JPH01270515A - Production of zirconia fine powder - Google Patents

Production of zirconia fine powder

Info

Publication number
JPH01270515A
JPH01270515A JP9894188A JP9894188A JPH01270515A JP H01270515 A JPH01270515 A JP H01270515A JP 9894188 A JP9894188 A JP 9894188A JP 9894188 A JP9894188 A JP 9894188A JP H01270515 A JPH01270515 A JP H01270515A
Authority
JP
Japan
Prior art keywords
fine powder
slurry
aqueous solution
sulfate
zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9894188A
Other languages
Japanese (ja)
Other versions
JPH0458413B2 (en
Inventor
Hidemi Taniguchi
谷口 秀美
Toshihiko Nishi
西 稔彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Denko Co Ltd
Original Assignee
Nippon Denko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Denko Co Ltd filed Critical Nippon Denko Co Ltd
Priority to JP9894188A priority Critical patent/JPH01270515A/en
Publication of JPH01270515A publication Critical patent/JPH01270515A/en
Publication of JPH0458413B2 publication Critical patent/JPH0458413B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title fine powder, sharp in particle size distribution, good in dispersibility, reduced in impurity content, by neutralizing a specific basic Zr(SO4)2-contg. slurry with ammonia followed by treatment with ammonia water. CONSTITUTION:(NH4)2SO4 is added to a solution prepared by dissolving a 40-70g/l (on a ZrO2 basis) of a water-soluble Zr compound (e.g., oxy ZnCl4) in water so as to be 0.45-0.55mols per mol of Zr on a SO4 basis is to prepare an aqueous solution. Thence, this solution to which, as a seed crystal, basic Zr(SO4)2 fine powder is added is heated to >=75 deg.C to produce a slurry with basic Zr(SO4)2 precipitate suspended. This slurry is then incorporated, in a single spell, with ammonia water, stirred and adjusted to pH>=8.5 followed by neutralization and filtration and washing to obtain a solid product, which is then treated with ammonia water to eliminate sulfate ion from the basic Zr(SO4)2 into Zr(OH)4, which is then calcined, thus obtaining the objective zirconia fine powder <=0.4 in bulk density and <=5mum in average particle size.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ジルコニア微粉の製造方法に係り、特に粒径
が微小で分散性に優れたジルコニア微粉の製造方法に関
し、ファインセラミックス製造分野において広く利用さ
れる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing zirconia fine powder, and in particular to a method for producing zirconia fine powder that has a small particle size and excellent dispersibility, and is widely applicable in the field of fine ceramic production. used.

〔従来の技術〕[Conventional technology]

ジルコニア粉は、エレクhロニックス用ファインセラミ
ックスなどの原料として使用される。このような用途に
使用されるジルコニア粉は、純度が高く、粒径が微小で
、かつ粒度分布がシャープであり、更にかさ密度が小さ
く、凝集粒子が少なくて分散性の良いことが求められて
いる。
Zirconia powder is used as a raw material for fine ceramics for electronics, etc. Zirconia powder used for such applications is required to have high purity, small particle size, and sharp particle size distribution, as well as low bulk density, few aggregated particles, and good dispersibility. There is.

ところが、ジルコニウム塩類の水溶液から析出、沈殿さ
せて得られる固形物を加熱する従来方法によって得られ
るジルコニア粉は、一般に]−次粒子が強く凝結した粗
大な2次粒子を含んでいるので。
However, zirconia powder obtained by the conventional method of heating a solid obtained by precipitation from an aqueous solution of zirconium salts generally contains coarse secondary particles that are strongly coagulated secondary particles.

そのままでは上記の用途に使用できない。そこで、この
ような凝結粒子を含むジルコニア粉を粉砕することによ
って微細な粉末を得ようとすれば、長時間の粉砕操作を
要し、しかも粉砕装置から不純物が混入する恐れがある
ほか、粒度の分布幅が広く、かつ凝集力が非常に強く分
散が困難な粉末となってしまう。
It cannot be used as is for the above purposes. Therefore, if we try to obtain fine powder by grinding zirconia powder containing such coagulated particles, it will require a long grinding operation, and there is a risk that impurities will be mixed in from the grinding equipment. The resulting powder has a wide distribution width and extremely strong cohesive force, making it difficult to disperse.

かくの如く、従来公知の方法では、不純物が少なく、粒
径が微小で、かつ粒度分布がシャープであり更にかさ密
度が小さく、分散性の良いジルコニア粉末を得ることが
困難であった。
As described above, with conventionally known methods, it has been difficult to obtain zirconia powder with few impurities, small particle size, sharp particle size distribution, low bulk density, and good dispersibility.

〔発明が解決しようとする問題点〕 本発明の目的は、上記従来法の欠点を排除して、粒径が
微小で粒度分布がシャープで分散性が良く、かつ不純物
含量の少ないジルコニア微粉の効果的な製造方法を提供
するにある。
[Problems to be Solved by the Invention] The purpose of the present invention is to eliminate the drawbacks of the above-mentioned conventional methods, and to improve the effectiveness of zirconia fine powder that has a small particle size, a sharp particle size distribution, good dispersibility, and a low impurity content. The aim is to provide a manufacturing method that is

〔問題点を解決するだめの手段および作用〕本発明の要
旨とするところは次の如くである。
[Means and operations for solving the problems] The gist of the present invention is as follows.

すなわち、水溶性ジルコニウム化合物を水に溶解し該溶
液に硫酸アンモニウムを添加した水溶液を調製する段階
と、前記水溶液を加熱して塩基性硫酸ジルコニウムの沈
殿が懸濁したスラリーを得る段階と、前記スラリーをア
ルカリ性物質で処理した後水酸化ジルコニウムを分離す
る段階と、前記水酸化ジルコニウムを仮焼する段階と、
を有して成るジルコニア粉の製造方法において、前記水
溶液中のジルコニウムの濃度がZrO7として40〜’
70g/l、、硫酸アンモニウム濃度がSO4としてジ
ルコニア1モル当り0.45〜0.55モルとなるよう
に調整する段階と、前記水溶液を加熱して得たスラリー
をアンモニアによって急速に中和し濾過洗浄【ッた後ア
ンモニア水て処理して塩基性硫酸ジルコニウムから硫酸
根を完全に脱離して水酸化シルコニウ11に変化させる
段階と、を有することを特徴とするジルコニア微粉の製
造方法である。
That is, a step of preparing an aqueous solution by dissolving a water-soluble zirconium compound in water and adding ammonium sulfate to the solution, a step of heating the aqueous solution to obtain a slurry in which precipitates of basic zirconium sulfate are suspended, and a step of preparing the slurry. separating the zirconium hydroxide after treatment with an alkaline substance; and calcining the zirconium hydroxide;
In the method for producing zirconia powder, the concentration of zirconium in the aqueous solution is 40~' as ZrO7.
A step of adjusting the ammonium sulfate concentration to 0.45 to 0.55 mole per mole of zirconia as SO4, and rapidly neutralizing the slurry obtained by heating the aqueous solution with ammonia and filtering and washing. This is a method for producing zirconia fine powder, which comprises the steps of: [during the basic zirconium sulfate] and then treating it with aqueous ammonia to completely remove the sulfate radicals from the basic zirconium sulfate and convert it into silconium hydroxide 11.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

ジルコニア粉末の「かさ密度」は、その品質水準を表わ
す重要な項目の一つであって、市場においてはその値の
極力小さなものが所望されている。
The "bulk density" of zirconia powder is one of the important items expressing its quality level, and in the market, a product with the lowest possible value is desired.

そこで、先ずこの「かさ密度」を低下させる方法につい
て述べる。なお、本発明において「かさ密度」と称する
のは、JISK5101顔料試験方法に定められたカサ
測定法により求められる値E(m Q / g )の逆
数(単位g/mQ)を指すものとする。
Therefore, first, a method for reducing this "bulk density" will be described. In the present invention, the term "bulk density" refers to the reciprocal (unit: g/mQ) of the value E (m Q / g) determined by the bulk measurement method specified in JIS K5101 Pigment Test Method.

(A、)  まず、水溶性ジルコニウl\化合物、例え
ばオキシ塩化ジルコニウムと、硫酸アンモニウムを水に
溶解し、溶液中の濃度がZrO2として40〜70g/
Q、、SO4としてジルコニア1モル当り0.45〜0
.55モルとなるように調整する。この限定理由は次の
如くである。すなわち、硫酸アンモニウム添加率が−に
記範囲を外れると、かさ密度が」1昇する。zrO2濃
度については、濃度が低すぎると生産性が悪くなり、反
面高すぎると塩基性硫酸ジルコニウム析出時の温度分布
が不均一になるので、実用上40〜70 gIQに制限
ずへきであるからである。特に50 g/f1前後が好
適である。
(A,) First, a water-soluble zirconium compound, such as zirconium oxychloride and ammonium sulfate, are dissolved in water, and the concentration in the solution is 40 to 70 g/ZrO2.
Q, 0.45 to 0 per mole of zirconia as SO4
.. Adjust to 55 mol. The reason for this limitation is as follows. That is, when the ammonium sulfate addition rate is out of the range indicated by -, the bulk density increases by 1. Regarding the zrO2 concentration, if the concentration is too low, the productivity will be poor, while if it is too high, the temperature distribution during basic zirconium sulfate precipitation will become uneven, so it is not practical to limit it to 40 to 70 gIQ. be. In particular, around 50 g/f1 is suitable.

(B)  次に、この水溶液に種晶として塩基性硫酸ジ
ルコニウムの微粉を添加混合して!!vi?@させた後
、加熱して75°C以」二に昇温する。
(B) Next, add and mix basic zirconium sulfate fine powder as seed crystals to this aqueous solution! ! Vi? After heating, raise the temperature to 75°C or higher.

ここで種晶として使用する塩基性硫酸ジルコニウムの品
質については特に制限の要なく、例えば、Zr○、換算
濃度50 gIQのオキシ塩化ジルコニウム7容液に硫
酸アンモニウムをジルコニウム1モル当り046モルの
割合で添加し、この水溶液を80〜85°Cに1時間保
持したものを使用すれは良い。添加量については、オキ
シ塩化ジルコニウム水溶液/l、当り該スラリーを1−
 m Q以上添加すれば1・分である。
There is no particular restriction on the quality of the basic zirconium sulfate used as a seed crystal; for example, ammonium sulfate is added to 7 volumes of Zr○, zirconium oxychloride solution with a converted concentration of 50 gIQ at a ratio of 0.46 mol per 1 mol of zirconium. However, it is best to use this aqueous solution kept at 80 to 85°C for 1 hour. Regarding the amount of addition, the slurry is mixed with 1-1 zirconium oxychloride aqueous solution/l.
If mQ or more is added, the time is 1.min.

(C)  次に、塩基性硫酸ジルコニア粉、が懸濁した
スラリーを、−気にアンモニア水中に投入し、撹拌して
中和する。アンモニア水の量は、中和後のスラリーpo
が8.5以」〕どなるように準備することが必要である
(C) Next, the slurry in which the basic zirconia sulfate powder is suspended is poured into aqueous ammonia and stirred to neutralize it. The amount of ammonia water is the slurry po after neutralization.
[8.5 or higher]] It is necessary to prepare as follows.

なお、アンモニア水で中和するに先立ち、塩基性硫酸ジ
ルコニウムが析出したスラリーがら母液を分離すること
によって、中和に要するアンモニア水の量を低減させる
ことができる。しがし、このような方法で中和操作を行
うと、「がさ密度ゴが著しく高くなって本発明の目的を
達成することができない。つまり、かさ密度を低下させ
るためには、母液の共存下で急速にp I−1を上昇さ
せることが重要なポイン1へである。
The amount of ammonia water required for neutralization can be reduced by separating the mother liquor from the slurry in which basic zirconium sulfate has precipitated prior to neutralization with ammonia water. However, if the neutralization operation is carried out in this way, the bulk density will become extremely high, making it impossible to achieve the purpose of the present invention.In other words, in order to reduce the bulk density, The first important point is to rapidly increase p I-1 in coexistence.

ところで、中和方法についてはp I(を急速に上昇で
きれば良いのであるから、必すしも上記の如くスラリー
をアンモニア水中に投入する方法に限定する必要がない
。従って、スラリーにアンモニア水を添加する方法、ア
ンモニアカスを吹込む法等、設備面と操作性の点からみ
て最も好適な方法を選定すれば良い。
By the way, as for the neutralization method, since it is sufficient to rapidly increase p I, it is not necessarily limited to the method of adding the slurry to aqueous ammonia as described above. Therefore, adding aqueous ammonia to the slurry The most suitable method may be selected in terms of equipment and operability, such as the method of blowing in ammonia scum.

(D)  次に上記スラリーは、遠心分離、濾過等の方
法により母液を分離して固形物を得た後、該固形物を再
度アンモニア水で処理して塩基性硫酸ジラコニウl\か
ら実質上完全に硫酸根を脱離し、水酸化ジルコニウムに
変化させる。この硫酸根の脱離操作は、リパルプ洗浄と
濾過洗浄を常法に従い適宜組合せ実施することによって
、効果的に行うことができる。なお、この工程で使用す
るアンモニア水の一部を水酸化アルカリで置き換えるこ
とも可能である。これによって、硫酸根の脱離をより涌
実にし、かつ高価なアンモニア水の使用量を節減するこ
とができる。ただし、アルカリ金属イオンは、水酸化ジ
ルコニウムに吸着、残存し易いので注意が必要である。
(D) Next, the slurry is separated from the mother liquor by centrifugation, filtration, etc. to obtain a solid, and then the solid is treated again with aqueous ammonia to substantially completely remove the basic ziraconium sulfate. The sulfate group is removed and converted to zirconium hydroxide. This operation for removing sulfate radicals can be effectively carried out by carrying out an appropriate combination of repulp washing and filtration washing according to a conventional method. Note that it is also possible to replace a part of the ammonia water used in this step with alkali hydroxide. This makes it possible to more efficiently eliminate sulfate radicals and to reduce the amount of expensive ammonia water used. However, care must be taken as alkali metal ions tend to be adsorbed and remain on zirconium hydroxide.

最後に洗液がほぼ中性となるまで洗浄し、液を分離した
後常法により仮焼することによって、「かさ密度」の小
さい微粉のジルコニアを得ることができる。
Finally, fine powder zirconia with a low "bulk density" can be obtained by washing until the washing liquid becomes almost neutral, separating the liquid, and calcining it by a conventional method.

上記の方法によって、得られるジルコニア粉の物性は、
かさ密度0.4以下、平均粒径5μm以下であって、2
次粒子が相互に強く結合していないから粉砕が容易であ
り、軽度の粉砕で粒径1μm以下の凝集の弱い微粉末と
することができる。
The physical properties of the zirconia powder obtained by the above method are as follows:
A bulk density of 0.4 or less, an average particle size of 5 μm or less, and 2
Since the secondary particles are not strongly bonded to each other, pulverization is easy, and a weakly agglomerated fine powder with a particle size of 1 μm or less can be obtained by light pulverization.

次に、粒径を更に小さくする方法について述へる。なお
、ここでいう粒径は、特に断わらない限り、マイクロI
−ラック粒度分析泪で測定した平均粒子径(D5o)を
意味するものとする。
Next, a method for further reducing the particle size will be described. In addition, unless otherwise specified, the particle size referred to here is micro I.
- means the average particle diameter (D5o) measured by rack particle size analysis.

(E)  本発明者らは、水溶性ジルコニウム化合物と
硫酸根を含有する溶液を加熱して塩基性硫酸ジルコニウ
ムを析出させる際の液の流動状態が、最終製品であるジ
ルコニアの粒径に大きく影響することを見出した。すな
わち、溶液から結晶を析出させる場合は、一般に強撹拌
した方が粒径が小さくなるのであるが、本発明の方法に
よる場合は、この一般常識に反して撹拌を弱めるはど粒
径が小さくなり、極限として撹拌を全く行わない非流動
下で加熱した場合に最も粒径が小さくなることを見出し
たのである。そこで、この現象を利用することによって
、仮焼物を極く軽く解砕するだけで容易に1−15μm
以下のジルコニア微粉末を得ることができる。なお、こ
の場合粒径が変化してもかさ密度はほとんど」1昇しな
いから、もし粒径の比較的大きなものを希望する場合は
、」−記の現象を利用することによって、かさ密度をほ
とんど変化させることなく、粒径を1〜5μmの範囲に
おける任意の値に制御することができる。ところで、撹
拌による液の流動状態は撹拌機の回転速度のほか、撹拌
羽根の形状、容器の形状と大きさによって変化するが、
与えられた装置について予め撹拌速度と粒径の関係を実
験により求めておくことによって、その後は撹拌速度の
みによって粒径を任意の値に制御することが可能となる
(E) The present inventors discovered that the fluidity of the liquid when heating a solution containing a water-soluble zirconium compound and a sulfuric acid group to precipitate basic zirconium sulfate greatly affects the particle size of the final product, zirconia. I found out what to do. In other words, when crystals are precipitated from a solution, stronger stirring generally reduces the particle size, but contrary to this common sense, when using the method of the present invention, weakening the stirring results in smaller particle sizes. They found that the particle size becomes the smallest when heated in a non-flowing state without stirring at all. Therefore, by utilizing this phenomenon, calcined materials can be easily crushed into 1-15 μm particles by very light crushing.
The following zirconia fine powder can be obtained. In this case, even if the particle size changes, the bulk density hardly increases by 1, so if you want a relatively large particle size, you can use the phenomenon described below to increase the bulk density almost by 1. The particle size can be controlled to any value within the range of 1 to 5 μm without changing it. By the way, the fluidity of the liquid due to stirring varies depending on the rotational speed of the stirrer, the shape of the stirring blades, and the shape and size of the container.
By determining the relationship between stirring speed and particle size in advance for a given device through experiments, it becomes possible to control the particle size to an arbitrary value only by changing the stirring speed.

(F)  次に分散性を一層向−1−させる方法につい
て説明する。
(F) Next, a method for further improving the dispersibility will be explained.

上記の方法によって得られるジルコニア粉は、平均粒径
0.8μm前後、最大粒径5μm、かさ密度0.4以下
であり、粒径が小さく、かつ分散性に優れたものであっ
て事実上十分な特性を有している。ところで、そのよう
に分散性の優れたものであっても、粉末を「ふりかけ法
」によって検鏡した場合に、2次粒子が極めて弱く凝集
した3次粒子の存在が認められることがある。この程度
の凝集は事実上何ら差し支えはないのであるが、もしこ
の程度の凝集粒子の生成をも阻止することを望む場合は
、硫酸アンモニウムを含有するオキシ塩化ジルコニウム
の水溶液を加熱して塩基性硫酸ジルコニウムを析出させ
るに先立ち、該水溶液に塩酸を添加することよって目的
を達成することができる。塩酸の添加量は、ジルコニア
1モルに対し0.3〜0.6モルが適当である。0.3
モル未満では効果が小さく、0.6モルを越えると粒径
が大きくなりすぎる。
The zirconia powder obtained by the above method has an average particle size of around 0.8 μm, a maximum particle size of 5 μm, and a bulk density of 0.4 or less, and has a small particle size and excellent dispersibility, so it is practically sufficient. It has certain characteristics. By the way, even if the powder has such excellent dispersibility, when the powder is examined under a microscope using the "sprinkle method", the presence of tertiary particles that are extremely weakly aggregated secondary particles may be observed. There is virtually no problem with this degree of agglomeration, but if you wish to prevent the formation of this degree of agglomerated particles, you can heat an aqueous solution of zirconium oxychloride containing ammonium sulfate to form basic zirconium sulfate. This objective can be achieved by adding hydrochloric acid to the aqueous solution prior to precipitating it. The appropriate amount of hydrochloric acid to be added is 0.3 to 0.6 mol per 1 mol of zirconia. 0.3
If it is less than 0.6 mol, the effect will be small, and if it exceeds 0.6 mol, the particle size will become too large.

〔実施例〕〔Example〕

実施例1 オキシ塩化ジルコニウムの結晶(ZrOCR2・8H2
0)を純粋にZrO,、として200 gIQとなるよ
うに溶解し、原液として使用した。ビーカーに原液25
0n+Qを取り純水を加えて]−Qとし、第1表に示す
容量の硫酸アンモニウムを固体のまま添加し完全に溶解
させた。次いで、後に示す方法によって製した種晶スラ
リー1mflを添加混合した後、該ビーカーをウォータ
ーバスに浸漬して液温を80℃まで上昇させ、塩基性硫
酸ジルコニウムが懸濁したスラリーを得た。
Example 1 Zirconium oxychloride crystal (ZrOCR2・8H2
0) was dissolved as pure ZrO, to give 200 gIQ, and used as a stock solution. 25 ml of stock solution in a beaker
0n+Q was taken and pure water was added to obtain ]-Q, and ammonium sulfate in the capacity shown in Table 1 was added as a solid to completely dissolve it. Next, 1 mfl of a seed crystal slurry prepared by the method described later was added and mixed, and then the beaker was immersed in a water bath to raise the liquid temperature to 80° C. to obtain a slurry in which basic zirconium sulfate was suspended.

次に、アンモニア水を撹拌しながら該スラリーを一気に
投入し中和した。中和後のスラリーのP I−Iは9.
1〜9.3であった。母液を分離した後純水で洗浄を行
い、続いてアンモニア水でリパルプし純水で洗浄濾過す
る操作を2回繰返して、硫酸根をほとんど含まない水酸
化ジルコニウムの沈殿を得た。なお、アンモニア水は何
れも濃度10%のものを各300mQ使用した。
Next, the slurry was added at once to the ammonia water while stirring to neutralize it. P I-I of the slurry after neutralization is 9.
It was 1 to 9.3. After separating the mother liquor, the product was washed with pure water, then repulped with aqueous ammonia, washed with pure water, and filtered. This procedure was repeated twice to obtain a precipitate of zirconium hydroxide containing almost no sulfate groups. Note that 300 mQ of ammonia water with a concentration of 10% was used in each case.

次に、この水酸化ジルコニウムを750 ’Cで仮焼し
、冷却後乳鉢で軽く解砕して物性の測定を行い第1−表
の結果を得た。
Next, this zirconium hydroxide was calcined at 750'C, and after cooling, it was crushed lightly in a mortar and its physical properties were measured, and the results shown in Table 1 were obtained.

第  1  表 実施例2 原液の採取量を第2表に示すZrozlll度に設定し
、硫酸アンモニラ11の添加率(SQ、/ZrO2モル
比)を0.47に固定したぽかは、実施例1と同様に操
作し、第2表に示す結果を得た。
Table 1 Example 2 The amount of sampled stock solution was set at the ZrOzllll degree shown in Table 2, and the addition rate of ammonium sulfate 11 (SQ, /ZrO2 molar ratio) was fixed at 0.47. The same operation was performed to obtain the results shown in Table 2.

第  2  表 実施例3 ZrO,、濃度E+Og/l、硫酸アンモニウム添加率
0.47に固定し、昇温中に撹拌機で第3表に示すレベ
ルの流動を行わせたほかは、実施例」−と同様に操作し
、第3表に示す結果を得た。
Table 2 Example 3 ZrO, concentration E + Og/l, ammonium sulfate addition rate was fixed at 0.47, and a stirrer was used to flow at the level shown in Table 3 during temperature rise. The results shown in Table 3 were obtained by operating in the same manner as above.

第  3  表 実施例4 硫酸アンモニウムを含有するオキシ塩化ジルコニウム溶
液に第4表に示す量の塩酸を添加し、硫酸アンモニウム
の添加率を0.46に固定したはかは実施例1と同様に
操作し第4表に示す結果を得た。また「ふりかけ法」に
よってSEM像を観察した結果は第1図、第2図に示す
とおりで、第1−図は塩酸の添加がない場合であり、第
2図はジルコニア1モル当り0.3モルの塩酸を添加し
た場合である。第1図、第2図の比較より明らかなごと
く塩酸を添加することによって分散性の向上することが
分かる。
Table 3 Example 4 Hydrochloric acid in the amount shown in Table 4 was added to a zirconium oxychloride solution containing ammonium sulfate, and the addition rate of ammonium sulfate was fixed at 0.46. The results shown in Table 4 were obtained. In addition, the results of observing SEM images using the "furikake method" are as shown in Figures 1 and 2. Figure 1 shows the case without the addition of hydrochloric acid, and Figure 2 shows 0.3% per mole of zirconia. This is the case when mol of hydrochloric acid is added. As is clear from the comparison between FIG. 1 and FIG. 2, it can be seen that the dispersibility is improved by adding hydrochloric acid.

第  4  表 以−I−の実験において使用した種晶スラリーは、次の
方法で調整した。ZrO2換算濃度50 gIQのオキ
シ塩化ジルコニウ11溶液に硫酸アンモニウムをジルコ
ニアコ−モル当り0.46モルの割合で固体のまま添加
し、完全に溶解させた。次にこの水溶液をウォーターバ
スで加熱して80〜85℃に」−時間保持した。
The seed crystal slurry used in the experiments shown in Table 4-I was prepared by the following method. Ammonium sulfate was added as a solid to a solution of zirconium oxychloride 11 having a ZrO2 equivalent concentration of 50 gIQ at a ratio of 0.46 mol per co-mol of zirconia, and completely dissolved. The aqueous solution was then heated in a water bath and maintained at 80-85° C. for a period of 100-200 hrs.

〔発明の効果〕〔Effect of the invention〕

以」−詳述した本発明の方法によれば、粒径が小さくか
つ粒度分布がシャープであり、かさ密度が小さく、分散
性が優れたファインセラミックス用ジルコニア微粉を容
易に得ることができる。
According to the method of the present invention described in detail, it is possible to easily obtain fine zirconia powder for fine ceramics, which has a small particle size, a sharp particle size distribution, a low bulk density, and excellent dispersibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1−図、第2図は、塩基性硫酸ジルコニウムを析出す
る際に共存させる塩酸の量によって、得られるジルコニ
ア微粉の分散性が異なることを示す250倍SEM像で
あり、第1図は塩酸の添加量なしの場合、第2図はジル
コニア1モル当り0.3モルの塩酸添加の場合である。
Figures 1 and 2 are 250x SEM images showing that the dispersibility of the resulting zirconia fine powder varies depending on the amount of hydrochloric acid present when precipitating basic zirconium sulfate. Figure 2 shows the case where 0.3 mol of hydrochloric acid is added per 1 mol of zirconia.

Claims (3)

【特許請求の範囲】[Claims] (1)水溶性ジルコニウム化合物を水に溶解し該溶液に
硫酸アンモニウムを添加した水溶液を調製する段階と、
前記水溶液を加熱して塩基性硫酸ジルコニウムの沈殿が
懸濁したスラリーを得る段階と、前記スラリーをアルカ
リ性物質で処理した後水酸化ジルコニウムを分離する段
階と、前記水酸化ジルコニウムを仮焼する段階と、を有
して成るジルコニア粉の製造方法において、前記水溶液
中のジルコニウムの濃度がZrO_2として40〜70
g/l、硫酸アンモニウム濃度がSO_4としてジルコ
ニア1モル当り0.45〜0.55モルとなるように調
整する段階と、前記水溶液を加熱して得たスラリーをア
ンモニアによつて急速に中和し濾過洗浄した後アンモニ
ア水で処理して塩基性硫酸ジルコニウムから硫酸根を完
全に脱離して水酸化ジルコニウムに変化させる段階と、
を有することを特徴とするジルコニア微粉の製造方法。
(1) preparing an aqueous solution by dissolving a water-soluble zirconium compound in water and adding ammonium sulfate to the solution;
heating the aqueous solution to obtain a slurry in which precipitates of basic zirconium sulfate are suspended; treating the slurry with an alkaline substance and then separating zirconium hydroxide; and calcining the zirconium hydroxide. In the method for producing zirconia powder, the concentration of zirconium in the aqueous solution is 40 to 70 as ZrO_2.
g/l, the ammonium sulfate concentration is adjusted to 0.45 to 0.55 mole per mole of zirconia as SO_4, and the slurry obtained by heating the aqueous solution is rapidly neutralized with ammonia and filtered. After washing, the basic zirconium sulfate is treated with aqueous ammonia to completely remove the sulfate radicals and convert it into zirconium hydroxide;
A method for producing zirconia fine powder, characterized by having the following.
(2)前記水溶液を非流動下において加熱して塩基性硫
酸ジルコニウムを析出させる段階を有する請求項1記載
のジルコニア微粉の製造方法。
The method for producing zirconia fine powder according to claim 1, further comprising the step of: (2) heating the aqueous solution in a non-flowing state to precipitate basic zirconium sulfate.
(3)前記水溶液に更に塩酸を添加した後、非流動下に
おいて加熱して塩基性硫酸ジルコニウムを析出させる段
階を有する請求項1記載のジルコニア微粉の製造方法。
3. The method for producing zirconia fine powder according to claim 1, further comprising the step of adding hydrochloric acid to the aqueous solution and then heating it in a non-flowing state to precipitate basic zirconium sulfate.
JP9894188A 1988-04-21 1988-04-21 Production of zirconia fine powder Granted JPH01270515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9894188A JPH01270515A (en) 1988-04-21 1988-04-21 Production of zirconia fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9894188A JPH01270515A (en) 1988-04-21 1988-04-21 Production of zirconia fine powder

Publications (2)

Publication Number Publication Date
JPH01270515A true JPH01270515A (en) 1989-10-27
JPH0458413B2 JPH0458413B2 (en) 1992-09-17

Family

ID=14233140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9894188A Granted JPH01270515A (en) 1988-04-21 1988-04-21 Production of zirconia fine powder

Country Status (1)

Country Link
JP (1) JPH01270515A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5470550A (en) * 1993-12-30 1995-11-28 Westinghouse Electric Corporation Zirconium sulfate precipitation
KR20170030533A (en) 2014-07-14 2017-03-17 스미토모 오사카 세멘토 가부시키가이샤 Zirconium oxide, zirconium oxide dispersion liquid, zirconium oxide-containing composition, coating film and display device
US10010868B2 (en) 2013-06-04 2018-07-03 Nippon Denko Co., Ltd. Ceria-zirconia-based composite oxide and method of production of the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5470550A (en) * 1993-12-30 1995-11-28 Westinghouse Electric Corporation Zirconium sulfate precipitation
US10010868B2 (en) 2013-06-04 2018-07-03 Nippon Denko Co., Ltd. Ceria-zirconia-based composite oxide and method of production of the same
KR20170030533A (en) 2014-07-14 2017-03-17 스미토모 오사카 세멘토 가부시키가이샤 Zirconium oxide, zirconium oxide dispersion liquid, zirconium oxide-containing composition, coating film and display device

Also Published As

Publication number Publication date
JPH0458413B2 (en) 1992-09-17

Similar Documents

Publication Publication Date Title
DE3633309C2 (en) Composition based on zirconia and process for its manufacture
JP2001525786A (en) Seeding treatment of aragonite calcium carbonate and its products
CN112357955B (en) Method for preparing titanium dioxide powder with different morphologies by solid phase method
JPS61201623A (en) Production of spherical flocculated particle of zirconia ultrafine crystal
CA1129179A (en) Titanium dioxide hydrate of a particular structure and process of manufacture thereof
JPS59111922A (en) Production of fine powder of zirconium oxide
JPH01270515A (en) Production of zirconia fine powder
US3434853A (en) Titanium dioxide granules and their use in a molten glass batch
JPH0624977B2 (en) Needle-shaped titanium dioxide and method for producing the same
JPH06305726A (en) Production of powdery oxide of rare earth element
US3267041A (en) Preparation of ferric oxide sols and sol particles
US6203774B1 (en) Method for producing iron oxide powder using a particle size and shape controller
CN106006701B (en) A kind of preparation method of micrometer-submicrometer grade RE oxide powder
SE445209B (en) PIGMENT OF SYNTHETIC ROMBOID MAGNETIT
KR102124124B1 (en) Method for producing plate-like Alumina with excellent aspect ratio
JPH04280815A (en) Fine particulate alkali titanate and its production
US4073877A (en) Manufacture of titanium dioxide pigment seed from a titanium sulfate solution
JP3427211B2 (en) Method for producing zirconium chloride aqueous solution
JPS58213633A (en) Production of aluminum oxide
JPS60215527A (en) Production of zirconium oxide fine powder
JP6858042B2 (en) Manufacturing method of spherical large particle titanium dioxide
JPS61132519A (en) Production of bismuth oxide fine powder
JPS6036330A (en) Preparation of fine powder of high-purity zirconium oxide
JPH06183739A (en) Production of zirconium oxide fine powder low in tap density
Gao et al. Influence of some parameters on the synthesis of ZrO2 nanoparticles by heating of alcohol–aqueous salt solutions

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 16