JPS59111922A - Production of fine powder of zirconium oxide - Google Patents

Production of fine powder of zirconium oxide

Info

Publication number
JPS59111922A
JPS59111922A JP21859782A JP21859782A JPS59111922A JP S59111922 A JPS59111922 A JP S59111922A JP 21859782 A JP21859782 A JP 21859782A JP 21859782 A JP21859782 A JP 21859782A JP S59111922 A JPS59111922 A JP S59111922A
Authority
JP
Japan
Prior art keywords
zirconium
hydroxide
concentration
precipitate
zro2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21859782A
Other languages
Japanese (ja)
Other versions
JPH028967B2 (en
Inventor
Hideki Abe
阿部 秀来
Hiroaki Murashima
村島 弘明
Kiroku Oka
岡 紀六
Mitsuteru Toishi
光輝 戸石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DOWA CHEM KK
Dowa Holdings Co Ltd
Original Assignee
DOWA CHEM KK
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DOWA CHEM KK, Dowa Mining Co Ltd filed Critical DOWA CHEM KK
Priority to JP21859782A priority Critical patent/JPS59111922A/en
Publication of JPS59111922A publication Critical patent/JPS59111922A/en
Publication of JPH028967B2 publication Critical patent/JPH028967B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:An aqueous solution of zirconium salt is controlled in its pH, Zr concentration and sulfate ion concentration to effect the preipitation of an insoluble Zr salt and the precipitate is converted into the hydroxide with an alkaline substance, then dried and roasted to produce fine particles of ZrO2 with uniform particle size. CONSTITUTION:An aqueous solution of a Zr salt containing ZrO2 is controlled so that its pH becomes 0-2.5, its concentration becomes 0.1-2.0mol/l and the SO4<-->/Zr molar ratio ranges from 0.1-1.0. The resultant aqueous solution is heated, when necessary, and the reaction is effected under stirring to form an insoluble Zr salt containing sulfate ion. The precipitate is washed and converted into its hydroxide by reaction with an alkaline substance such as aqueous ammonia, then the hydroxide is dried, crushed and roasted. The process gives fine particles of ZrO2 of almost spherical form, thus showing good dispersibility.

Description

【発明の詳細な説明】 本発明に粒径の均一に制御された酸化ジルコニウム微粉
末の製造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the production of fine zirconium oxide powder whose particle size is uniformly controlled.

酸化ジルコニウム微粉末に電磁気用セラミックス、耐摩
耗工具用セラミックスなどの原料として用いられ、純度
が高いこと、粒径分布が目的にしたがった範囲内にある
こと、製造コストが安価であることなどが望1れている
Zirconium oxide fine powder is used as a raw material for electromagnetic ceramics, wear-resistant tool ceramics, etc., and is desired to have high purity, particle size distribution within the range according to the purpose, and low manufacturing cost. 1 has been written.

現在の酸化ジルコニウム微粉末の製造法の一つである機
械的粉砕法に不純物の混入のおそれがあるなど上記の目
的ケ十分に満足できない。捷た無機塩またに有機物を用
いた化学的処理法でに、粒径が1μm以下の水酸化物の
粒子を液中で合成した場合、固液分離が非常にむづかし
く、また乾燥品が粉砕の困難なゲル状物となる極端な場
合も生ずるなどの問題?おこし、製造法が簡単で大量に
工業的に製造するという条件を十分満足していない。
The above objectives cannot be fully satisfied because there is a risk of contamination with impurities in the mechanical pulverization method, which is one of the current methods for producing fine zirconium oxide powder. When hydroxide particles with a particle size of 1 μm or less are synthesized in a liquid using a chemical treatment method using crushed inorganic salts or organic substances, solid-liquid separation is extremely difficult, and the dry product is difficult to separate. Are there problems such as extreme cases where the product becomes a gel-like substance that is difficult to crush? However, it does not fully satisfy the requirements that the manufacturing method is simple and that it can be produced industrially in large quantities.

本発明aこれらの欠点ケ解消する目的で、予じめ水溶液
中の化学反応に、l:す、例えば2ZrO804・Zr
O2−8H20やZr50g (804)2 ・14H
20などの組成をもつ粒径の均一な不溶性ジルコニウム
塩の微粒子をつくり、つぎにこれ?アルカリ性物質vc
工り水酸化物に変えたのちに、乾燥、焙焼全行ない粒径
の均一な酸化ジルコニウム微粉末ケ製造することケ可能
にしたものである。
In the present invention a, in order to overcome these drawbacks, l:su, for example, 2ZrO804.
O2-8H20 or Zr50g (804)2 ・14H
We make fine particles of insoluble zirconium salt with a uniform particle size and a composition such as 20. alkaline substance vc
After converting into a processed hydroxide, it is possible to produce fine zirconium oxide powder with a uniform particle size by drying and roasting.

拳法によれば溶液のpH1温度、ジルコニウム濃度、硫
酸根濃度を調節することにより、0.01〜2μmの粒
子径の間において、ある特定の平均粒子径全持つ形態の
整ったほぼ球状に近い微粉末を得ることができる。その
うえ沢過性が工く固液分離が容易で、また乾燥してもゲ
ル状物にならず粉砕が容易である。
According to Kenpo, by adjusting the pH 1 temperature, zirconium concentration, and sulfate radical concentration of the solution, it is possible to obtain well-formed, almost spherical particles with a certain average particle size in the particle size range of 0.01 to 2 μm. A powder can be obtained. In addition, solid-liquid separation is easy due to its filtration properties, and it does not become a gel-like substance even when dried, making it easy to crush.

本発明についてさらに詳細に説明すると、原料となるジ
ルコニウム塩は水溶性塩なら何でも工ぐ、もし不溶性塩
ケ出発原料とする場合けこれを水溶性塩に変えておけば
よい。ジルコニウム濃度に0.1〜2.0モル/lの範
囲が適当であるが、最適なのに0.2〜1.0モル/l
の濃度である。このジルコニウム水溶液の水素イオン濃
度1pHo〜2.5の範囲の適当なところに設定しなが
ら硫酸根濃度ケ(soニーモル濃度/Zrモル濃度) 
= 0.1〜1.0という比率の中から所望の比率にな
るように調節する。第1図げ硫酸根対ジルコニウムモル
比、およびその液のpH,nらびに得ようとする酸化ジ
ルコニウム粉末粒径の関係図である。硫酸根濃度a本図
を参照して目的の粒径に対応した濃度ケ選定する。pH
お工び硫酸根濃度を調整した・時点で不溶性ジルコニウ
ム塩の沈殿生成かげじ捷る。常温で放置しても沈殿生成
反応は進行するが、加温(常温〜沸点)することにエリ
促進され、その反応率げpHや硫酸根濃度により変化す
るが100チに近い値が得られる。
To explain the present invention in more detail, any water-soluble zirconium salt can be used as the raw material. If an insoluble salt is used as the starting material, it may be changed to a water-soluble salt. A range of 0.1 to 2.0 mol/l is appropriate for the zirconium concentration, but the optimum range is 0.2 to 1.0 mol/l.
The concentration is While setting the hydrogen ion concentration of this zirconium aqueous solution at an appropriate point within the range of 1 pHo to 2.5, the sulfate radical concentration (so neemolar concentration/Zr molar concentration) was adjusted.
= Adjust to a desired ratio from 0.1 to 1.0. FIG. 1 is a relationship diagram of the molar ratio of sulfate to zirconium, the pH of the solution, n, and the particle size of the zirconium oxide powder to be obtained. Sulfate radical concentration a: Refer to this diagram to select the concentration corresponding to the desired particle size. pH
Once the sulfate concentration is adjusted, a precipitate of insoluble zirconium salts is formed. Although the precipitation reaction proceeds even if left at room temperature, it is accelerated by heating (from room temperature to the boiling point), and the reaction rate is close to 100%, although it varies depending on the pH and the concentration of sulfate groups.

このようにして得られ定年溶性ジルコニウム塩の沈殿げ
固液分離後かまたに直接反応Q、にアンモニア水などの
アルカリ性物質ケ加えることにより水酸化ジルコニウム
にする。このようにして得た水酸化物粒子性状離し、十
分な水洗ののち乾燥する。この乾燥品に透過型電子顕微
鏡による観察によると一次粒子によく分散している。こ
れケ簡単な粉砕工程をへたのち700〜800Cで焙焼
し酸化物とする。
After precipitation and solid-liquid separation of the soluble zirconium salt thus obtained, zirconium hydroxide is produced by directly adding an alkaline substance such as aqueous ammonia to the reaction Q. The hydroxide particles thus obtained are separated, thoroughly washed with water, and then dried. Observation of this dried product using a transmission electron microscope shows that it is well dispersed in primary particles. After completing this simple pulverization process, it is roasted at 700 to 800C to form an oxide.

ジルコニウム塩水溶液中にげ、ジルコニウムは一般にZ
rOの状態で溶存している。ZrOの25Cにおける溶
解度げpH0,6付近で1 mol/l、pH1,5付
近で1Onnol/l、 pH2,0付近で10−3m
ol/l、 pH2,5付近で1o  mol/lとな
ってい4が、実際にrrpHl、5〜2.0の範囲で過
飽和状態で安定化し、相当の溶解度をもっている。この
過飽和状態から水酸化物の沈殿を発生させる方法として
 1)加熱にエリ沈殿の発生速度をあげる。
Zirconium is generally dissolved in Zirconium salt aqueous solution.
It is dissolved in the rO state. The solubility of ZrO at 25C is 1 mol/l around pH 0.6, 1 Onnol/l around pH 1.5, and 10-3 m around pH 2.0.
ol/l is 1 o mol/l near pH 2.5, but 4 is actually stabilized in a supersaturated state at rrpHl of 5 to 2.0, and has considerable solubility. Methods for generating hydroxide precipitation from this supersaturated state include: 1) Increase the rate of hydroxide precipitation generation by heating.

2)過剰にアルカIJ ’(+−加え沈殿を発生させる
。3)種結晶として微粒子ケ懸濁させる。等6つの方法
が考えられる。
2) Add alkali IJ' (+-) in excess to generate a precipitate. 3) Suspend fine particles as seed crystals. There are six possible methods.

1)の方法 具体的にげ後記比較例(a)に示すが、環流冷却器付フ
ラスコにZrO2換算濃度50 f/l、 pH1,2
の液を入れヒーター゛で加熱し煮沸すると除々に加水分
解がおき水酸化ジルコニウムが沈殿してぐる。この時の
加水分解速度に非常に遅く4日間連続で煮沸ケ行なって
モロ0チ程度のジルコニウムしか沈殿しない。これげ沈
殿発生時に核となる粒子が少ないのと、沈殿発生時に酸
?遊離して溶液中のOH−濃度が減少し水酸化物の発生
がおきにくくなるためと思われる。この場合の水酸化物
粒子の粒径に一般に20〜50^と非常に微細であり、
沈降性を有する。この沈殿を分離、乾燥すると白色の塊
状乾燥品となり若干固く粉砕に時間を要する。
Method 1) Specifically shown in Comparative Example (a) below, a flask with a reflux condenser was prepared with a ZrO2 equivalent concentration of 50 f/l and a pH of 1.2.
When you pour the liquid into it and heat it with a heater until it boils, hydrolysis will occur gradually and zirconium hydroxide will precipitate. The hydrolysis rate at this time was extremely slow, and boiling was continued for 4 days in a row, resulting in only about 0% of zirconium being precipitated. There are few particles that become the core when precipitation occurs, and is there an acid when precipitation occurs? This is thought to be because the OH- concentration in the solution decreases due to release, making it difficult for hydroxide to be generated. In this case, the particle size of the hydroxide particles is generally very fine, 20 to 50^,
Has sedimentation properties. When this precipitate is separated and dried, it becomes a white lumpy dried product that is somewhat hard and requires time to grind.

2)の方法 具体的にげ後記比較例(klに示すが、ZrO2換算濃
度50 f/lの溶液にアンモニア水を加えpH71で
中和すると水酸化ジルコニウムの沈殿が生成する。この
沈殿に沈降性がなく、r過性の非常に悪いゲル状沈殿で
ある。この沈殿?乾燥すると半透明な塊状乾燥品となり
、非常に固く、特殊な粉砕方法ケとらないと微粉体状と
ならない。
Method 2) Specifically, as shown in Comparative Example (kl) below, when aqueous ammonia is added to a solution with a ZrO2 equivalent concentration of 50 f/l and neutralized to pH 71, a precipitate of zirconium hydroxide is formed. It is a gel-like precipitate with very poor r-permeability.When this precipitate dries, it becomes a semi-transparent blocky dry product, which is very hard and cannot be turned into a fine powder unless a special pulverization method is used.

6)の方法 1)の方法の実験例で加水分解時間が非常に遅い事に着
目し、これを速めるために、後記比較例(C)に示すよ
うに、沈殿発生の核となる水酸化ジルコニウムの微粒子
を添加する。すると1)の方法で加水分解に4日かかる
ところが約2日で60〜70チの収率で水酸化ジルコニ
ウムの沈殿が得られる。この場合の水酸化物粒子性状に
旬の方法と同一である。
Method 6) Noting that the hydrolysis time was very slow in the experimental example of method 1), in order to speed up the hydrolysis time, as shown in Comparative Example (C) below, zirconium hydroxide, which is the core of precipitation, was of fine particles are added. As a result, zirconium hydroxide can be precipitated in about 2 days with a yield of 60 to 70%, whereas it takes 4 days for hydrolysis in method 1). The properties of the hydroxide particles in this case are the same as in the current method.

しかし、これらの方法でに以下のようにそれぞれ一長一
短あり、実操業的には問題がある。
However, each of these methods has advantages and disadvantages as described below, and there are problems in actual operation.

1)の方法 加水分解に時間がかかる。Method 1) Hydrolysis takes time.

収率が低い。Yield is low.

粒子が分散しており粒径が小さい。The particles are dispersed and the particle size is small.

固液分離可能。Solid-liquid separation possible.

2)の方法 収率が良い。Method 2) Good yield.

乾燥品の粉砕が難しい。Difficult to crush dry products.

粒子が凝集している。Particles are agglomerated.

固液分離ができない。Solid-liquid separation is not possible.

3)の方法 加水分解速度が1)に比べ速い。Method 3) The hydrolysis rate is faster than method 1).

収率が低い。Yield is low.

粒子が分散しており粒径が小さい。The particles are dispersed and the particle size is small.

固液分離可能。Solid-liquid separation possible.

これに対し、本発明げ以上のべた3つの方法の長所?全
て含み、短所全たくみに回避した方法?提供するもので
ある。
On the other hand, what are the advantages of the three methods mentioned above? A method that includes everything and avoids all disadvantages? This is what we provide.

すなわち、zrO2+溶液に硫酸根を添加すると、2Z
rO8O4−ZrO2−8H20あるいげZr50g 
(SO4)2−1’4H20などの組成を持つ不溶性の
塩基性硫酸塩が沈殿する。これらを合成する時にpH1
硫酸根濃度、温度ケ適切に規制することに↓す、迅速に
かつ定量的にジルコニウムの不溶性塩を得る事ができる
That is, when a sulfate group is added to the zrO2+ solution, 2Z
rO8O4-ZrO2-8H20 Arage Zr50g
An insoluble basic sulfate with a composition such as (SO4)2-1'4H20 precipitates. When synthesizing these, pH1
By appropriately regulating the sulfate concentration and temperature, insoluble salts of zirconium can be obtained quickly and quantitatively.

これらの沈殿に白色の微細な沈殿であり、沈降性、沢過
性が良好で乾燥品に粉状である。これらの化合物にアル
カリ性物質を加える事により容易に水酸化物に変えるこ
とができる。この様にして得られた水酸化物に塩基性硫
酸塩の沈殿の工学的性質ケそのま1持ち、これを乾燥し
て700〜soo cて焙焼すると、−次粒子径が10
0〜200Aの形状が球形に近い大きさの整った分散性
の良い酸化ジルコニウム微粉体が得られ″るのである。
These precipitates are fine white precipitates, have good settling and filtration properties, and are powder-like when dried. These compounds can be easily converted into hydroxides by adding an alkaline substance. The hydroxide obtained in this way has all the engineering properties of basic sulfate precipitation, and when it is dried and roasted at 700 - soo c, the -order particle size becomes 10.
Zirconium oxide fine powder with a size close to a spherical shape of 0 to 200 A and good dispersibility can be obtained.

本発明げ以上のべたように、いったん不溶性ジルコニウ
ム塩の沈殿をつくり、それ?アルカリで水酸化物に変え
るという簡単な操作により、平均粒径の制御された微粉
末?得ることができるもので、濾過や粉砕も容易である
。したがって反応設備も一般に使用されている攪拌機付
反応槽で十分であり、固液分離も通常の遠心分離機など
?用いることができ、量産化が非常に容易である。また
有機溶媒などの可燃性物質とか、オートクレーブのよう
な高温高圧状態がなく安全という利点も満足するもので
ある。
In the present invention, as described above, once the insoluble zirconium salt is precipitated, then the insoluble zirconium salt is precipitated. A fine powder with a controlled average particle size through the simple operation of converting it into hydroxide with alkali? It is easy to filter and grind. Therefore, a generally used reaction tank with a stirrer is sufficient for the reaction equipment, and a normal centrifuge for solid-liquid separation is sufficient. It is very easy to mass-produce. It also has the advantage of safety since it does not involve flammable substances such as organic solvents or high temperature and high pressure conditions such as in an autoclave.

つぎに実施例並びに比較例[,1:りさらに詳細に説明
する。
Next, Examples and Comparative Examples [, 1] will be explained in more detail.

実施例 1 炭酸ジルコニウム(ZrO2含量40〜45 % 12
.5kgケ塩酸(56係)1.5tおよび水1.5tで
溶解し、ジルコニウム塩酸溶液?得たのち水で希釈して
ZrO2換算濃度で50!il/lとしpH1,00に
調整する。つきに硫酸アンモニウム?ジルコニウム1モ
ルに対し0.55モル加え攪拌しながら80Cとし、1
時間反応させて不溶性ジルコニウム塩の沈殿ケ得る。
Example 1 Zirconium carbonate (ZrO2 content 40-45% 12
.. Dissolve 5kg in 1.5t of hydrochloric acid (section 56) and 1.5t of water to create a zirconium hydrochloric acid solution. After obtaining it, it was diluted with water to give a ZrO2 equivalent concentration of 50! il/l and adjust the pH to 1.00. Ammonium sulfate? Add 0.55 mol to 1 mol of zirconium and bring to 80C with stirring.
After a period of reaction, an insoluble zirconium salt is precipitated.

デカント洗浄にエリ沈殿全洗浄したのちアンモニア水を
加えpH8〜9とし、この沈殿を吸引濾過し水洗する。
After thoroughly washing the precipitate with decant washing, aqueous ammonia is added to adjust the pH to 8 to 9, and the precipitate is suction filtered and washed with water.

Fti、に硫酸根が検出されなくなる1で洗浄し80C
で乾燥する。乾燥品に簡単な粉砕ののち700Cで5時
間焙焼する。この場合の収率げ97.5チで、比表面積
40.87y+j/f、かさ密度1.43f//ffl
、タップ密度2.46 ff1crl、平均粒径1.7
0 ttm 。
Fti, washed at 80C so that no sulfate groups were detected.
Dry with. After simple pulverization into a dry product, it is roasted at 700C for 5 hours. In this case, the yield was 97.5cm, the specific surface area was 40.87y+j/f, and the bulk density was 1.43f//ffl.
, tap density 2.46 ff1crl, average particle size 1.7
0ttm.

結晶型げ単斜晶であった。The crystal shape was monoclinic.

実施例 2 オキシ塩化ジルコニウム結晶(Zr0O12・8H,O
Jを水に溶かしZrO2a度にして220〜250 Y
/lの液にしたのち水で希釈し、ZrO2としてso 
y7tの溶液?つくりpH1,30に調整する。この液
に硫酸アンモニウム’1Zr021モルに対し肌45モ
ルの割合で加え、80Cで1時間反応させ不溶性ジルコ
ニウム塩の沈殿を得る。この沈殿にアンモニア水?加え
pH8〜9とし、沈殿を水酸化物に変え、濾過、洗浄後
80Cで乾燥、700Cで5時間焙焼した。この場合の
収率に99.5 %で、比表面積55.0m2/7、か
さ密度0,53 t/d、タップ密度1.15 f/d
、平均粒径0.23μm、結晶型げ単斜晶であった。
Example 2 Zirconium oxychloride crystal (Zr0O12.8H,O
Dissolve J in water and make ZrO2a degree to 220-250 Y
/l solution, diluted with water, and converted to ZrO2 in SO
y7t solution? Adjust the pH to 1.30. This solution was added at a ratio of 45 moles of ammonium sulfate '1Zr021 to 45 moles of skin, and reacted at 80C for 1 hour to obtain a precipitate of an insoluble zirconium salt. Ammonia water in this precipitation? The mixture was added to adjust the pH to 8 to 9, converting the precipitate into hydroxide, filtering and washing, drying at 80C, and roasting at 700C for 5 hours. In this case, the yield is 99.5%, the specific surface area is 55.0 m2/7, the bulk density is 0.53 t/d, and the tap density is 1.15 f/d.
The average grain size was 0.23 μm, and the crystal structure was monoclinic.

実施例 3 炭酸ジルコニウム(ZrO2含量4j]〜45係)10
kgケ塩酸(36%)3t、水9tに溶解し、さらにこ
れ?水で希釈してZrO2含量50 ?/lの液80t
kつぐる。この時のpHげ1.5〜1.7である。こノ
液に硫酸アンモニウムf Zr021モルに対し0.4
5モルの割合で加え、80Cて1時間反応させる。
Example 3 Zirconium carbonate (ZrO2 content 4j] to 45) 10
kg of hydrochloric acid (36%), dissolved in 3 tons of water, and then this? ZrO2 content 50 when diluted with water? /l liquid 80t
K Tsuguru. At this time, the pH was 1.5 to 1.7. In this solution, ammonium sulfate f is added to 0.4 moles per 21 moles of Zr0.
The mixture was added in a proportion of 5 moles and reacted at 80C for 1 hour.

つぎにこの反応液にアンモニア水奮加え、pH8〜?と
して遠心分離機ケ用いて固液分離を行なう。
Next, ammonia water was added to this reaction solution to pH 8~? Solid-liquid separation is performed using a centrifuge.

十分な水洗ののち水酸化物ケ乾燥し700Cで10時間
焙焼する。この場合の収率i 99.9 %で、比表面
積66.3.17y、かさ密度0.39 f/7、タッ
プ密度0.73 V/d、平均粒径0.1μm以下、結
晶型汀単斜晶′T:あった。
After thorough washing with water, the hydroxide was dried and roasted at 700C for 10 hours. In this case, the yield i is 99.9%, the specific surface area is 66.3.17y, the bulk density is 0.39 f/7, the tap density is 0.73 V/d, the average grain size is 0.1 μm or less, and the crystal type is monolithic. Orthoclic 'T: Yes.

以上の実施例は代表的な例であるが、さらに多数の試験
を重ねた結果、硫酸根とジルコニウムのモル比および七
の際の溶液pH7Zらびに最終的に得られるZrO2の
平均粒子径との関係a図1のようになった。このように
製品Zr02粒径げ不溶性硫酸塩化合物をつくる際の条
件から調節することができる。
The above example is a typical example, but as a result of many more tests, we found that the molar ratio of sulfate and zirconium, the pH of the solution at 7Z, and the average particle size of the final ZrO2 were determined. The relationship a is as shown in Figure 1. In this way, the particle size of the Zr02 product can be adjusted from the conditions used to produce the insoluble sulfate compound.

比較実施例 (a)実施例1と同様にZrO2換算濃度でso ?/
L、pT(1,2の溶液′に1tとり、環流冷却器付フ
ラスコで加熱煮沸した。加水分解がおこり、水酸化ジル
コニウムの沈殿?得たが、その速度に極めて遅く、4日
間で60係の沈殿生成であった。この沈殿を分離、乾燥
して白色の塊状物を得たが、粉砕に困難であり、また微
細粉げ得られなかった。
Comparative Example (a) As in Example 1, the concentration in terms of ZrO2 was so? /
L, pT (1 ton was added to a solution of 1 and 2) and heated and boiled in a flask equipped with a reflux condenser. Hydrolysis occurred and a precipitate of zirconium hydroxide was obtained, but the rate was extremely slow and the reaction rate was 60% in 4 days. This precipitate was separated and dried to obtain a white lump, but it was difficult to grind and a fine powder could not be obtained.

(b)  実施例1と同様KZr’02換算濃度T50
f//l、pH1,2の溶液i1tとり、これにアンモ
ニア水を加えpH7,Oiで中和し水酸化ジルコニウム
の沈殿を生成させた。この沈殿物に沈降性が小さく沢過
が極めて困難であった。沈殿の乾燥品に半透明塊状で、
また非常に固く、粉砕で所望の微細粉tうろことができ
なかった。
(b) KZr'02 equivalent concentration T50 as in Example 1
A solution i1t of f//l and pH 1 and 2 was taken, and ammonia water was added thereto to pH 7 and neutralized with Oi to form a precipitate of zirconium hydroxide. This precipitate had low settling properties and was extremely difficult to filter. The dried precipitate is semi-transparent and lumpy.
It was also very hard and could not be crushed into a desired fine powder.

(C)  実施例1と同様にZrO2換算濃度で50 
f/l、pH1,2の溶液2izとり、加水分解金星め
る目的で水酸化ジルコニウムの微粉全添加した。コノ結
果2日間で65係の収率で水酸化ジルコニウムの沈殿が
できた。この沈殿物の乾燥品に白色塊状物で粉砕が困難
であり、筐た所望の微細粉げ得られなかった。
(C) Same as Example 1, ZrO2 equivalent concentration is 50
A solution 2iz of f/l, pH 1,2 was taken, and all fine powder of zirconium hydroxide was added thereto for the purpose of removing hydrolyzed Venus. As a result, zirconium hydroxide was precipitated in 2 days with a yield of 65%. The dry product of this precipitate contained white lumps that were difficult to grind, and the desired fine powder could not be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1 図1”j ’51fb酸根とジルコニウムのモル
比、およびその際の溶液pH,、ならびに最終的に得ら
れる酸化ジルコニウム粉末の平均粒径の関係を示す関係
図である。 出願人  同和ケミカル株式会社 第1図
Fig. 1 is a relationship diagram showing the relationship between the molar ratio of acid radicals and zirconium, the pH of the solution at that time, and the average particle size of the finally obtained zirconium oxide powder. Applicant: Dowa Chemical Co., Ltd. Company diagram 1

Claims (1)

【特許請求の範囲】[Claims] ジルコニウム塩の水溶液を、水素イオン濃度がpHて0
〜2.5の範囲、ジルコニウム濃度75J0.1〜2.
0モル/lの範囲、硫酸根/ジルコニウムのモル比が0
.1〜1.0の範囲となるように調節することによって
この液から硫酸根を含む不溶性ジルコニウム塩の沈殿を
生成させ、得られた沈殿をアルカリ性物質と反応させて
水酸化物とし、この水酸化物?乾燥し焙焼することから
なる酸化ジルコニウム微粉末の製造法。
An aqueous solution of zirconium salt has a hydrogen ion concentration of 0.
~2.5 range, zirconium concentration 75J0.1~2.
In the range of 0 mol/l, the molar ratio of sulfate radicals/zirconium is 0
.. A precipitate of an insoluble zirconium salt containing a sulfate group is generated from this solution by adjusting the ratio to be in the range of 1 to 1.0, and the resulting precipitate is reacted with an alkaline substance to form a hydroxide. thing? A method for producing fine zirconium oxide powder, which comprises drying and roasting.
JP21859782A 1982-12-14 1982-12-14 Production of fine powder of zirconium oxide Granted JPS59111922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21859782A JPS59111922A (en) 1982-12-14 1982-12-14 Production of fine powder of zirconium oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21859782A JPS59111922A (en) 1982-12-14 1982-12-14 Production of fine powder of zirconium oxide

Publications (2)

Publication Number Publication Date
JPS59111922A true JPS59111922A (en) 1984-06-28
JPH028967B2 JPH028967B2 (en) 1990-02-28

Family

ID=16722449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21859782A Granted JPS59111922A (en) 1982-12-14 1982-12-14 Production of fine powder of zirconium oxide

Country Status (1)

Country Link
JP (1) JPS59111922A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0171736A2 (en) * 1984-08-07 1986-02-19 Nippon Shokubai Kagaku Kogyo Co., Ltd Micronized zirconia and method for production thereof
JPS6144718A (en) * 1984-08-07 1986-03-04 Nippon Shokubai Kagaku Kogyo Co Ltd Production of fine zirconia powder
JPS61141619A (en) * 1984-12-13 1986-06-28 Dowa Mining Co Ltd Production of zirconia fine powder
JPS6252131A (en) * 1985-08-28 1987-03-06 Harima Refract Co Ltd Production of zirconia based ceramic spherical particle
US4719091A (en) * 1986-07-01 1988-01-12 Corning Glass Works Preparation of mono-sized zirconia powders by forced hydrolysis
US4786486A (en) * 1986-03-14 1988-11-22 Thann Et Mulhouse Stabilized zirconia particulates
US7632477B2 (en) 2003-04-30 2009-12-15 Magnesium Elektron, Ltd. Process for preparing zirconium oxides and zirconium-based mixed oxides
WO2014115835A1 (en) * 2013-01-25 2014-07-31 Dowaハイテック株式会社 Stabilized zirconia powder and method for manufacturing precursor thereof
JPWO2016031699A1 (en) * 2014-08-26 2017-06-08 石原産業株式会社 Scandium separation method
WO2021020104A1 (en) * 2019-07-30 2021-02-04 第一稀元素化学工業株式会社 Zirconia-based composite oxide and method for manufacturing zirconia-based composite oxide

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0235694B2 (en) * 1984-08-07 1990-08-13 Nippon Shokubai Kagaku Kogyo Kk
JPS6144718A (en) * 1984-08-07 1986-03-04 Nippon Shokubai Kagaku Kogyo Co Ltd Production of fine zirconia powder
EP0171736A2 (en) * 1984-08-07 1986-02-19 Nippon Shokubai Kagaku Kogyo Co., Ltd Micronized zirconia and method for production thereof
JPS61141619A (en) * 1984-12-13 1986-06-28 Dowa Mining Co Ltd Production of zirconia fine powder
JPH0238527B2 (en) * 1984-12-13 1990-08-30 Dowa Kogyo Kk
JPS6252131A (en) * 1985-08-28 1987-03-06 Harima Refract Co Ltd Production of zirconia based ceramic spherical particle
US4786486A (en) * 1986-03-14 1988-11-22 Thann Et Mulhouse Stabilized zirconia particulates
US4719091A (en) * 1986-07-01 1988-01-12 Corning Glass Works Preparation of mono-sized zirconia powders by forced hydrolysis
US7632477B2 (en) 2003-04-30 2009-12-15 Magnesium Elektron, Ltd. Process for preparing zirconium oxides and zirconium-based mixed oxides
WO2014115835A1 (en) * 2013-01-25 2014-07-31 Dowaハイテック株式会社 Stabilized zirconia powder and method for manufacturing precursor thereof
JP2014141383A (en) * 2013-01-25 2014-08-07 Dowa Hightech Co Ltd Method for manufacturing stabilized zirconia powder and precursor thereof
JPWO2016031699A1 (en) * 2014-08-26 2017-06-08 石原産業株式会社 Scandium separation method
WO2021020104A1 (en) * 2019-07-30 2021-02-04 第一稀元素化学工業株式会社 Zirconia-based composite oxide and method for manufacturing zirconia-based composite oxide

Also Published As

Publication number Publication date
JPH028967B2 (en) 1990-02-28

Similar Documents

Publication Publication Date Title
JPS59111922A (en) Production of fine powder of zirconium oxide
JP4281943B2 (en) Method for producing plate-like alumina particles
US4582697A (en) Production of aluminum trihydroxide having median diameter of 2 to 100 microns
JPS61201623A (en) Production of spherical flocculated particle of zirconia ultrafine crystal
US4574074A (en) Process for the production of aluminum trihydroxide having a medium of less than 4 microns, which can be varied as required
JPH06234525A (en) Preparation of titanium dioxide
JPS62501555A (en) Manufacturing method of high purity zirconia
IL31921A (en) Production of copper compounds and copper powder
JPS6197134A (en) Powder of zirconia agglomerated particle and preparation thereof
JPH04280815A (en) Fine particulate alkali titanate and its production
JPS61141619A (en) Production of zirconia fine powder
US4574001A (en) Process for producing finely divided dispersions of metal oxides in aluminum hydroxide
JPS58213633A (en) Production of aluminum oxide
JP2547007B2 (en) Method for producing perovskite type oxide fine powder
JPH01270515A (en) Production of zirconia fine powder
JPS61270217A (en) Production of crystalline zirconium oxide fine powder
JPH0341409B2 (en)
JPS61251516A (en) Production of perovskite type oxide
JPH0361609B2 (en)
JPS59232920A (en) Manufacture of zirconium oxide powder containing yttrium as solid solution
JP2882040B2 (en) Method for producing hydrated zirconia sol
JP3224298B2 (en) Method for producing acicular alkali titanate
US1876088A (en) Manufacture of titanium oxide
JPS6051617A (en) Preparation of zirconium oxide powder containing yttrium in the state of solid solution
JPS62212224A (en) Production of zirconia solid solution crystal fine powder