JP2004344878A - Zirconium group oxide catalyst and its production method - Google Patents

Zirconium group oxide catalyst and its production method Download PDF

Info

Publication number
JP2004344878A
JP2004344878A JP2004129717A JP2004129717A JP2004344878A JP 2004344878 A JP2004344878 A JP 2004344878A JP 2004129717 A JP2004129717 A JP 2004129717A JP 2004129717 A JP2004129717 A JP 2004129717A JP 2004344878 A JP2004344878 A JP 2004344878A
Authority
JP
Japan
Prior art keywords
zirconium
oxide catalyst
based oxide
producing
catalyst according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004129717A
Other languages
Japanese (ja)
Other versions
JP4359531B2 (en
Inventor
Yasuhide Takao
保秀 高尾
Colin John Norman
ジョン ノーマン コリン
Ian Colin Chisem
コリン チザム イアン
Gavin Edwards
エドワーズ ギャビン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIKKEI MERU KK
Original Assignee
NIKKEI MERU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIKKEI MERU KK filed Critical NIKKEI MERU KK
Priority to JP2004129717A priority Critical patent/JP4359531B2/en
Publication of JP2004344878A publication Critical patent/JP2004344878A/en
Application granted granted Critical
Publication of JP4359531B2 publication Critical patent/JP4359531B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a production method for industrially mass-producing a zirconium group oxide catalyst with good catalytic properties, especially excellent in heat stability, which does not substantially include a sulfuric acid radical. <P>SOLUTION: The production method comprises: a step of producing sulfuric acidic zirconium hydroxide by adding alkali in an aqueous solution of a zirconium salt containing sulfate ions; a step of converting the sulfuric acidic zirconium hydroxide into zirconium hydroxide by further adding alkali with stirring in the aqueous solution so that the pH value is increased up to approximately 13; and a step of firing the zirconium hydroxide so as to form the zirconium group oxide which does not substantially include the sulfuric acid radical (SO<SB>4</SB><SP>2-</SP>). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、従来法に比べて改良された特性を有するジルコニウム基酸化物触媒及びその製造方法に関する。特に、触媒分野で必要なより高い熱安定性を有するジルコニウム基酸化物触媒及びその製造方法に関する。   The present invention relates to a zirconium-based oxide catalyst having improved properties as compared with a conventional method and a method for producing the same. In particular, the present invention relates to a zirconium-based oxide catalyst having higher thermal stability required in the field of catalyst and a method for producing the same.

特開平8−34614号公報JP-A-8-34614

ジルコニウム基酸化物触媒は自動車の排ガス浄化等の用途に応用されている。ジルコニウム基酸化物は、通常、ジルコニウム塩水溶液にアルカリを添加するか又はその逆に、アルカリ水溶液にジルコニウム塩水溶液を添加する操作によって、生成する沈殿物から製造される。しかし、この既知の方法は、たびたび、ゲル状の沈殿物を作り出す。そして、その沈殿物は、その母液からも存在する多種の対イオンからも切り離すことが難しく、工業的規模で生産されたジルコニウム基酸化物には、SO4やCl等の酸根及びアルカリが不純物として残留し易い。更に、これらの沈殿物は、乾燥、焼成の間に、固く凝集し、使用に適する粉末まで粉砕することが難しくなる。 Zirconium-based oxide catalysts are applied to applications such as exhaust gas purification of automobiles. The zirconium-based oxide is usually produced from a precipitate formed by adding an alkali to an aqueous solution of a zirconium salt or, conversely, adding an aqueous solution of a zirconium salt to an aqueous alkali solution. However, this known method often produces a gel-like precipitate. It is difficult to separate the precipitate from the mother liquor and the various counter ions present, and zirconium-based oxides produced on an industrial scale include acid radicals such as SO 4 and Cl and alkali as impurities. Easy to remain. In addition, these precipitates agglomerate during drying and baking, making it difficult to grind them into powders suitable for use.

特許文献1には、組成変動のない易焼結性の高純度イットリウム含有ジルコニア粉体の製造方法に関し、ジルコニウム溶液に過酸化水素水、イットリウム溶液を順次加えた後、沈殿を生成させることなく硫酸アンモニウム溶液を添加し、この混合溶液にアンモニア水を滴下して水酸化物を共沈させる、易焼結性の高純度イットリウム含有ジルコニア粉末の製造方法が開示されている。ここで過酸化水素はZr4+のマスキング剤として用いられ、pH値がおよそ4の近傍で共沈物を得ている。アルカリとしてアンモニア水を用いたのは、過酸化水素をマスキング剤として用いるこの製造方法の場合、苛性ソーダや苛性カリを用いるとNa、Kが残存し、焼結特性を阻害するためであった。 Patent Literature 1 relates to a method for producing a high-purity yttrium-containing zirconia powder that is easy to sinter without changing the composition. After sequentially adding a hydrogen peroxide solution and a yttrium solution to a zirconium solution, ammonium sulfate is formed without generating a precipitate. There is disclosed a method for producing an easily sinterable high-purity yttrium-containing zirconia powder, in which a solution is added and aqueous ammonia is dropped into the mixed solution to coprecipitate a hydroxide. Here, hydrogen peroxide is used as a Zr 4+ masking agent, and a co-precipitate is obtained at a pH value of about 4. The reason that ammonia water was used as the alkali was that in the case of this production method using hydrogen peroxide as a masking agent, if caustic soda or potassium hydroxide was used, Na and K would remain, impairing the sintering characteristics.

しかしながら、特許文献1に開示された方法では、pHの低い酸性側条件で過酸化水素を添加しているため、異臭が発生し、作業環境上好ましくない。沈殿させるに際してアンモニアを使用していることから、pHは10.5程度と充分には上がらない為、イットリウム含有ジルコニア粉末を得るに際して、多量の硫酸根(SO4 2-)を含むイットリウム・ジルコニウム共沈物を焼成することとなり、炉を痛め易いというという問題点を有していた。 However, in the method disclosed in Patent Document 1, since hydrogen peroxide is added under acidic conditions with a low pH, an unpleasant odor is generated, which is not preferable in a working environment. Since ammonia is used for precipitation, the pH does not rise sufficiently to about 10.5, so that when obtaining yttrium-containing zirconia powder, yttrium / zirconium containing a large amount of sulfate (SO 4 2- ) is used. There was a problem that the sediment was fired and the furnace was easily damaged.

そこで、本発明は、上記従来技術の問題点を解決するためになされたものであり、その目的とするところは、硫酸根を実質的に含まず、良好な触媒特性、特に優れた熱安定性を有するジルコニウム基酸化物触媒の、工業的に量産することのできる製造方法を提供することにある。   Therefore, the present invention has been made in order to solve the above-mentioned problems of the prior art, and it is an object of the present invention to substantially contain a sulfate group and have good catalytic properties, particularly excellent thermal stability. It is an object of the present invention to provide a method for industrially mass-producing a zirconium-based oxide catalyst having:

本発明者らは、上記目的を達成するために種々の試験研究を重ねた結果、硫酸イオンを含むジルコニウム塩水溶液中にアルカリを添加して硫酸性ジルコニウム水酸化物を沈殿物として生成せしめ、更に、アルカリを、撹拌下で添加し、そのpH値がおよそ13になるまで上げて、上記硫酸性ジルコニウム水酸化物をジルコニウム水酸化物に変化せしめ、前記ジルコニウム水酸化物を焼成することによって、硫酸根を実質的に含まず、良好な触媒特性、特に優れた熱安定性を有するジルコニウム基酸化物触媒が得られることを見出し、本発明をなすに至った。   The present inventors have conducted various tests and studies in order to achieve the above object, and as a result, added an alkali to a zirconium salt aqueous solution containing a sulfate ion to form a sulfated zirconium hydroxide as a precipitate. , An alkali is added under stirring, the pH value is raised to about 13, the sulfated zirconium hydroxide is changed into zirconium hydroxide, and the zirconium hydroxide is calcined to obtain sulfuric acid. The present inventors have found that a zirconium-based oxide catalyst having substantially no root and having good catalytic properties, particularly excellent thermal stability, can be obtained, and the present invention has been accomplished.

すなわち、本発明の、ジルコニウム基酸化物触媒の製造方法は、硫酸イオンを含むジルコニウム塩水溶液中にアルカリを添加して硫酸性ジルコニウム水酸化物を沈殿物として生成せしめ、更に、アルカリを、撹拌下で添加し、そのpH値がおよそ13になるまで上げて、上記硫酸性ジルコニウム水酸化物をジルコニウム水酸化物に変化せしめ、前記ジルコニウム水酸化物を焼成して、実質的に硫酸根(SO4 2-)を含まないジルコニウム基酸化物を形成せしめることを特徴とする。 That is, in the method for producing a zirconium-based oxide catalyst of the present invention, an alkali is added to an aqueous solution of a zirconium salt containing sulfate ions to form a sulfated zirconium hydroxide as a precipitate, and the alkali is further stirred under stirring. And the pH value is raised to about 13 to convert the sulfated zirconium hydroxide to zirconium hydroxide, and calcinate the zirconium hydroxide to substantially form sulfate (SO 4 It is characterized in that a zirconium-based oxide containing no 2- ) is formed.

上記ジルコニウム塩水溶液中には、ジルコニウム陽イオンの1モルにつき0.3-1.5モルの硫酸イオン(SO4 2-)を含有することが好ましく、ジルコニウム陽イオンの1モルにつき約0.45-1.25モルの硫酸イオンを含有することがより好ましい。SO4 2-/Zr4+のモル比の値が小さいとゲル化し易くなり、大きいと生成する粒子が大きくなりやすい。制御された量の硫酸イオンの存在のもとに、アルカリを添加することによって、ジルコニウム塩水溶液からジルコニウム水酸化物を沈殿せしめるに際して、望ましくないゲル状沈殿の生成を回避することができ、生産性を向上させることができ、小粒子径のジルコニウム基酸化物を形成せしめ、良好なジルコニウム基酸化物触媒とすることができる。 The zirconium salt aqueous solution preferably contains 0.3-1.5 mol of sulfate ion (SO 4 2- ) per mol of zirconium cation, and about 0.45-1.25 mol of sulfate ion per mol of zirconium cation. It is more preferable to contain When the value of the molar ratio of SO 4 2− / Zr 4+ is small, the gelation is apt to occur, and when the molar ratio is large, the generated particles tend to be large. By adding alkali in the presence of a controlled amount of sulfate ions, it is possible to avoid the formation of undesirable gel precipitates when precipitating zirconium hydroxide from aqueous zirconium salt solutions, Can be improved, and a zirconium-based oxide having a small particle diameter can be formed, and a favorable zirconium-based oxide catalyst can be obtained.

触媒の分野では、その触媒反応のために必要とされるジルコニウム基酸化物触媒の特性に加えて、その特性が、使用の間、変化しないことが重要である。使用の間の劣化の主要な原因は、高温での比表面積低下である。そのような劣化に対する安定性は、更には本発明として開示される、ジルコニウム基酸化物触媒の製造方法を通して達成され、下記のドーパントの使用により、更に改善される。   In the field of catalysts, it is important that, in addition to the properties of the zirconium-based oxide catalyst required for its catalytic reaction, its properties do not change during use. A major cause of degradation during use is a decrease in specific surface area at elevated temperatures. Such degradation stability is further achieved through the process disclosed in the present invention for producing a zirconium-based oxide catalyst, which is further improved by using the following dopants.

上記硫酸性ジルコニウム水酸化物を、pH値がおよそ2に到達するまでに、沈殿物として生成せしめることが好ましく、pH値がおよそ1.5に到達するまでに、沈殿物として生成せしめることがより好ましい。ジルコニウム塩水溶液中にアルカリを添加する際は、そのpH値がおよそ8になるまで徐々に上げて上記硫酸性ジルコニウム水酸化物をジルコニウム水酸化物に変化せしめ、更にアルカリを撹拌下で添加し、そのpH値がおよそ13になるまで上げ、得られるジルコニウム水酸化物を水洗することが好ましい。   The sulfated zirconium hydroxide is preferably formed as a precipitate until the pH value reaches about 2, and more preferably as a precipitate until the pH value reaches about 1.5. When adding an alkali to the aqueous solution of zirconium salt, the pH is gradually increased until the pH becomes about 8, thereby converting the sulfated zirconium hydroxide to zirconium hydroxide, and further adding the alkali under stirring, It is preferable to raise the pH value to about 13, and wash the resulting zirconium hydroxide with water.

50℃以下の温度にて、硫酸イオンを含むジルコニウム塩水溶液中にアルカリを添加してジルコニウム水酸化物を形成し、沈殿せしめることが好ましい。沈殿温度を制御することで、得られるジルコニウム基酸化物触媒の粒子特性を望ましい方向に改善することができる。   At a temperature of 50 ° C. or less, it is preferable to add an alkali to an aqueous solution of a zirconium salt containing a sulfate ion to form a zirconium hydroxide and precipitate it. By controlling the precipitation temperature, the particle properties of the resulting zirconium-based oxide catalyst can be improved in a desirable direction.

本発明のジルコニウム基酸化物触媒の製造方法において、ジルコニウム塩水溶液中に添加されるアルカリとしては、そのpH値がおよそ13にすることができれば、種々のアルカリを用いることができる。ただし、例えば、アンモニアのみを添加アルカリとして用いた場合、通常はpHが10.5程度に止まり、そのpH値がおよそ13になるまで上げることができないので除かれる。添加するアルカリは水酸化ナトリウム又は水酸化カリウムであることが好ましく、特に水酸化ナトリウムであることが好ましい。   In the method for producing a zirconium-based oxide catalyst of the present invention, various alkalis can be used as the alkali added to the zirconium salt aqueous solution as long as the pH value can be adjusted to about 13. However, for example, when only ammonia is used as the added alkali, the pH usually stops at about 10.5 and cannot be increased until the pH value becomes about 13, so that it is excluded. The alkali to be added is preferably sodium hydroxide or potassium hydroxide, particularly preferably sodium hydroxide.

ジルコニウム水酸化物には、最初のジルコニウム塩水溶液に他の金属塩を添加することによって、一つ又はそれ以上の他の金属をドープすることが好ましい。これにより、ジルコニウム基複合酸化物触媒を製造することができる。前記ジルコニウム塩水溶液は、アルカリ土類元素、ランタノイド元素、希土類元素、第一遷移金属元素、珪素、アルミニウム、イットリウム、ランタン、錫、及び鉛、並びにこれらの混合物からなる群から選択された金属塩を含むことが好ましい。   The zirconium hydroxide is preferably doped with one or more other metals by adding another metal salt to the initial aqueous zirconium salt solution. Thus, a zirconium-based composite oxide catalyst can be produced. The zirconium salt aqueous solution is an alkaline earth element, a lanthanoid element, a rare earth element, a first transition metal element, silicon, aluminum, yttrium, lanthanum, tin, and lead, and a metal salt selected from the group consisting of mixtures thereof. It is preferred to include.

上記金属塩は、ジルコニウムが固溶体や複合酸化物を形成するためのドーパントとして機能する。ドーパントの機能としては、「安定化させる」、「促進する」として説明される。   The metal salt functions as a dopant for zirconium to form a solid solution or a composite oxide. The function of the dopant is described as "stabilizing" or "promoting".

前記ジルコニウム塩水溶液は、ネオジム塩を含むことが好ましく、これにより、硫酸根を実質的に含まず、良好な触媒特性、熱安定性を有するジルコニウム−ネオジム複合酸化物触媒を得ることができる。   The aqueous zirconium salt solution preferably contains a neodymium salt, whereby a zirconium-neodymium composite oxide catalyst substantially free of sulfate groups and having good catalytic properties and thermal stability can be obtained.

前記ジルコニウム塩水溶液は、そこに含まれる他のいかなる成分とも反応しない塩を含むことが好ましく、そこに含まれる他のいかなる成分とも反応しない塩として塩化ナトリウムを含むことが好ましい。   The aqueous solution of zirconium salt preferably contains a salt that does not react with any other components contained therein, and preferably contains sodium chloride as a salt that does not react with any other components contained therein.

塩化ナトリウムなどの、反応して沈殿物を形成しない他の塩の初期の混合物への添加は、反応している溶液の中でイオン強度の改質剤の役をすることによって最終的な粉体特性の改良を促すことができる。そのような塩は、その金属塩の溶解度まで添加することができる。   The addition of other salts that do not react to form a precipitate, such as sodium chloride, to the initial mixture can result in the final powder by acting as an ionic strength modifier in the reacting solution. Improvement of characteristics can be promoted. Such salts can be added up to the solubility of the metal salt.

前記ジルコニウム塩水溶液中の最初の金属元素濃度が低いと本発明の製造方法で得られる最終的なジルコニウム基酸化物触媒の粒子径は大きく、BET比表面積の値は小さくなってしまう。濃度が高すぎても、沈殿後のスラリー粘度が増大して取り扱いが難しい。前記ジルコニウム塩水溶液中の最初の金属元素濃度は、酸化物換算で5質量%以上であることが好ましく、10〜20質量%であることがより好ましく、約15質量%であることが特に好ましい。   If the initial metal element concentration in the zirconium salt aqueous solution is low, the final zirconium-based oxide catalyst obtained by the production method of the present invention has a large particle diameter and a small BET specific surface area. If the concentration is too high, the viscosity of the slurry after precipitation increases, making it difficult to handle. The initial metal element concentration in the zirconium salt aqueous solution is preferably 5% by mass or more, more preferably 10 to 20% by mass, and particularly preferably about 15% by mass in terms of oxide.

本発明の製造方法で得られる最終的なジルコニウム基酸化物触媒の粒子径を小さくし、粉体特性を更に最適化するためには、アルカリを添加する直前の前記ジルコニウム塩水溶液の温度は低い方が好ましい。直前の前記ジルコニウム塩水溶液の温度は、50℃以下が好ましく、特に触媒製造のために好ましくは15℃未満がより好ましく、そして、5℃より低いことが特に好ましい。   In order to reduce the particle size of the final zirconium-based oxide catalyst obtained by the production method of the present invention and to further optimize the powder characteristics, the temperature of the aqueous solution of the zirconium salt immediately before adding the alkali is preferably lower. Is preferred. The temperature of the aqueous zirconium salt solution immediately before is preferably 50 ° C. or lower, more preferably less than 15 ° C., particularly preferably for catalyst production, and particularly preferably lower than 5 ° C.

本発明の製造方法で得られる最終的なジルコニウム基酸化物触媒の粉体特性を特に最適化するためには、前記ジルコニウム塩水溶液中の、SO4 2-/Zr4+のイオンの比はおよそ0.3/1〜1.5/1であることが好ましく、0.45/1〜1.25/1であることがより好ましい。 In order to particularly optimize the powder properties of the final zirconium-based oxide catalyst obtained by the production method of the present invention, the ratio of SO 4 2− / Zr 4+ ions in the aqueous zirconium salt solution is about It is preferably from 0.3 / 1 to 1.5 / 1, and more preferably from 0.45 / 1 to 1.25 / 1.

アルカリの濃度及びアルカリの添加速度は、反応混合液を攪拌した状態で、系の均一性が保たれるように、即ちアルカリの添加による系のpHの上昇がスムースに進むように制御される。   The concentration of the alkali and the rate of addition of the alkali are controlled so that the uniformity of the system is maintained while the reaction mixture is stirred, that is, the pH of the system is smoothly increased by the addition of the alkali.

これらの制御によって、ジルコニウム塩は、中間の硫酸性ジルコニウム水酸化物を経由して、望ましくないゲル沈殿物の形成なしに、そのジルコニウム水酸化物に変化することができる。   With these controls, the zirconium salt can be converted to the zirconium hydroxide via an intermediate sulfated zirconium hydroxide without the formation of undesirable gel precipitates.

沈殿反応中、又は、沈殿反応の終了時に、過酸化水素を添加することが好ましく、過酸化水素を添加する時のpH値は11.5以上が好ましく、およそ13であることがより好ましい。本発明の製造方法の沈殿物生成過程の最後の部分で過酸化水素を追加的に添加すると、その時点の溶液で一般的なpH(一般にだいたい13である)で形成される金属水酸化物に対して、硫酸イオンよりもより良い配位子として作用することによって、硫酸根(SO4 2-)除去が促進される。 It is preferable to add hydrogen peroxide during the precipitation reaction or at the end of the precipitation reaction, and the pH value when adding hydrogen peroxide is preferably 11.5 or more, and more preferably about 13. The additional addition of hydrogen peroxide in the last part of the precipitation process of the process of the present invention results in the formation of a metal hydroxide at the prevailing pH (generally about 13) in the solution at that time. In contrast, by acting as a better ligand than sulfate ions, sulfate (SO 4 2− ) removal is promoted.

沈殿物生成の後、最終的な酸化物を作り出すための工程として、洗浄、乾燥、水熱処理、及び焼成と粉砕処理を、それぞれ個々に、または組合せて、追加することができる。本発明のジルコニウム基酸化物触媒の製造方法には、追加の水熱処理を含むことが好ましい。   After precipitation, washing, drying, hydrothermal treatment, and calcination and milling can be added individually or in combination as steps to create the final oxide. The method for producing a zirconium-based oxide catalyst of the present invention preferably includes an additional hydrothermal treatment.

前記ジルコニウム水酸化物を焼成する前に、前記ジルコニウム水酸化物を乾燥する工程を含むことが好ましく、前記ジルコニウム水酸化物をスプレー乾燥する工程を含むことがより好ましい。   Before firing the zirconium hydroxide, the method preferably includes a step of drying the zirconium hydroxide, and more preferably includes a step of spray-drying the zirconium hydroxide.

最終的に形成されるジルコニウム基酸化物触媒は、自動車触媒用途等の高温環境下での触媒特性の熱安定性を確保するため、1,000℃での加熱の後の比表面積が40m2/g以上であり、1,100℃での加熱の後の比表面積が10m2/g以上であることが好ましい。 The zirconium-based oxide catalyst finally formed has a specific surface area of at least 40 m 2 / g after heating at 1,000 ° C in order to secure the thermal stability of the catalyst characteristics in a high temperature environment such as automotive catalyst applications. The specific surface area after heating at 1,100 ° C. is preferably 10 m 2 / g or more.

最終的に形成されるジルコニウム基酸化物触媒が、30〜100質量%のジルコニアを含むことが好ましい。   It is preferable that the finally formed zirconium-based oxide catalyst contains 30 to 100% by mass of zirconia.

本発明の製造方法により最終的に形成されるジルコニウム基酸化物触媒中には実質的に硫酸根を含まない。「実質的に硫酸根を含まない」とは、すなわち、最終的に形成されるジルコニウム基酸化物触媒中のSO4 2-含有量は、0.1質量%以下であり、0.07質量%以下であることが好ましく、0.05質量%以下であることがより好ましい。 The zirconium-based oxide catalyst finally formed by the production method of the present invention contains substantially no sulfate group. "Substantially free of sulfate groups" means that the SO 4 2- content in the finally formed zirconium-based oxide catalyst is 0.1% by mass or less, and 0.07% by mass. Or less, and more preferably 0.05% by mass or less.

本発明のジルコニウム基酸化物触媒は、上記いずれかに記載の本発明のジルコニウム基酸化物触媒の製造方法から得られる。   The zirconium-based oxide catalyst of the present invention is obtained from any of the above-described methods for producing a zirconium-based oxide catalyst of the present invention.

本発明のジルコニウム基酸化物触媒は、ドーパントを含有することが好ましく、前記ドーパントがアルカリ土類元素、ランタノイド元素、希土類元素、第一遷移金属元素、珪素、アルミニウム、イットリウム、ランタン、錫、及び鉛、並びにこれらの混合物からなる群から選択された金属元素であることが好ましい。   The zirconium-based oxide catalyst of the present invention preferably contains a dopant, wherein the dopant is an alkaline earth element, a lanthanoid element, a rare earth element, a first transition metal element, silicon, aluminum, yttrium, lanthanum, tin, and lead. And a metal element selected from the group consisting of these mixtures.

本発明によれば、硫酸根を実質的に含まず、良好な触媒特性、特に優れた熱安定性を有するジルコニウム基酸化物触媒及びその製造方法を提供することができる。   According to the present invention, it is possible to provide a zirconium-based oxide catalyst which does not substantially contain a sulfate group and has good catalytic properties, particularly excellent thermal stability, and a method for producing the same.

以下に、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

(実施例1)
Cl/Zrのモル比が2のオキシ塩化ジルコニウム水溶液(19.8質量%−ZrO2)51.64kg、及び硝酸ネオジム水溶液(21.2質量%−Nd23)8.38kgを混合し、2.0℃まで冷却した。別に、脱イオン水14.95kg、及び77質量%−硫酸水溶液5.03kg(SO4 2-/Zr4+= 0.48/1に相当する)を混合し、1.4℃まで冷却した。この2つの冷却された溶液を混合し、次いでこの混合液中に10質量%−NaOH水溶液を攪拌下に滴下した。pH値がおよそ1.5に到達するまでに、白色沈殿物(硫酸性ジルコニウム水酸化物)が生成した。
(Example 1)
51.64 kg of an aqueous zirconium oxychloride solution (19.8 mass% -ZrO 2 ) having a Cl / Zr molar ratio of 2 and 8.38 kg of an aqueous neodymium nitrate solution (21.2 mass% -Nd 2 O 3 ) were mixed and cooled to 2.0 ° C. Separately, 14.95 kg of deionized water and 5.03 kg of a 77% by mass-sulfuric acid aqueous solution (corresponding to SO 4 2− / Zr 4+ = 0.48 / 1) were mixed and cooled to 1.4 ° C. The two cooled solutions were mixed, and then a 10% by weight aqueous solution of NaOH was added dropwise to the mixture with stirring. By the time the pH reached approximately 1.5, a white precipitate (sulphate zirconium hydroxide) had formed.

次に、引き続き攪拌を継続しながら、また、反応系の温度を40℃以下に維持しながら、10質量%−NaOH水溶液を滴下して、pH値が約8になるまで徐々に上げた。攪拌を継続しながら、この時点で10質量%−NaOH水溶液を28質量%−NaOH水溶液に代えて、pH値が約13になるまで滴下した。pH値が約13に到達した後、攪拌を更に1時間継続した。   Next, while continuously stirring and maintaining the temperature of the reaction system at 40 ° C. or lower, a 10% by mass-NaOH aqueous solution was added dropwise to gradually raise the pH value to about 8. At this point, the aqueous solution of 10% by mass-NaOH was replaced with a 28% by mass-NaOH aqueous solution while stirring was continued, and the mixture was added dropwise until the pH value reached about 13. After the pH reached about 13, stirring was continued for another hour.

このようにして得られた沈殿物を濾過・洗浄し、ジルコニウム−ネオジム複合水酸化物の洗浄ケーキを得た。   The precipitate thus obtained was filtered and washed to obtain a washed cake of a zirconium-neodymium composite hydroxide.

得られた洗浄ケーキを乾燥し、次いで850℃で2時間焼成し、その後室温まで放冷して、粉体状のジルコニウム−ネオジム複合酸化物触媒12kgを得た。分析の結果、得られたジルコニウム−ネオジム複合酸化物触媒のSO4 2-は0.01質量%未満であった。 The obtained washed cake was dried, calcined at 850 ° C. for 2 hours, and then allowed to cool to room temperature to obtain 12 kg of a powdery zirconium-neodymium composite oxide catalyst. As a result of analysis, the obtained zirconium-neodymium composite oxide catalyst had an SO 4 2− content of less than 0.01% by mass.

また、得られたジルコニウム−ネオジム複合酸化物触媒の熱安定性を調べるため、850℃、2時間焼成品をそれぞれ1000℃、2時間、及び1100℃、2時間、加熱処理した後、BET比表面積(JISR1626)を測定した。結果は、それぞれ54m2/g、及び21m2/gであった。 Further, in order to examine the thermal stability of the obtained zirconium-neodymium composite oxide catalyst, the calcined product at 850 ° C. for 2 hours was subjected to heat treatment at 1000 ° C., 2 hours, and 1100 ° C. for 2 hours, respectively. (JISR1626) was measured. The results were respectively 54m 2 / g, and 21m 2 / g.

(変更例1)
脱イオン水17.88kg、及び77質量%−硫酸水溶液2.10kg(SO4 2-/Zr4+= 0.20/1に相当する)を混合し、オキシ塩化ジルコニウム水溶液及び硝酸ネオジム水溶液の混合水溶液に混合した以外は、実施例1と同様にして、ジルコニウム−ネオジム複合酸化物粉体の製造を試みた。結果は、生成した沈殿物がゲル状になり、濾過及び洗浄が困難であった。得られた複合酸化物中には遊離の単斜晶相が含まれ、均一な正方晶相とはならなかった。
(Modification 1)
17.88 kg of deionized water and 2.10 kg of a 77 mass% sulfuric acid aqueous solution (corresponding to SO 4 2− / Zr 4+ = 0.20 / 1) were mixed and mixed with a mixed aqueous solution of a zirconium oxychloride aqueous solution and a neodymium nitrate aqueous solution. Except for the above, an attempt was made to produce a zirconium-neodymium composite oxide powder in the same manner as in Example 1. As a result, the formed precipitate became gel-like, and it was difficult to filter and wash. The obtained composite oxide contained a free monoclinic phase and did not become a uniform tetragonal phase.

得られたジルコニウム−ネオジム複合酸化物触媒の熱安定性を調べるため、850℃、2時間焼成品をそれぞれ1000℃、2時間、及び1100℃、2時間、加熱処理した後、BET比表面積(JISR1626)を測定した。結果は、それぞれ32m2/g、及び7.7m2/gであった。 In order to examine the thermal stability of the obtained zirconium-neodymium composite oxide catalyst, the calcined product at 850 ° C. for 2 hours was heat-treated at 1000 ° C., 2 hours, and 1100 ° C. for 2 hours, respectively, and then subjected to a BET specific surface area (JISR1626). ) Was measured. The results were respectively 32m 2 / g, and 7.7 m 2 / g.

(変更例2)
77質量%−硫酸水溶液19.98kg(SO4 2-/Zr4+= 1.90/1に相当する)を、オキシ塩化ジルコニウム水溶液及び硝酸ネオジム水溶液の混合水溶液に混合した以外は、実施例1と同様にして、ジルコニウム−ネオジム複合酸化物触媒の製造を試みた。得られた複合酸化物中には遊離の単斜晶相が含まれ、均一な正方晶相とはならなかった。
(Modification 2)
77 wt% - aqueous sulfuric acid solution 19.98kg (corresponding to SO 4 2- / Zr 4+ = 1.90 / 1), except that mixed a mixed aqueous solution of oxyzirconium chloride aqueous solution and neodymium nitrate aqueous solution, in the same manner as in Example 1 Thus, an attempt was made to produce a zirconium-neodymium composite oxide catalyst. The obtained composite oxide contained a free monoclinic phase and did not become a uniform tetragonal phase.

得られたジルコニウム−ネオジム複合酸化物触媒をそれぞれ、1000℃、2時間、及び1100℃、2時間、加熱処理した後の、BET比表面積(JISR1626)は、それぞれ、24m2/g、及び6.1m2/gと低い値を示した。 After the obtained zirconium-neodymium composite oxide catalyst was subjected to heat treatment at 1000 ° C. for 2 hours and at 1100 ° C. for 2 hours, the BET specific surface area (JISR1626) was 24 m 2 / g and 6.1 m, respectively. It showed a low value of 2 / g.

(変更例3)
オキシ塩化ジルコニウム水溶液及び硝酸ネオジム水溶液の混合水溶液を55℃まで加熱した。別に、脱イオン水及び硫酸水溶液の混合水溶液を55℃まで加熱した。これ以外は実施例1と同様にして、ジルコニウム−ネオジム複合酸化物触媒を製造した。得られたジルコニウム−ネオジム複合酸化物触媒をそれぞれ、1000℃、2時間、及び1100℃、2時間、加熱処理した後の、BET比表面積(JISR1626)は、それぞれ、31m2/g、及び4.9m2/gと低い値を示した。
(Modification 3)
A mixed aqueous solution of an aqueous zirconium oxychloride solution and an aqueous neodymium nitrate solution was heated to 55 ° C. Separately, a mixed aqueous solution of deionized water and a sulfuric acid aqueous solution was heated to 55 ° C. Otherwise in the same manner as in Example 1, a zirconium-neodymium composite oxide catalyst was produced. After the obtained zirconium-neodymium composite oxide catalyst was subjected to heat treatment at 1000 ° C. for 2 hours and at 1100 ° C. for 2 hours, the BET specific surface area (JISR1626) was 31 m 2 / g and 4.9 m, respectively. It showed a low value of 2 / g.

(比較例1)
28質量%−NaOH水溶液の滴下をpHが10に到達した時点で停止した以外は、実施例1と同様にして、ジルコニウム−ネオジム複合酸化物粉体を製造した。分析の結果、850℃、2時間焼成により得られたジルコニウム−ネオジム複合酸化物触媒のSO4 2-は6.4質量%であった。SO4 2-量が非常に高く、触媒として使用できるものではなかった。
(Comparative Example 1)
A zirconium-neodymium composite oxide powder was produced in the same manner as in Example 1, except that the dropping of the 28% by mass-NaOH aqueous solution was stopped when the pH reached 10. As a result of the analysis, SO 4 2− of the zirconium-neodymium composite oxide catalyst obtained by calcining at 850 ° C. for 2 hours was 6.4% by mass. The amount of SO 4 2− was very high and could not be used as a catalyst.

(比較例2)
脱イオン水19.98kgのみ(SO4 2-/Zr4+ = 0/1に相当する)を、オキシ塩化ジルコニウム水溶液及び硝酸イットリウム水溶液の混合液に混合した以外は、実施例1と同様にして、ジルコニウム-イットリウム複合酸化物粉体の製造を試みた。結果は、生成した沈殿物がゲル状になり、濾過および洗浄をすることができず、目的のジルコニウム−ネオジム複合酸化物を製造することができなかった。
(Comparative Example 2)
The procedure of Example 1 was repeated, except that only 19.98 kg of deionized water (corresponding to SO 4 2− / Zr 4+ = 0/1) was mixed with a mixture of an aqueous solution of zirconium oxychloride and an aqueous solution of yttrium nitrate. Production of zirconium-yttrium composite oxide powder was attempted. As a result, the formed precipitate became gel-like, could not be filtered and washed, and could not produce the desired zirconium-neodymium composite oxide.

本発明の製造方法で得られるジルコニウム基酸化物触媒において重要な粉体特性は、粒子径と粒子径分布であり、細孔径と細孔径分布であり、結晶相の均一性、結晶子径、比表面積、及び比表面積安定性である。   Important powder characteristics of the zirconium-based oxide catalyst obtained by the production method of the present invention are particle size and particle size distribution, pore size and pore size distribution, and uniformity of crystal phase, crystallite size, and ratio. Surface area, and specific surface area stability.

以上のように、本実施例で得られた本発明のジルコニウム基酸化物触媒は、比較例と比べて、濾過、洗浄性などの生産性に優れ、硫酸根(SO4 2-)レベルが極めて低く、高い比表面積安定性を示した。 As described above, the zirconium-based oxide catalyst of the present invention obtained in this example is superior in productivity such as filtration and detergency as compared with the comparative example, and has an extremely high sulfate group (SO 4 2- ) level. It showed low and high specific surface area stability.

Claims (26)

硫酸イオンを含むジルコニウム塩水溶液中にアルカリを添加して硫酸性ジルコニウム水酸化物を生成せしめ、更に、アルカリを、撹拌下で添加し、そのpH値がおよそ13になるまで上げて、上記硫酸性ジルコニウム水酸化物をジルコニウム水酸化物に変化せしめ、前記ジルコニウム水酸化物を焼成して、実質的に硫酸根(SO4 2-)を含まないジルコニウム基酸化物を形成せしめる、ジルコニウム基酸化物触媒の製造方法。 An alkali is added to an aqueous solution of a zirconium salt containing sulfate ions to form a sulfated zirconium hydroxide. Further, an alkali is added under stirring and the pH value is increased to about 13 to increase the pH of the sulfated zirconium hydroxide. A zirconium-based oxide catalyst, which converts zirconium hydroxide into zirconium hydroxide, and calcinates the zirconium hydroxide to form a zirconium-based oxide substantially free of sulfate (SO 4 2- ). Manufacturing method. 上記硫酸性ジルコニウム水酸化物を、pH値がおよそ2に到達するまでに、沈殿物として生成せしめることを特徴とする、請求項1に記載のジルコニウム基酸化物触媒の製造方法。   The method for producing a zirconium-based oxide catalyst according to claim 1, wherein the sulfated zirconium hydroxide is produced as a precipitate until the pH value reaches about 2. 50℃以下の温度にて、硫酸イオンを含むジルコニウム塩水溶液中にアルカリを添加してジルコニウム水酸化物を形成せしめる、請求項1又は2に記載のジルコニウム基酸化物触媒の製造方法。   The method for producing a zirconium-based oxide catalyst according to claim 1 or 2, wherein an alkali is added to a zirconium salt aqueous solution containing sulfate ions at a temperature of 50 ° C or lower to form a zirconium hydroxide. アルカリが水酸化ナトリウムである請求項1〜3のうちいずれか1項に記載のジルコニウム基酸化物触媒の製造方法。   The method for producing a zirconium-based oxide catalyst according to any one of claims 1 to 3, wherein the alkali is sodium hydroxide. 前記ジルコニウム塩水溶液は、アルカリ土類元素、ランタノイド元素、希土類元素、第一遷移金属元素、珪素、アルミニウム、イットリウム、ランタン、錫、及び鉛、並びにこれらの混合物からなる群から選択された金属塩を含む、請求項1〜4のうちいずれか1項に記載のジルコニウム基複合酸化物触媒の製造方法。   The zirconium salt aqueous solution is an alkaline earth element, a lanthanoid element, a rare earth element, a first transition metal element, silicon, aluminum, yttrium, lanthanum, tin, and lead, and a metal salt selected from the group consisting of mixtures thereof. The method for producing a zirconium-based composite oxide catalyst according to any one of claims 1 to 4, comprising: 前記ジルコニウム塩水溶液は、ネオジム塩を含む、請求項5に記載のジルコニウム−ネオジム複合酸化物触媒の製造方法。   The method for producing a zirconium-neodymium composite oxide catalyst according to claim 5, wherein the zirconium salt aqueous solution contains a neodymium salt. 前記ジルコニウム塩水溶液は、そこに含まれる他のいかなる成分とも反応しない塩を含む、請求項1〜6のうちいずれか1項に記載のジルコニウム基酸化物触媒の製造方法。   The method for producing a zirconium-based oxide catalyst according to any one of claims 1 to 6, wherein the aqueous zirconium salt solution contains a salt that does not react with any other components contained therein. 前記ジルコニウム塩水溶液は、そこに含まれる他のいかなる成分とも反応しない塩として塩化ナトリウムを含む、請求項7に記載のジルコニウム基酸化物触媒の製造方法。   The method for producing a zirconium-based oxide catalyst according to claim 7, wherein the zirconium salt aqueous solution contains sodium chloride as a salt that does not react with any other components contained therein. 前記ジルコニウム塩水溶液中の金属元素濃度は、酸化物換算で5質量%以上である、請求項1〜8のうちいずれか1項に記載のジルコニウム基酸化物触媒の製造方法。   The method for producing a zirconium-based oxide catalyst according to any one of claims 1 to 8, wherein a metal element concentration in the zirconium salt aqueous solution is 5% by mass or more in terms of oxide. 前記ジルコニウム塩水溶液中の金属元素濃度は、酸化物換算で10〜20質量%である、請求項9に記載のジルコニウム基酸化物触媒の製造方法。   The method for producing a zirconium-based oxide catalyst according to claim 9, wherein the metal element concentration in the zirconium salt aqueous solution is 10 to 20% by mass in terms of oxide. アルカリを添加する直前の前記ジルコニウム塩水溶液の温度は15℃より低い、請求項1〜10のうちいずれか1項に記載のジルコニウム基酸化物触媒の製造方法。   The method for producing a zirconium-based oxide catalyst according to any one of claims 1 to 10, wherein the temperature of the aqueous zirconium salt solution immediately before adding an alkali is lower than 15 ° C. アルカリを添加する直前の前記ジルコニウム塩水溶液の温度は5℃より低い、請求項11に記載のジルコニウム基酸化物触媒の製造方法。   The method for producing a zirconium-based oxide catalyst according to claim 11, wherein the temperature of the aqueous zirconium salt solution immediately before adding an alkali is lower than 5 ° C. 前記ジルコニウム塩水溶液中の、SO4 2-/Zr4+のイオンの比は0.3/1〜1.5/1である、請求項1〜12のうちいずれか1項に記載のジルコニウム基酸化物触媒の製造方法。 The zirconium-based oxide catalyst according to any one of claims 1 to 12, wherein a ratio of SO 4 2− / Zr 4+ ions in the zirconium salt aqueous solution is 0.3 / 1 to 1.5 / 1. Production method. 前記ジルコニウム塩水溶液中の、SO4 2-/Zr4+のイオンの比は0.45/1〜1.25/1である、請求項13に記載のジルコニウム基酸化物触媒の製造方法。 Wherein in the zirconium salt solution, the ratio of SO 4 2- / Zr 4+ ions is 0.45 / 1 to 1.25 / 1, the production method of the zirconium-based oxide catalyst according to claim 13. 沈殿反応中、又は、沈殿反応の終了時に、過酸化水素を添加する、請求項1〜14のうちいずれか1項に記載のジルコニウム基酸化物触媒の製造方法。   The method for producing a zirconium-based oxide catalyst according to any one of claims 1 to 14, wherein hydrogen peroxide is added during the precipitation reaction or at the end of the precipitation reaction. 過酸化水素を添加する時のpH値がおよそ13である、請求項15に記載のジルコニウム基酸化物触媒の製造方法。   The method for producing a zirconium-based oxide catalyst according to claim 15, wherein the pH value when adding hydrogen peroxide is about 13. 追加の水熱処理を含む、請求項1〜16のうちいずれか1項に記載のジルコニウム基酸化物触媒の製造方法。   The method for producing a zirconium-based oxide catalyst according to any one of claims 1 to 16, comprising an additional hydrothermal treatment. 前記ジルコニウム水酸化物を焼成する前に、前記ジルコニウム水酸化物を乾燥する工程を含む、請求項1〜17のうちいずれか1項に記載のジルコニウム基酸化物触媒の製造方法。   The method for producing a zirconium-based oxide catalyst according to any one of claims 1 to 17, comprising a step of drying the zirconium hydroxide before calcining the zirconium hydroxide. 前記ジルコニウム水酸化物を焼成する前に、前記ジルコニウム水酸化物をスプレー乾燥する工程を含む、請求項18に記載のジルコニウム基酸化物触媒の製造方法。   The method for producing a zirconium-based oxide catalyst according to claim 18, comprising a step of spray-drying the zirconium hydroxide before calcining the zirconium hydroxide. 最終的に形成されるジルコニウム基酸化物触媒は、1,000℃での加熱の後の比表面積が40m2/g以上であり、1,100℃での加熱の後の比表面積が10m2/g以上である、請求項1〜19のうちいずれか1項に記載のジルコニウム基酸化物触媒の製造方法。 The finally formed zirconium-based oxide catalyst has a specific surface area after heating at 1,000 ° C. of 40 m 2 / g or more, and a specific surface area after heating at 1,100 ° C. of 10 m 2 / g or more. The method for producing a zirconium-based oxide catalyst according to any one of claims 1 to 19. 最終的に形成されるジルコニウム基酸化物触媒が、30〜100質量%のジルコニアを含む、請求項1〜20のうちいずれか1項に記載のジルコニウム基酸化物触媒の製造方法。   The method for producing a zirconium-based oxide catalyst according to any one of claims 1 to 20, wherein the finally formed zirconium-based oxide catalyst contains 30 to 100% by mass of zirconia. 最終的に形成されるジルコニウム基酸化物触媒中のSO4 2-含有量が、0.1質量%以下である、請求項1〜21のうちいずれか1項に記載のジルコニウム基酸化物触媒の製造方法。 The zirconium-based oxide catalyst according to any one of claims 1 to 21, wherein the finally-formed zirconium-based oxide catalyst has an SO 4 2- content of 0.1% by mass or less. Production method. 最終的に形成されるジルコニウム基酸化物触媒中のSO4 2-含有量が、0.05質量%以下である、請求項22に記載のジルコニウム基酸化物触媒の製造方法。 23. The method for producing a zirconium-based oxide catalyst according to claim 22, wherein the SO 4 2- content in the finally formed zirconium-based oxide catalyst is 0.05% by mass or less. 請求項1〜23のうちいずれか1項に記載のジルコニウム基酸化物触媒の製造方法から得られるジルコニウム基酸化物触媒。   A zirconium-based oxide catalyst obtained from the method for producing a zirconium-based oxide catalyst according to any one of claims 1 to 23. 請求項24に記載のジルコニウム基酸化物触媒であって、ドーパントを含有するジルコニウム基酸化物触媒。   25. The zirconium-based oxide catalyst according to claim 24, wherein the zirconium-based oxide catalyst contains a dopant. 請求項25に記載のジルコニウム基酸化物触媒であって、前記ドーパントがアルカリ土類元素、ランタノイド元素、希土類元素、第一遷移金属元素、珪素、アルミニウム、イットリウム、ランタン、錫、及び鉛、並びにこれらの混合物からなる群から選択された金属元素であるジルコニウム基複合酸化物触媒。   26. The zirconium-based oxide catalyst of claim 25, wherein the dopant is an alkaline earth element, a lanthanoid element, a rare earth element, a first transition metal element, silicon, aluminum, yttrium, lanthanum, tin, and lead, and A zirconium-based composite oxide catalyst which is a metal element selected from the group consisting of mixtures of the following.
JP2004129717A 2003-04-30 2004-04-26 Zirconium-based oxide production method and automobile exhaust gas purification catalyst Expired - Lifetime JP4359531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004129717A JP4359531B2 (en) 2003-04-30 2004-04-26 Zirconium-based oxide production method and automobile exhaust gas purification catalyst

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003125866 2003-04-30
JP2003125867 2003-04-30
JP2004129717A JP4359531B2 (en) 2003-04-30 2004-04-26 Zirconium-based oxide production method and automobile exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2004344878A true JP2004344878A (en) 2004-12-09
JP4359531B2 JP4359531B2 (en) 2009-11-04

Family

ID=33545078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004129717A Expired - Lifetime JP4359531B2 (en) 2003-04-30 2004-04-26 Zirconium-based oxide production method and automobile exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP4359531B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009101984A1 (en) * 2008-02-12 2009-08-20 Santoku Corporation Composite oxide
JP2013527032A (en) * 2010-05-19 2013-06-27 ロデイア・オペラシヨン Compositions based on cerium, zirconium and tungsten, methods of preparation and applications in catalysts
CN108689431A (en) * 2018-07-26 2018-10-23 北京化工大学 A kind of preparation method of water phase nano zircite particle dispersion
CN114588936A (en) * 2022-03-14 2022-06-07 南京大学 Zirconium-based Fenton catalyst and preparation method and application thereof
CN115722201A (en) * 2022-11-08 2023-03-03 中国科学院上海高等研究院 Yttrium-europium-zirconium-based composite magnetic adsorption material for removing organic phosphine in water, and preparation method and application thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009101984A1 (en) * 2008-02-12 2009-08-20 Santoku Corporation Composite oxide
US8389436B2 (en) 2008-02-12 2013-03-05 Santoku Corporation Composite oxide
JP2013527032A (en) * 2010-05-19 2013-06-27 ロデイア・オペラシヨン Compositions based on cerium, zirconium and tungsten, methods of preparation and applications in catalysts
CN108689431A (en) * 2018-07-26 2018-10-23 北京化工大学 A kind of preparation method of water phase nano zircite particle dispersion
CN108689431B (en) * 2018-07-26 2020-05-19 北京化工大学 Preparation method of aqueous phase nano zirconium oxide particle dispersoid
CN114588936A (en) * 2022-03-14 2022-06-07 南京大学 Zirconium-based Fenton catalyst and preparation method and application thereof
CN115722201A (en) * 2022-11-08 2023-03-03 中国科学院上海高等研究院 Yttrium-europium-zirconium-based composite magnetic adsorption material for removing organic phosphine in water, and preparation method and application thereof
CN115722201B (en) * 2022-11-08 2024-03-29 中国科学院上海高等研究院 Yttrium-europium-zirconium-based composite magnetic adsorption material for removing organic phosphine in water, preparation method and application thereof

Also Published As

Publication number Publication date
JP4359531B2 (en) 2009-11-04

Similar Documents

Publication Publication Date Title
JP3946982B2 (en) Method for producing zirconia-ceria based composite oxide
MXPA04005960A (en) Method for manufacturing stabilized zirconia.
EP1625097B1 (en) Process for preparing zirconium oxides and zirconium-based mixed oxides
CN100383047C (en) Method for preparing alumina powder with small particle diameter
CN112745105A (en) High-sintering-activity alumina ceramic powder and preparation method thereof
JP4928931B2 (en) Ceria-zirconia composite oxide and method for producing the same
CN104528823B (en) A kind of Zirconium powder, its product and preparation method
JP2004344878A (en) Zirconium group oxide catalyst and its production method
JPH08268716A (en) Method for controlling particle diameter of pseudo-boehmite powder
JP2003206137A (en) Partially stabilized or stabilized zirconia fine powder, precursor thereof and production method therefor
CN104528824B (en) A kind of produce Zirconium powder and the method for ammonium salt and product simultaneously
JPS61141619A (en) Production of zirconia fine powder
JP2004345942A (en) Zirconium based composite oxide and method for manufacturing the same
JP2005247585A (en) Method for producing zirconia-ceria compound oxide powder
JPH0250048B2 (en)
KR100473399B1 (en) Process for the preparation of fine ceramic powders
KR102411275B1 (en) Method for producing anatase-type titanium dioxide using titanium-containing hydrochloric acid solution and titanium dioxide crystal control method using titanium-contained hydrochloric acid solution
JPH0632615A (en) Production of hydrated zirconia gel and zirconia powder
JP5242366B2 (en) Zirconium oxide, precursor thereof, and production method thereof
JPH06171944A (en) Production of zirconium oxide powder
JP4829771B2 (en) Spherical peroxotitanium hydrate and method for producing spherical titanium oxide
JP4082450B2 (en) Method for producing zirconia sol and method for producing fine zirconia powder
JPH06171945A (en) Production of zirconia powder
JPS62212224A (en) Production of zirconia solid solution crystal fine powder
JPH0524843A (en) Production of hydrated zirconia sol and zirconia powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4359531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term