と、チッピングを防止できる。   In addition, since drying after cutting is performed so that the residual solvent amount including the plasticizer in the laminated substrate becomes 0.2 to 1.5% by weight, occurrence of adhesion of chips in the drying process after barrel polishing occurs. And chipping can be prevented.

(2)本発明において、切断前の常圧における乾燥温度を170℃以下とすることにより、脱バイのおそれなく、かつロットによる残留溶剤量のばらつきが少ない均質な積層基板が得られる。また、切断後の乾燥温度を200℃以下とすることにより、乾燥時間を長時間化することなく、所望の残留溶剤量が得られる。   (2) In the present invention, by setting the drying temperature at normal pressure before cutting to 170 ° C. or less, a homogeneous laminated substrate can be obtained without fear of debuying and with little variation in the amount of residual solvent among lots. In addition, by setting the drying temperature after cutting to 200 ° C. or lower, a desired residual solvent amount can be obtained without increasing the drying time.

(3)本発明において、切断前のほぼ真空(13.3〜133Pa)となる減圧状態における乾燥温度を120℃以下とすることにより、脱バイのおそれなく、かつ低温で乾燥することができる。また、乾燥温度を上げることができない溶剤を使用する場合に好適に乾燥することができる。また、減圧状態でかつ120℃以下の温度で乾燥することにより、層間剥離を防止することができる。   (3) In the present invention, by setting the drying temperature in a reduced pressure state, which is almost a vacuum (13.3 to 133 Pa) before cutting, to 120 ° C. or less, drying can be performed at a low temperature without fear of deviating. Moreover, when using the solvent which cannot raise drying temperature, it can dry suitably. Moreover, delamination can be prevented by drying in a reduced pressure state and at a temperature of 120 ° C. or lower.

以下添付図面を参照して本発明の好適な実施の形態について詳細に説明する。図1は本発明の製造方法により得られる積層型電子部品の一例を示す斜視図であり、本例では、積層体6の両端に端子電極7が設けられたチップインダクタである場合について示す。図2は本発明による積層型電子部品の製造方法の一実施の形態を示す工程図である。図2に示す製造方法では、図12に示した従来方法の工程図に、鎖線の枠で示す切断前乾燥と切断後乾燥の工程が加えられる。以下本発明による一実施の形態による製造工程を説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a perspective view showing an example of a multilayer electronic component obtained by the manufacturing method of the present invention. In this example, the case is a chip inductor in which terminal electrodes 7 are provided at both ends of a multilayer body 6. FIG. 2 is a process diagram showing an embodiment of a method for manufacturing a multilayer electronic component according to the present invention. In the manufacturing method shown in FIG. 2, steps of drying before cutting and drying after cutting shown by a chain line are added to the process diagram of the conventional method shown in FIG. A manufacturing process according to an embodiment of the present invention will be described below.

(1)グリーンシート作製工程(S1):Ni−Cu−Zn系フェライト粉末に、バインダとしてポリビニルブチラール樹脂、溶剤としてトルエン、アルコールおよびフタル酸エステルを加えて混練してスラリーを作製し、このスラリーをPETフィルム上にドクターブレード法にて塗布し、乾燥後の厚みが20μmとなるようなグリーンシートを作製した。なお、このグリーンシートには、分散剤を加える場合もある。また、溶剤の一部のフタル酸エステル等は可塑剤と呼ばれることもある。   (1) Green sheet production process (S1): Polyvinyl butyral resin as a binder and toluene, alcohol and phthalic acid ester as a binder are added to a Ni—Cu—Zn ferrite powder and kneaded to prepare a slurry. A green sheet was prepared on a PET film by applying a doctor blade method so that the thickness after drying was 20 μm. A dispersant may be added to the green sheet. Moreover, a part of the solvent, such as phthalate ester, is sometimes called a plasticizer.

(2)パンチング工程(S2):前述のように作製したグリーンシートにレーザーにより所定の位置にスルーホールを形成した。   (2) Punching step (S2): A through hole was formed in a predetermined position by a laser on the green sheet produced as described above.

(3)導体パターン形成工程(S3):銀を主成分とするペーストをスクリーン印刷により、後の積層工程でコイルが形成できるように、1/2ターンのパターンを形成した。このとき、前記スルーホールがコイルパターンの端部となり、スルーホールに銀ペーストが充填されるように印刷した。その後、この導体パターンを印刷したグリーンシートを乾燥し、所定の大きさ(本実施の形態では約130mm×150mm)に切断した。   (3) Conductor pattern forming step (S3): A paste having silver as a main component was screen-printed to form a 1/2 turn pattern so that a coil could be formed in a later lamination step. At this time, printing was performed so that the through hole became an end of the coil pattern and the through hole was filled with silver paste. Thereafter, the green sheet on which the conductor pattern was printed was dried and cut into a predetermined size (about 130 mm × 150 mm in the present embodiment).

(4)積層工程(S4):積層工程では、上記各グリーンシート上の導体パターンがスルーホールに充填された銀ペーストにおいて導通してコイルを形成するように、導体パターン形成済のグリーンシートを所定の順番に編集し、導体パターンを形成しないグリーンシートと共に積層した後、仮圧着してPETフィルムを剥離し、18枚積層した。この18枚はインダクタの種々の設計の中で標準的な枚数である。   (4) Laminating step (S4): In the laminating step, the conductive pattern-formed green sheet is formed in a predetermined manner so that the conductive pattern on each of the green sheets is conducted in the silver paste filled in the through holes to form a coil. In this order, the sheet was laminated together with a green sheet on which no conductor pattern was formed, and then temporarily pressed to peel the PET film, and 18 sheets were laminated. These 18 are standard numbers among various inductor designs.

(5)プレス工程(S5):積層されたグリーンシートを74MPa(750kg/cm)の圧力で圧着し、積層基板を形成した。 (5) Pressing step (S5): The laminated green sheets were pressure-bonded at a pressure of 74 MPa (750 kg / cm 2 ) to form a laminated substrate.

(6)切断前乾燥工程(S6):圧着したグリーン状態の積層基板の残留溶剤量を測定した結果、その含有率は3.5重量%であった。この積層基板を、常圧において、100〜200℃の範囲の種々の温度と10〜300分の時間で乾燥した。また、別の乾燥方法として、減圧状態(119.7Pa)で50〜140℃の範囲の種々の温度と180分以内の種々の時間で乾燥を行なった。   (6) Drying step before cutting (S6): As a result of measuring the residual solvent amount of the laminated substrate in the green state, the content was 3.5% by weight. The laminated substrate was dried at various temperatures in the range of 100 to 200 ° C. and a time of 10 to 300 minutes at normal pressure. As another drying method, drying was performed under reduced pressure (119.7 Pa) at various temperatures ranging from 50 to 140 ° C. and at various times within 180 minutes.

(7)切断工程(S7):切断はダイサーを使用し、回転ブレードにより切断を行なった。また、同じ積層基板ロットに対し、昇降ブレードによる切断も行なった。切断により得られるチップのサイズは完成品で2010(長さ:2mm、幅:1.0mm、高さ:0.5mm)となるようにし、チップの取り個数は約1700/1積層基板とした。   (7) Cutting step (S7): Cutting was performed with a rotating blade using a dicer. Moreover, the same laminated substrate lot was also cut with a lifting blade. The size of the chip obtained by cutting was 2010 (length: 2 mm, width: 1.0 mm, height: 0.5 mm) as a finished product, and the number of chips taken was about 1700/1 laminated substrate.

(8)切断後乾燥工程(S8):切断後の乾燥は、常圧にて、150〜200℃の範囲内の種々の温度と、10〜300分の範囲内の種々の時間で乾燥を行なった。また、減圧状態(119.7Pa)で50〜140℃の範囲の種々の温度と180分以内の種々の時間で乾燥を行なった。   (8) Drying step after cutting (S8): Drying after cutting is performed at normal pressure at various temperatures within a range of 150 to 200 ° C. and at various times within a range of 10 to 300 minutes. It was. Further, drying was performed under reduced pressure (119.7 Pa) at various temperatures ranging from 50 to 140 ° C. and at various times within 180 minutes.

(9)バレル研磨工程(S9):バレル研磨は、バレル機のバレルに、3万個の乾燥済みチップと水とメディアとを入れ、回転周波数を40Hzとして20分研磨を行ない、終了後に純水で洗浄した。   (9) Barrel polishing step (S9): In barrel polishing, 30,000 dried chips, water, and media are put in the barrel of a barrel machine, polishing is performed for 20 minutes at a rotation frequency of 40 Hz, and pure water is finished after completion. Washed with.

(10)乾燥工程(S10):バレル研磨後のチップを乾燥機にて温度を85℃に設定し、60分間乾燥した。乾燥後にチップとメディアとを分離した。   (10) Drying step (S10): The chip after barrel polishing was dried at a temperature of 85 ° C. with a dryer for 60 minutes. Chips and media were separated after drying.

(11)焼成工程(S11):専用の焼成炉にて870℃ピークの温度プロファイルにより焼成を行ない、積層体6を完成した。その後、端子電極7を形成するため、積層体6の両端に銀ペーストを塗布して焼き付けし、その後、さらに銀電極の表面にプリント基板への半田付け性を良好にするための電気めっきを行なった。   (11) Firing step (S11): Firing was performed with a temperature profile having a peak at 870 ° C. in a dedicated firing furnace to complete the laminate 6. Thereafter, in order to form the terminal electrode 7, a silver paste is applied to both ends of the laminate 6 and baked, and then electroplating is performed on the surface of the silver electrode to improve the solderability to the printed circuit board. It was.

(評価)
(切断前乾燥による残留溶剤量と昇降ブレードによる切断時の不良率との関係)
前述の切断前乾燥を常圧で行ない、乾燥温度を140〜170℃とし、かつ乾燥時間を種々に変化させて残留溶剤量を1.5〜3.5重量%(ただし3.5重量%は乾燥しない場合である。)とした場合の乾燥後の残留溶剤量とチッピングまたは分離不良(チップ間付着)の関係を調べた。その結果を図3に示す。図3から分かるように、前記残留溶剤量が2.0重量%未満であると、切断を昇降ブレードにより行なう場合、チッピングが発生しやすくなり、2.5重量%を超えると、チップ付着による分離不良が発生しやすくなるので、残留溶剤量は2.0〜2.5重量%であることが好ましい。
(Evaluation)
(Relationship between residual solvent amount due to drying before cutting and defective rate when cutting with lifting blade)
The above-mentioned drying before cutting is performed at normal pressure, the drying temperature is set to 140 to 170 ° C., and the drying time is changed in various ways so that the residual solvent amount is 1.5 to 3.5% by weight (however, 3.5% by weight is In this case, the relationship between the amount of residual solvent after drying and chipping or separation failure (adhesion between chips) was investigated. The result is shown in FIG. As can be seen from FIG. 3, when the residual solvent amount is less than 2.0% by weight, chipping is likely to occur when cutting with a lifting blade, and when the amount exceeds 2.5% by weight, separation due to chip adhesion occurs. Since defects are likely to occur, the amount of residual solvent is preferably 2.0 to 2.5% by weight.

(切断前乾燥による残留溶剤量と回転ブレードによる切断時の不良率との関係)
上述した昇降ブレードの代わりに回転ブレードを使用した場合、同じ乾燥方法で残留溶剤量を1.5〜3.5重量%に変化させた場合の乾燥後の残留溶剤量とチッピングまたは図13で説明した切断時のミスト4の発生量との関係を調べた結果を図4に示す。図4から分かるように、前記残留溶剤量が2.0重量%未満であると、切断を回転ブレードにより行なう場合も、チッピングが発生しやすくなり、2.5重量%を超えると、切断においてミストが発生しやすくなるので、回転ブレードによる場合も残留溶剤量は2.0〜2.5重量%とすることが好ましい。
(Relationship between residual solvent amount due to drying before cutting and defective rate when cutting with a rotating blade)
When a rotating blade is used instead of the above-described lifting blade, the residual solvent amount after drying and chipping when the residual solvent amount is changed to 1.5 to 3.5% by weight by the same drying method or described with reference to FIG. FIG. 4 shows the result of examining the relationship with the amount of mist 4 generated during cutting. As can be seen from FIG. 4, when the amount of residual solvent is less than 2.0% by weight, chipping is likely to occur even when cutting with a rotating blade. In the case of using a rotating blade, the residual solvent amount is preferably 2.0 to 2.5% by weight.

(切断前乾燥における乾燥温度と乾燥時間の検討)
図5は上述の工程により作製した試料を、常圧でかつ100〜200℃の温度で60分乾燥した場合の、時間経過に伴う減量率の変化を示す。また、図6は300分乾燥した場合の時間経過に伴う減量率の変化を示す。図5、図6から分かるように、200℃で乾燥すると、約60分で溶剤の全量が積層基板から揮発し、170℃で乾燥すると、約300分で溶剤の全量が積層基板から揮発する。図5から分かるように、140〜170℃であれば、10分から60分の間で減量率を1〜1.5重量%(これは残留溶剤量は2.0〜2.5重量%に相当する。)とすることができるから、この温度範囲で乾燥することが好ましい。
(Examination of drying temperature and drying time in drying before cutting)
FIG. 5 shows the change in the weight loss rate over time when the sample prepared by the above-described process is dried at normal pressure and at a temperature of 100 to 200 ° C. for 60 minutes. Moreover, FIG. 6 shows the change of the weight loss rate with time passage at the time of drying for 300 minutes. As can be seen from FIGS. 5 and 6, when dried at 200 ° C., the entire amount of the solvent evaporates from the laminated substrate in about 60 minutes, and when dried at 170 ° C., the entire amount of the solvent evaporates from the laminated substrate in about 300 minutes. As can be seen from FIG. 5, at 140 to 170 ° C., the weight loss rate is 1 to 1.5% by weight in 10 to 60 minutes (this corresponds to the residual solvent amount of 2.0 to 2.5% by weight). It is preferable to dry in this temperature range.

切断前の乾燥工程において、200℃で乾燥しようとすると、時間あたりの残留溶剤の減少度合が急激であるため、ロットによる乾燥時間のばらつきによる残留溶剤量のばらつきが大きくなるおそれがある。このため、このばらつきを小さくし、また後述のように脱バイを防止しようとするため、乾燥温度を170℃以下とすることが好ましい。しかし140℃未満、例えば130℃になると、乾燥時間が例えば3時間以上と長くなり、積層型電子部品の製造には不向きとなる。このため、常圧での乾燥温度は140〜170℃とすることが好ましい。   When attempting to dry at 200 ° C. in the drying process before cutting, the degree of decrease in residual solvent per hour is abrupt, and there is a risk that the variation in the amount of residual solvent due to variation in drying time from lot to lot will increase. For this reason, it is preferable to set the drying temperature to 170 ° C. or lower in order to reduce this variation and to prevent debuoyment as will be described later. However, when the temperature is lower than 140 ° C., for example, 130 ° C., the drying time becomes longer, for example, 3 hours or more, which is not suitable for the production of multilayer electronic components. For this reason, it is preferable that the drying temperature in a normal pressure shall be 140-170 degreeC.

(切断前の減圧下での乾燥における乾燥温度と乾燥時間の検討)
図7は切断前の乾燥を119.7Paの減圧下で行なう場合において、乾燥温度を50〜140℃内の種々の温度で180分間乾燥した場合の時間経過に伴う減量率の変化を示す。図7から分かるように、ほぼ真空となる減圧状態においては、乾燥温度を80℃程度の低温にしても、約15分程度で1.0重量%の減量率、すなわち2.5重量%程度の残留溶剤量を得ることができ、130℃では5分程度の乾燥で2.5重量%以下の残留溶剤量を得ることができる。このようなことから、減圧下で乾燥を行なうことが、低温かつ短時間で乾燥を可能とする点で有効である。特に前述した加熱が好ましくない溶剤を用いる場合には有効となる。
(Examination of drying temperature and drying time in drying under reduced pressure before cutting)
FIG. 7 shows the change in weight loss rate over time when drying before cutting is performed under reduced pressure of 119.7 Pa and drying is performed at various drying temperatures of 50 to 140 ° C. for 180 minutes. As can be seen from FIG. 7, in a reduced pressure state that is almost a vacuum, even if the drying temperature is as low as about 80 ° C., the weight loss rate is about 1.0% by weight in about 15 minutes, ie, about 2.5% by weight. A residual solvent amount can be obtained, and at 130 ° C., a residual solvent amount of 2.5% by weight or less can be obtained by drying for about 5 minutes. For this reason, drying under reduced pressure is effective in that drying can be performed at a low temperature and in a short time. This is particularly effective when a solvent that is not preferred for heating is used.

ただし、図8に140℃で乾燥した場合について示すように、130℃で乾燥した場合、乾燥の度合が過度になってしまうために層間剥離を生じてしまうおそれがあるので、減圧下での乾燥は120℃以下の温度で行なうことが好ましい。また、乾燥時間の短縮による能率化の意味で、80℃以上の温度で乾燥することが好ましい。   However, as shown in FIG. 8 when drying at 140 ° C., drying at 130 ° C. may cause delamination due to excessive drying, so drying under reduced pressure Is preferably performed at a temperature of 120 ° C. or lower. Moreover, it is preferable to dry at the temperature of 80 degreeC or more from the meaning of efficiency improvement by shortening of drying time.

また、市販の真空乾燥機の到達気圧は13.3〜133Pa程度であるから、このような真空乾燥機を使用することにより、前記のような乾燥時間の短縮と乾燥温度の低下が図れる。   Moreover, since the ultimate pressure of the commercially available vacuum dryer is about 13.3 to 133 Pa, the use of such a vacuum dryer can shorten the drying time and the drying temperature as described above.

(切断後乾燥による残留溶剤量と不良率との関係)
上記試料について、切断前乾燥を150℃で30分行ない、切断前の残留溶剤量を2.4重量%としたものについて、常圧でかつ150〜200℃の乾燥温度で乾燥を行ない、残留溶剤量を0〜3.5重量%(ただし3.5重量%は切断前乾燥しないもの)とし、各含有率に対するバレル研磨後の付着不良、チッピング不良を調べた。その結果を図9に示す。図9から分かるように、切断後の残留溶剤量が0.2〜1.5重量%の範囲内では付着不良、チッピング不良は共に0.1%以下になり、生産性の面で差し支えない程度の結果が得られた。より好ましい残留溶剤量は、これらの不良がさらに小さくなる0.5〜1.0重量%である。
(Relationship between residual solvent amount due to drying after cutting and defective rate)
The above sample was dried at 150 ° C. for 30 minutes, and the residual solvent amount before cutting was 2.4% by weight. The sample was dried at normal pressure and at a drying temperature of 150 to 200 ° C. The amount was set to 0 to 3.5 wt% (however, 3.5 wt% was not dried before cutting), and the adhesion failure after barrel polishing and chipping failure for each content rate were examined. The result is shown in FIG. As can be seen from FIG. 9, when the residual solvent amount after cutting is within the range of 0.2 to 1.5% by weight, both adhesion failure and chipping failure will be 0.1% or less, and there is no problem in terms of productivity. Results were obtained. A more preferable residual solvent amount is 0.5 to 1.0% by weight in which these defects are further reduced.

(切断後乾燥における乾燥温度と乾燥時間)
切断後の乾燥は、切断前より乾燥による減量率が小さくなることから、切断前より乾燥温度を高くすることが好ましく、乾燥温度は常圧で200℃以下、より好ましくは150〜200℃の範囲内で時間は10〜300分とすることが好ましい。この範囲内の温度、時間の乾燥であれば、切断後の残留溶剤量を、バレル研磨後の不良率が少ない0.2〜1.5重量%の範囲内に収めることができる。
(Drying temperature and drying time for drying after cutting)
Drying after cutting is preferably performed at a higher drying temperature than before cutting because the weight loss rate by drying is smaller than before cutting, and the drying temperature is 200 ° C. or less at normal pressure, more preferably in the range of 150 to 200 ° C. Of these, the time is preferably 10 to 300 minutes. If the drying is carried out at a temperature and time within this range, the amount of residual solvent after cutting can be within the range of 0.2 to 1.5% by weight with a low defect rate after barrel polishing.

また、切断後の乾燥を前記減圧下で行なう場合、切断前の乾燥と同様に、80〜120℃の温度で乾燥することが好ましい。   Moreover, when drying after cutting | disconnection is performed under the said pressure reduction, it is preferable to dry at the temperature of 80-120 degreeC similarly to the drying before cutting | disconnection.

(脱バイの防止について)
図10は切断後のチップを100〜200℃で300分加熱した場合の示差熱分析の結果を示す。図から分かるように170℃以下では発熱の徴候はみられないが、200℃の場合には、30分から発熱が観察され、脱バイしていることが示唆されるので、200℃で乾燥する場合には、30以下の時間で乾燥することが好ましい。
(About prevention of debuy)
FIG. 10 shows the results of differential thermal analysis when the chip after cutting was heated at 100 to 200 ° C. for 300 minutes. As can be seen from the figure, there is no sign of heat generation at 170 ° C or lower, but at 200 ° C, heat generation is observed from 30 minutes, suggesting that de-buy, so when drying at 200 ° C In this case, it is preferable to dry in 30 hours or less.

(乾燥機へ投入する積層基板の層数や投入量と乾燥温度、時間との関係)
積層基板の層数が多い場合には溶剤が乾燥しにくい傾向があり、また投入量が多いとやはり乾燥しにくい傾向があるので、積層基板の層数や投入量に応じて好適な乾燥温度や時間を選択することが好ましい。
(Relationship between the number of layers of the laminated substrate to be fed into the dryer and the amount to be fed and the drying temperature and time)
When the number of layers of the multilayer substrate is large, the solvent tends to be difficult to dry, and when the amount of input is large, it tends to be difficult to dry, so a suitable drying temperature or the like depends on the number of layers of the multilayer substrate and the amount of input. It is preferable to select a time.

(他の積層型電子部品)
本発明の製造方法は、表面実装型コンデンサやフィルタあるいは図11に示すように積層体9の両側にそれぞれ複数の端子電極10を有するアレイ型積層型電子部品の製造にも適用できる。
(Other multilayer electronic components)
The manufacturing method of the present invention can also be applied to the manufacture of surface-mounted capacitors and filters, or array type multilayer electronic components each having a plurality of terminal electrodes 10 on both sides of the multilayer body 9 as shown in FIG.

本発明による製造方法により得られる積層型電子部品の一例を示す斜視図である。It is a perspective view which shows an example of the multilayer electronic component obtained by the manufacturing method by this invention. 本発明による製造方法の一実施の形態を示す工程図である。It is process drawing which shows one Embodiment of the manufacturing method by this invention. 積層基板の切断前乾燥による残留溶剤量と昇降ブレードによる切断時の不良率との関係図である。It is a relational figure between the amount of residual solvents by drying before cutting of a laminated substrate, and the defective rate at the time of cutting with a raising / lowering blade. 積層基板の切断前乾燥による残留溶剤量と回転ブレードによる切断時の不良率との関係図である。FIG. 6 is a relationship diagram between a residual solvent amount due to drying before cutting a laminated substrate and a defect rate at the time of cutting with a rotating blade. 積層基板の切断前乾燥における乾燥温度および乾燥時間と減量率の関係を、乾燥時間60分の範囲で示す図である。It is a figure which shows the relationship between the drying temperature in drying before cutting | disconnection of a laminated substrate, drying time, and a weight loss rate in the range for 60 minutes of drying time. 積層基板の切断前乾燥における乾燥温度および乾燥時間と減量率の関係を、乾燥時間300分の範囲で示す図である。It is a figure which shows the relationship between the drying temperature in drying before cutting | disconnection of a laminated substrate, drying time, and a weight loss rate in the range for 300 minutes of drying time. 積層基板の切断前乾燥における減圧下での乾燥温度および乾燥時間と減量率との関係を示す図である。It is a figure which shows the relationship between the drying temperature under the reduced pressure in drying before cutting | disconnection of a laminated substrate, drying time, and a weight loss rate. 積層基板の切断前乾燥における減圧下での140℃における乾燥時間と層間剥離率との関係を示す図である。It is a figure which shows the relationship between the drying time in 140 degreeC under pressure reduction in the drying before cutting | disconnection of a laminated substrate, and a delamination rate. 積層基板を切断した後、乾燥した場合の残留溶剤量とバレル研磨後の不良率との関係を示す図である。It is a figure which shows the relationship between the residual solvent amount at the time of drying, after cut | disconnecting a laminated substrate, and the defect rate after barrel polishing. 積層基板を切断して得られたチップを種々の温度で乾燥した場合の示差熱分析の結果を示す図である。It is a figure which shows the result of the differential thermal analysis at the time of drying the chip | tip obtained by cut | disconnecting a laminated substrate at various temperature. 本発明の製造方法を適用する別の積層型電子部品の例を示す斜視図である。It is a perspective view which shows the example of another multilayer electronic component to which the manufacturing method of this invention is applied. 従来の積層型電子部品の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the conventional multilayer electronic component. 回転ブレードによる積層基板の切断における問題点を説明する図である。It is a figure explaining the problem in the cutting | disconnection of the laminated substrate by a rotating blade. バレル研磨によりコーナー部に丸みを与える工程を説明する図である。It is a figure explaining the process of giving roundness to a corner part by barrel polishing.

符号の説明Explanation of symbols

1:固定用フィルム、2:積層基板、3:回転ブレード、4:ミスト、5:チップ、5a:コーナー部、6:積層体、7:端子電極、9:積層体、10:端子電極 1: fixing film, 2: laminated substrate, 3: rotating blade, 4: mist, 5: chip, 5a: corner, 6: laminated body, 7: terminal electrode, 9: laminated body, 10: terminal electrode

Claims (3)

磁性体または非磁性体からなる粉末と、バインダと、溶剤とを混合してグリーンシートを作製する工程と、
グリーンシートに導体パターンを形成する工程と、
複数枚のグリーンシートを積層し圧着してグリ−ン状態の積層基板を得る工程と、
前記グリーン状態の積層基板を、前記バインダが分解しない温度と時間で乾燥することにより、前記積層基板の残留溶剤を2.0〜2.5重量%以内とする工程と、
前記積層基板を個々のチップに切断する工程と、
前記切断により得られたチップをバインダが分解しない温度と時間で乾燥することにより、前記積層基板の残留溶剤を0.2〜1.5重量%以内とする工程と、
その後バレル研磨を行なう工程とを含む
ことを特徴とする積層型電子部品の製造方法。
A step of producing a green sheet by mixing a magnetic or non-magnetic powder, a binder, and a solvent;
Forming a conductor pattern on the green sheet;
Laminating a plurality of green sheets and press-bonding them to obtain a green laminated substrate;
Drying the laminated substrate in the green state at a temperature and time at which the binder does not decompose, thereby setting the residual solvent of the laminated substrate within 2.0 to 2.5% by weight;
Cutting the laminated substrate into individual chips;
Drying the chip obtained by the cutting at a temperature and time at which the binder does not decompose, thereby setting the residual solvent of the laminated substrate within 0.2 to 1.5% by weight;
And a subsequent barrel polishing step. A method for manufacturing a multilayer electronic component, comprising:
請求項1に記載の積層型電子部品の製造方法において、
前記積層基板を切断する前の積層基板の乾燥を170℃以下で行ない、切断後の乾燥を200℃以下で行う
ことを特徴とする積層型電子部品の製造方法。
In the manufacturing method of the multilayer electronic component according to claim 1,
A method for producing a multilayer electronic component, comprising: drying the multilayer substrate before cutting the multilayer substrate at 170 ° C. or lower, and performing drying after cutting at 200 ° C. or lower.
請求項1に記載の積層型電子部品の製造方法において、
前記積層基板を切断する前および後の積層基板の乾燥を120℃以下の温度により、気圧が133Pa以下の環境下で行う
ことを特徴とする積層型電子部品の製造方法。
In the manufacturing method of the multilayer electronic component according to claim 1,
A method for producing a multilayer electronic component, comprising: drying the multilayer substrate before and after cutting the multilayer substrate at a temperature of 120 ° C. or less in an environment having a pressure of 133 Pa or less.
JP2003400728A 2003-11-28 2003-11-28 Method of manufacturing laminated electronic part Withdrawn JP2005166759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003400728A JP2005166759A (en) 2003-11-28 2003-11-28 Method of manufacturing laminated electronic part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003400728A JP2005166759A (en) 2003-11-28 2003-11-28 Method of manufacturing laminated electronic part

Publications (1)

Publication Number Publication Date
JP2005166759A true JP2005166759A (en) 2005-06-23

Family

ID=34724881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003400728A Withdrawn JP2005166759A (en) 2003-11-28 2003-11-28 Method of manufacturing laminated electronic part

Country Status (1)

Country Link
JP (1) JP2005166759A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123630A (en) * 2005-10-28 2007-05-17 Tdk Corp Manufacturing method of laminated electronic component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123630A (en) * 2005-10-28 2007-05-17 Tdk Corp Manufacturing method of laminated electronic component

Similar Documents

Publication Publication Date Title
JP4268844B2 (en) Manufacturing method of multilayer ceramic electronic component and multilayer ceramic electronic component
JP5423977B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2009043867A (en) Ceramic green sheet structure, and method of manufacturing laminated ceramic electronic parts
JP2008294163A (en) Printing paste for absorbing electrode bump, and method for manufacturing laminated ceramic electronic component
JP4644796B2 (en) Green chip manufacturing method using green sheet for multilayer electronic component
JP2008071909A (en) Method of manufacturing laminated ceramic electronic component
JP3940421B2 (en) Multilayer ceramic component and manufacturing method thereof
JP5177452B2 (en) Manufacturing method of multilayer electronic component
KR100922943B1 (en) Method for manufacturing multilayer ceramic electronic component
JP2005166759A (en) Method of manufacturing laminated electronic part
JPH06244050A (en) Manufacture of laminated ceramic capacitor and laminated green body therefor
JPH11317321A (en) Laminated ceramic capacitor and manufacture of the same
JPH05182861A (en) Manufacture of laminated ceramic electronic component
JPH0786081A (en) Manufacture of multilayered ceramic capacitor
JP2011151149A (en) Method for manufacturing laminated electronic component
JP3514202B2 (en) Manufacturing method of multilayer ceramic electronic component
JP3954792B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2006344669A (en) Manufacturing method of laminated electronic component
JPH11340082A (en) Multilayer chip component and its manufacture
JP4506076B2 (en) Manufacturing method of ceramic electronic component
JP4321200B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2005136008A (en) Manufacturing method for laminated electronic component
JP2005079284A (en) Method for manufacturing ceramic electronic part
JP2018098248A (en) Manufacturing method of multilayer ceramic electronic component
JP2004152908A (en) Process for producing multilayer ceramic body

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070206