JP5242366B2 - Zirconium oxide, precursor thereof, and production method thereof - Google Patents

Zirconium oxide, precursor thereof, and production method thereof Download PDF

Info

Publication number
JP5242366B2
JP5242366B2 JP2008325787A JP2008325787A JP5242366B2 JP 5242366 B2 JP5242366 B2 JP 5242366B2 JP 2008325787 A JP2008325787 A JP 2008325787A JP 2008325787 A JP2008325787 A JP 2008325787A JP 5242366 B2 JP5242366 B2 JP 5242366B2
Authority
JP
Japan
Prior art keywords
zirconium
slurry
precursor
hydroxide
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008325787A
Other languages
Japanese (ja)
Other versions
JP2010143813A (en
Inventor
直樹 池
峯雄 佐飛
和幸 加藤
靖浩 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKS CO. LTD.
Dowa Electronics Materials Co Ltd
Original Assignee
DKS CO. LTD.
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKS CO. LTD., Dowa Electronics Materials Co Ltd filed Critical DKS CO. LTD.
Priority to JP2008325787A priority Critical patent/JP5242366B2/en
Publication of JP2010143813A publication Critical patent/JP2010143813A/en
Application granted granted Critical
Publication of JP5242366B2 publication Critical patent/JP5242366B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、ジルコニウム酸化物、その前駆体およびそれらの製造方法、ジルコニウム複合酸化物、その前駆体およびそれらの製造方法に関する。さらに詳しくは、耐熱性、耐食性にすぐれ、また、融点が高いなどの特性を備えており、最近の触媒、耐火物、ファインセラミックス等、数多くの分野に応用することのできるジルコニウム酸化物、その前駆体およびそれらの製造方法、ジルコニウム複合酸化物、その前駆体およびそれらの製造方法に関する。   The present invention relates to a zirconium oxide, a precursor thereof and a production method thereof, a zirconium composite oxide, a precursor thereof and a production method thereof. More specifically, it has excellent heat resistance and corrosion resistance, and has a high melting point, and is a zirconium oxide that can be applied to many fields such as recent catalysts, refractories, fine ceramics, and precursors thereof. Bodies and their production methods, zirconium composite oxides, precursors thereof, and production methods thereof.

従来、ジルコニウム水溶液を出発原料として、(1)アンモニア水等を添加して共沈させる方法、(2)加水分解したうえ有機溶媒中に沈殿を置換する方法、(3)高温高圧下で加水分解する方法、(4)アルコキシド化合物を合成し、これを加水分解する方法などが提案されていた。   Conventionally, using a zirconium aqueous solution as a starting material, (1) a method of coprecipitation by adding ammonia water, etc., (2) a method of hydrolyzing and replacing the precipitate in an organic solvent, (3) hydrolysis at a high temperature and high pressure And (4) a method of synthesizing an alkoxide compound and hydrolyzing it.

しかし、前記の(1)の方法の場合には得られる水酸化物が硬く、微粉にするにはかなりの粉砕処理を要すること、(2)の方法の場合には加水分解の速度が遅く、数十〜百時間程度の処理が必要であり、また有機溶媒の回収設備や防爆設備が必要で、エネルギーコストも高くなること、(3)の方法の場合にはオートクレーブを必要とし、設備費やエネルギーコストが高くなること、(4)の方法の場合には有機金属化合物を合成する工程を要するので薬品費用がかなり必要になること、などそれぞれ重大な諸問題があった。   However, in the case of the above method (1), the obtained hydroxide is hard and requires a considerable pulverization treatment to make a fine powder. In the case of the method (2), the hydrolysis rate is slow, Processing for several tens to hundreds of hours is required, and organic solvent recovery equipment and explosion-proof equipment are required, resulting in high energy costs. In the case of method (3), an autoclave is required. In the case of the method (4), there are serious problems such as high energy costs and the necessity of a process for synthesizing an organometallic compound, which requires considerable chemical costs.

このような諸問題に関し、先に、主として前記(1)の方法の改善を図り、イットリウム、カルシウム、マグネシウム、アルミニウムおよび希土類元素からなる群から選ばれる少なくとも一種の安定化元素、硫酸根およびジルコニウムを溶解した原料水溶液を50℃以上に昇温することにより該安定化元素の一部が吸着されたジルコニウム塩基性硫酸塩の沈殿が析出したスラリーを得る第1工程、該スラリーにアルカリ金属の水酸化物を添加しpHを8以上にして前記沈殿中の硫酸根を溶出させるとともに前記スラリー中に溶存する前記安定化元素を水酸化物として前記沈殿に共沈させる第2工程、該第2工程で得られたスラリーを固液分離して前記安定化元素の水酸化物を含有するジルコニウム水酸化物の微粉体を得る第3工程、次いで該微粉体を焙焼する第4工程からなることが開示されている(特許文献1)。   With regard to such problems, first, the method (1) is mainly improved, and at least one stabilizing element selected from the group consisting of yttrium, calcium, magnesium, aluminum and rare earth elements, sulfate radical and zirconium is added. A first step of obtaining a slurry in which a precipitate of zirconium basic sulfate adsorbed with a part of the stabilizing element is deposited by raising the temperature of the dissolved raw material aqueous solution to 50 ° C. or higher; In the second step, the pH is increased to 8 or more to elute the sulfate radicals in the precipitate, and the stabilizing element dissolved in the slurry is coprecipitated as a hydroxide in the precipitate. A third step of solid-liquid separation of the obtained slurry to obtain a fine powder of zirconium hydroxide containing the hydroxide of the stabilizing element; That a fourth step of roasting the powder has been disclosed (Patent Document 1).

特開2003−206137号公報JP 2003-206137 A

しかし、特許文献1に記載の方法では、ジルコニウム水酸化物の微粉体に含まれる不純物であり、原料であるアルカリ金属の水酸化物および硫酸根に由来する、アルカリ金属原子のNa等およびSが電子部材等に含まれると悪影響を及ぼす恐れがあり、この不純物を洗浄するのに大量の純水またはアンモニア水を必要とし、その結果、製造過程において大量の工業排水を排出するというおそれがあった。   However, in the method described in Patent Document 1, impurities such as Na of alkali metal atoms and S derived from alkali metal hydroxide and sulfate radicals, which are impurities contained in the fine powder of zirconium hydroxide, are included. If contained in electronic components, etc., there is a risk of adverse effects, and a large amount of pure water or ammonia water is required to clean this impurity, and as a result, a large amount of industrial wastewater may be discharged during the manufacturing process. .

本発明は、上記従来の問題に鑑み、従来の製造方法で見られる大量の純水またはアンモニア水を使用した洗浄を行わなくとも、不純物の含有量が少ない高純度なジルコニウム酸化物、その粉体前駆体およびこれらを焼成したジルコニウム酸化物の製造方法を提供する。   In view of the above-described conventional problems, the present invention provides a high-purity zirconium oxide having a low impurity content and powder thereof without performing cleaning using a large amount of pure water or ammonia water found in conventional manufacturing methods. A precursor and a method for producing a zirconium oxide obtained by firing the precursor are provided.

本発明にかかわるジルコニウム酸化物粉体前駆体の製造方法は、(1)水溶性ジルコニウム塩と、硫酸根とを溶解した原料溶液を加温し、塩基性硫酸ジルコニウム塩の沈殿が析出したスラリーを得る反応工程と、(2)当該スラリーにアルカリを添加し、pHを11以上にして硫酸根を完全に溶出させる中和工程と、(3)該中和工程で得られたスラリーを固液分離し、酸によりpHを9以下にして洗浄を行ない、ジルコニウム水酸化物の粉体を得る洗浄工程とからなることを特徴とする。   The method for producing a zirconium oxide powder precursor according to the present invention includes (1) heating a raw material solution in which a water-soluble zirconium salt and a sulfate radical are dissolved, and a slurry in which a precipitate of a basic zirconium sulfate salt is deposited. A reaction step to be obtained; (2) a neutralization step in which alkali is added to the slurry and the pH is set to 11 or more to completely elute the sulfate radical; and (3) solid-liquid separation of the slurry obtained in the neutralization step And a cleaning step of obtaining a zirconium hydroxide powder by performing cleaning with an acid at a pH of 9 or less.

前記(1)の反応工程が、水溶性ジルコニウム塩、硫酸根、および安定化元素としてアルカリ土類金属元素ならびに希土類元素からなる群から選ばれる少なくとも1種以上を含む水溶性塩とを溶解した原料溶液を加温し、前記安定化元素の一部が吸着した塩基性硫酸ジルコニウム塩の沈殿が析出したスラリーを得る工程であることが好ましい。   The raw material in which the reaction step (1) dissolves a water-soluble zirconium salt, a sulfate group, and a water-soluble salt containing at least one selected from the group consisting of alkaline earth metal elements and rare earth elements as stabilizing elements. The step is preferably a step of heating the solution to obtain a slurry in which a precipitate of the basic zirconium sulfate salt on which a part of the stabilizing element is adsorbed is deposited.

前記(2)の中和工程におけるアルカリが水酸化ナトリウムであり、前記(2)の中和工程におけるpHが11〜12であることが好ましい。   The alkali in the neutralization step (2) is preferably sodium hydroxide, and the pH in the neutralization step (2) is preferably 11-12.

前記(3)の洗浄工程における酸が塩酸であり、前記(3)の洗浄工程におけるpHが7〜8であることが好ましい。   The acid in the washing step (3) is preferably hydrochloric acid, and the pH in the washing step (3) is preferably 7-8.

また、本発明にかかわるジルコニウム酸化物粉体前駆体は、上記製造方法により得られたジルコニウム酸化物粉体前駆体である。   The zirconium oxide powder precursor according to the present invention is a zirconium oxide powder precursor obtained by the above production method.

また、本発明のジルコニウム複合酸化物は、上記製造方法により得られたジルコニウム複合酸化物粉体前駆体を焼成することにより製造される。   The zirconium composite oxide of the present invention is produced by firing the zirconium composite oxide powder precursor obtained by the above production method.

本発明により、従来の製造方法で見られる大量の純水またはアンモニア水を使用した洗浄を行わなくとも、不純物の含有量が少ない高純度なジルコニウム酸化物、その前駆体およびそれらの製造方法を提供することができる。   According to the present invention, there is provided a high-purity zirconium oxide having a low impurity content, a precursor thereof, and a method for producing them without performing the cleaning using a large amount of pure water or ammonia water found in a conventional production method. can do.

本発明のジルコニウム酸化物前駆体の製造方法は、(1)水溶性ジルコニウム塩、および硫酸根を溶解した原料溶液を加温し、塩基性硫酸ジルコニウム塩の沈殿が析出したスラリーを得る反応工程と、(2)当該スラリーにアルカリを添加し、pHを11以上にして硫酸根を完全に溶出させる中和工程と、(3)該中和工程で得られたスラリーを固液分離し、酸によりpHを9以下にして洗浄を行ない、ジルコニウム水酸化物の粉体を得る洗浄工程とからなることを特徴とする。   The method for producing a zirconium oxide precursor of the present invention includes (1) a reaction step of heating a raw material solution in which a water-soluble zirconium salt and a sulfate group are dissolved to obtain a slurry in which a precipitate of a basic zirconium sulfate salt is deposited; (2) a neutralization step in which alkali is added to the slurry and the pH is set to 11 or more to completely elute the sulfate radical; and (3) the slurry obtained in the neutralization step is subjected to solid-liquid separation, It is characterized by comprising a washing step of carrying out washing at a pH of 9 or less to obtain zirconium hydroxide powder.

以下、各工程についてより詳細に説明する。   Hereinafter, each process will be described in more detail.

まず、(1)の工程は、水溶性ジルコニウム塩と硫酸根とを溶解した原料溶液を加温し、塩基性硫酸ジルコニウム塩の沈殿が析出したスラリーを得る工程である。ここで、前記水溶性ジルコニウム塩としてオキシ塩化ジルコニウム、硝酸ジルコニウムなどを用いることができるが工業的面や排水負荷の面からオキシ塩化ジルコニウムが好ましい。また、硫酸根としては硫酸、硫酸ナトリウム、硫酸アンモニウムなどを用いることができるが工業的面や排水負荷の面から硫酸ナトリウムが好ましい。前記ジルコニウムと硫酸根との配合について、硫酸根は、ジルコニウムのモルに対してモル比0.4〜0.6程度が好ましい。モル比0.3未満の場合、塩基性硫酸ジルコニウム塩が生成しないという問題があり、モル比0.8を越える場合、目的外の沈殿(硫酸ジルコニウム等)が生じるという問題がある。また、原料溶液の加温について、温度は60〜90℃程度が好ましい。温度が60℃未満の場合、生成が極端に遅くなるという問題があり、90℃を超える場合、装置等の腐食が大きいという問題がある。また、加温時間は、1〜2時間程度が好ましい。加温時間が0.5時間未満の場合、未反応物が残留するという問題があり、2時間を超える場合、すでに反応の大部分は完了しているため経済的に好ましくないという問題がある。   First, the step (1) is a step in which a raw material solution in which a water-soluble zirconium salt and a sulfate radical are dissolved is heated to obtain a slurry in which a precipitate of a basic zirconium sulfate salt is deposited. Here, zirconium oxychloride, zirconium nitrate, etc. can be used as the water-soluble zirconium salt, but zirconium oxychloride is preferred from the viewpoint of industrial and drainage load. As the sulfate radical, sulfuric acid, sodium sulfate, ammonium sulfate and the like can be used, but sodium sulfate is preferable from the viewpoint of industrial and drainage load. Regarding the blending of the zirconium and the sulfate radical, the sulfate radical is preferably in a molar ratio of about 0.4 to 0.6 with respect to the mole of zirconium. When the molar ratio is less than 0.3, there is a problem that a basic zirconium sulfate salt is not formed. When the molar ratio exceeds 0.8, there is a problem that unintended precipitation (zirconium sulfate or the like) occurs. The temperature of the raw material solution is preferably about 60 to 90 ° C. When the temperature is less than 60 ° C., there is a problem that the generation is extremely slow. The heating time is preferably about 1 to 2 hours. When the heating time is less than 0.5 hour, there is a problem that unreacted substances remain, and when the heating time exceeds 2 hours, there is a problem in that it is economically undesirable because most of the reaction has already been completed.

(1)の工程は、水溶性ジルコニウム塩、硫酸根、および安定化元素としてアルカリ土類金属元素ならびに希土類元素からなる群から選ばれる少なくとも1種以上を含む水溶性塩とを溶解した原料溶液を加温し、前記安定化元素の一部が吸着した塩基性硫酸ジルコニウム塩の沈殿が析出したスラリーを得る工程であることが好ましい。   The step (1) comprises a raw material solution in which a water-soluble zirconium salt, a sulfate group, and a water-soluble salt containing at least one selected from the group consisting of alkaline earth metal elements and rare earth elements as stabilizing elements are dissolved. The step is preferably a step of heating to obtain a slurry in which a precipitate of a basic zirconium sulfate salt on which a part of the stabilizing element is adsorbed is deposited.

ここで、前記安定化元素はジルコニアの結晶構造を安定化させ、その焼結体の強度等の物性を向上させるために用いられる。これら元素は、要求される物性により、その種類および添加量は適宜選択することが可能である。   Here, the stabilizing element is used to stabilize the crystal structure of zirconia and improve physical properties such as strength of the sintered body. These elements can be appropriately selected for the kind and amount of addition depending on the required physical properties.

前記安定化元素としては、Be、Mg、Ca、Sr、BaやSc、Y、La、Ce、Pr、Nd、Eu、Gd、Ybなどがあげられ、これらのうち機械強度の向上という観点からYが好ましく、耐熱性の向上という観点からはMg、Caが好ましく、触媒性能という観点からはBa、Ce、Srやその複合系が好ましい。   Examples of the stabilizing element include Be, Mg, Ca, Sr, Ba, Sc, Y, La, Ce, Pr, Nd, Eu, Gd, and Yb. Among these, Y is used from the viewpoint of improving mechanical strength. Mg and Ca are preferable from the viewpoint of improving heat resistance, and Ba, Ce, Sr and their composite systems are preferable from the viewpoint of catalyst performance.

原料溶液の加温の温度や時間に関しては前述の条件を適用できる。   The above-mentioned conditions can be applied to the temperature and time for heating the raw material solution.

次に、(2)の工程は、(1)の工程で得られたスラリーにアルカリを添加し、pHを11以上にして硫酸根を完全に溶出させる中和工程である。ここで、前記アルカリとしては、水酸化ナトリウム、水酸化カリウム、アンモニアなどを用いることができるが、工業的面や排水負荷の面から水酸化ナトリウムが好ましい。また、前記pHは、11以上であればよく、11〜12であることが好ましい。pHが11未満の場合、硫酸根の残留が懸念されるという問題がある。また、pHが12を超える場合、大過剰のNa分の残留が起こるという傾向がある。なお、硫酸が完全に溶出したかの判断は、pHが平衡に達することにより行なうことができる。さらに、スラリーが中和したか否かは、pHメーターにより確認することができる。   Next, the step (2) is a neutralization step in which an alkali is added to the slurry obtained in the step (1) to make the pH 11 or higher and the sulfate radicals are completely eluted. Here, sodium hydroxide, potassium hydroxide, ammonia or the like can be used as the alkali, but sodium hydroxide is preferable from the viewpoint of industrial and drainage load. Moreover, the said pH should just be 11 or more, and it is preferable that it is 11-12. When the pH is less than 11, there is a problem that the sulfate radical remains. Moreover, when pH exceeds 12, there exists a tendency for the residue of a large excess Na to occur. It should be noted that the determination of whether the sulfuric acid has completely eluted can be made when the pH reaches equilibrium. Furthermore, it can be confirmed with a pH meter whether the slurry has been neutralized.

次に、(3)の工程は、(2)の工程で得られた中和したスラリーを固液分離し、酸によりpHを9以下にして洗浄を行ない、ジルコニウム水酸化物の粉体を得る洗浄工程である。ここで、前記酸としては、塩酸、硝酸などを用いることができるが、工業的な面や排水負荷の面から、塩酸が好ましい。また、(3)の工程における前記pHは、7〜8であることが好ましい。pHが7未満の場合、有用成分が溶出するという問題があり、pHが8を超える場合、Na分の残留が起こるという問題がある。なお、固液分離および、洗浄は、当業者に自明の各種方法により行なうことができる。また、pHの確認は、pHメーターにより行なうことができる。なお、酸化物の前駆体の場合、搾った状態(湿粉)での提供が多く、湿粉のまま焼成を行ない酸化物を得ることもできる。   Next, in the step (3), the neutralized slurry obtained in the step (2) is subjected to solid-liquid separation, and the pH is adjusted to 9 or less with an acid to obtain a zirconium hydroxide powder. It is a cleaning process. Here, hydrochloric acid, nitric acid and the like can be used as the acid, but hydrochloric acid is preferable from the viewpoint of industrial and drainage load. Moreover, it is preferable that the said pH in the process of (3) is 7-8. When pH is less than 7, there exists a problem that a useful component elutes, and when pH exceeds 8, there exists a problem that the residue of Na occurs. Solid-liquid separation and washing can be performed by various methods obvious to those skilled in the art. The pH can be confirmed with a pH meter. In the case of an oxide precursor, it is often provided in a squeezed state (wet powder), and the oxide can be obtained by baking with the wet powder.

以上の工程により、ジルコニウム酸化物前駆体を製造することができる。   A zirconium oxide precursor can be manufactured by the above process.

次に、本発明のジルコニウム酸化物の製造方法について説明する。   Next, the manufacturing method of the zirconium oxide of this invention is demonstrated.

本発明のジルコニウム酸化物は、上記製造方法により得られたジルコニウム酸化物粉体前駆体を焼成することにより得ることができる。焼成温度は目標とする粉末物性によって変えることが可能であるが、焼成温度としては、500〜1200℃程度が好ましい。焼成温度が500℃未満の場合、酸化されないという問題があり、1200℃を超える場合、粒成長により強い凝集が起こるという問題がある。さらに、焼成時間としては、電気炉、ガス炉等の種類、その焼成炉のサイズ等により異なってくるが、系内の温度が均一になるまで焼成を行なうことが好ましい。   The zirconium oxide of the present invention can be obtained by firing the zirconium oxide powder precursor obtained by the above production method. The firing temperature can be changed depending on the target powder physical properties, but the firing temperature is preferably about 500 to 1200 ° C. When the firing temperature is less than 500 ° C., there is a problem that it is not oxidized, and when it exceeds 1200 ° C., there is a problem that strong aggregation occurs due to grain growth. Furthermore, although the firing time varies depending on the type of electric furnace, gas furnace, etc., the size of the firing furnace, etc., it is preferable to perform firing until the temperature in the system becomes uniform.

以下、実施例によって本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited to these.

実施例1
ジルコニウム溶液として、オキシ塩化ジルコニウムを純水に溶解して、ZrO2濃度で10wt%とした水溶液、硫酸根調整剤として無水硫酸ナトリウム粉末をそれぞれ用意した。
Example 1
As a zirconium solution, zirconium oxychloride was dissolved in pure water to prepare an aqueous solution with a ZrO 2 concentration of 10 wt%, and anhydrous sodium sulfate powder as a sulfate radical adjuster.

前記ジルコニウム水溶液2000gに、硫酸根調整剤である無水硫酸ナトリウム粉末をZrO2モル当たり0.6モルに相当する100g添加し、原料水溶液とした。 To 2000 g of the zirconium aqueous solution, 100 g corresponding to 0.6 mol of ZrO 2 mol of anhydrous sodium sulfate powder as a sulfate radical adjusting agent was added to obtain a raw material aqueous solution.

この原料水溶液を80℃まで加温し、加温状態で1時間保持して、ジルコニア塩基性硫酸塩の析出したスラリーを得た。前記スラリーにpH調整剤として48%水酸化ナトリウム水溶液をpHを11.5となるまで添加した後、15分間保持し、水酸化ジルコニウムの沈殿したスラリーを得た。   This raw material aqueous solution was heated to 80 ° C. and held for 1 hour in a heated state to obtain a slurry in which zirconia basic sulfate was precipitated. A 48% aqueous sodium hydroxide solution was added to the slurry as a pH adjuster until the pH reached 11.5, and then maintained for 15 minutes to obtain a slurry in which zirconium hydroxide was precipitated.

得られたスラリーをヌッチェで吸引濾過を行ない、酸化物−kg当たり10L相当の純水により洗浄した。得られた水酸化物をさらに酸化物−kg当たり2.5Lの純水によりリスラリーを行ない、塩酸にてpHを7.0に調整し、ヌッチェで吸引濾過を行ない、酸化物−kg当たり7.5Lの純水により洗浄を行った後、110℃恒温槽にて大気下で乾燥を行ない前駆体水酸化物を得た。得られた前駆体水酸化物の不純物量を表1に示した。   The obtained slurry was subjected to suction filtration with a Nutsche, and washed with 10 L of pure water per kg of oxide. The obtained hydroxide was further reslurried with 2.5 L of pure water per oxide-kg, the pH was adjusted to 7.0 with hydrochloric acid, suction filtered with Nutsche, and 7. After washing with 5 L of pure water, drying was performed in the air in a 110 ° C. constant temperature bath to obtain a precursor hydroxide. The amount of impurities in the obtained precursor hydroxide is shown in Table 1.

前記前駆体水酸化物を電気炉により大気下1000℃で仮焼を行ない、ジルコニア粉末を得た。   The precursor hydroxide was calcined at 1000 ° C. in the atmosphere with an electric furnace to obtain zirconia powder.

実施例2
ジルコニウム溶液として、オキシ塩化ジルコニウムを純水に溶解して、ZrO2濃度で10wt%とした水溶液、安定化剤溶液として酸化イットリウムを塩酸で溶解しY23濃度で15wt%とした水溶液、硫酸根調整剤として無水硫酸ナトリウム粉末をそれぞれ用意した。
Example 2
As a zirconium solution, an aqueous solution in which zirconium oxychloride is dissolved in pure water to a ZrO 2 concentration of 10 wt%, an aqueous solution in which yttrium oxide is dissolved in hydrochloric acid as a stabilizer solution to a Y 2 O 3 concentration of 15 wt%, sulfuric acid Anhydrous sodium sulfate powder was prepared as a root adjuster.

前記ジルコニウム水溶液を2000gと、前記安定化剤水溶液をZrO2モル当たり3.0モル%相当量である60gの水溶液とを混合し、この混合液に硫酸根調整剤である無水硫酸ナトリウム粉末をZrO2モル当たり0.5モルに相当する90g添加し、原料水溶液とした。 The zirconium aqueous solution was mixed with 2000 g, and the stabilizer aqueous solution was mixed with 60 g of an aqueous solution corresponding to 3.0 mol% per 2 mol of ZrO, and anhydrous sodium sulfate powder as a sulfate radical adjusting agent was mixed with ZrO. 90 g corresponding to 0.5 mol per 2 mol was added to obtain a raw material aqueous solution.

この原料水溶液を80℃まで加温し、加温状態で1時間保持して、ジルコニア塩基性硫酸塩の析出したスラリーを得た。前記スラリーにpH調整剤として48%水酸化ナトリウム水溶液をpHを11.5となるまで添加した後、15分間保持し、安定化元素が共沈したスラリーを得た。   This raw material aqueous solution was heated to 80 ° C. and held for 1 hour in a heated state to obtain a slurry in which zirconia basic sulfate was precipitated. A 48% aqueous sodium hydroxide solution was added to the slurry as a pH adjuster until the pH reached 11.5, and then maintained for 15 minutes to obtain a slurry in which the stabilizing element was coprecipitated.

得られたスラリーをヌッチェで吸引濾過を行ない、酸化物−kg当たり10L相当の純水により洗浄した。得られた水酸化物をさらに酸化物−kg当たり2.5Lの純水によりリスラリーを行ない、塩酸にてpHを8.0に調整し、ヌッチェで吸引濾過を行ない、酸化物−kg当たり7.5Lの純水により洗浄を行った後、110℃恒温槽にて大気下で乾燥を行ない前駆体水酸化物を得た。得られた前駆体水酸化物の不純物量を表1に示した。   The obtained slurry was subjected to suction filtration with a Nutsche, and washed with 10 L of pure water per kg of oxide. The obtained hydroxide was further reslurried with 2.5 L of pure water per oxide-kg, the pH was adjusted to 8.0 with hydrochloric acid, suction filtered with Nutsche, and 7. After washing with 5 L of pure water, drying was performed in the air in a 110 ° C. constant temperature bath to obtain a precursor hydroxide. The amount of impurities in the obtained precursor hydroxide is shown in Table 1.

前記前駆体水酸化物を電気炉により大気下1000℃で仮焼を行ない、部分安定化ジルコニア粉末を得た。   The precursor hydroxide was calcined at 1000 ° C. in the atmosphere with an electric furnace to obtain partially stabilized zirconia powder.

実施例3
ジルコニウム溶液として、オキシ塩化ジルコニウムを純水に溶解して、ZrO2濃度で10wt%とした水溶液、塩化ストロンチウムを純水に溶解してSrO濃度で10wt%とした水溶液、安定化剤溶液として酸化イットリウムを塩酸で溶解しY23濃度で15wt%とした水溶液、硫酸根調整剤として無水硫酸ナトリウム粉末をそれぞれ用意した。
Example 3
As a zirconium solution, an aqueous solution in which zirconium oxychloride is dissolved in pure water to have a ZrO 2 concentration of 10 wt%, an aqueous solution in which strontium chloride is dissolved in pure water to have a SrO concentration of 10 wt%, and yttrium oxide as a stabilizer solution Was dissolved in hydrochloric acid to prepare an aqueous solution with a Y 2 O 3 concentration of 15 wt%, and anhydrous sodium sulfate powder was prepared as a sulfate radical conditioner.

前記ジルコニウム水溶液を1000gと前記ストロンチウム水溶液を1000gと、前記安定化剤水溶液をZrO2モル当たり6.0モル相当量である120gの水溶液とを混合し、この混合液に硫酸根調整剤である無水硫酸ナトリウム粉末をZrO2モル当たり0.5モルに相当する90g添加し、原料水溶液とした。 1000 g of the zirconium aqueous solution, 1000 g of the strontium aqueous solution, and 120 g of an aqueous solution equivalent to 6.0 mol of ZrO 2 mol per mole of ZrO are mixed, and this mixture is mixed with anhydrous sulfate radical adjuster. 90 g of sodium sulfate powder corresponding to 0.5 mol per 2 mol of ZrO was added to prepare a raw material aqueous solution.

この原料水溶液を80℃まで加温し、加温状態で1時間保持して、ジルコニア塩基性硫酸塩の析出したスラリーを得た。前記スラリーにpH調整剤として48%水酸化ナトリウム水溶液をpHを11.5となるまで添加した後、15分間保持し、水酸化ストロンチウムおよび安定化元素が共沈したスラリーを得た。   This raw material aqueous solution was heated to 80 ° C. and held for 1 hour in a heated state to obtain a slurry in which zirconia basic sulfate was precipitated. A 48% aqueous sodium hydroxide solution was added to the slurry as a pH adjusting agent until the pH reached 11.5, and then maintained for 15 minutes to obtain a slurry in which strontium hydroxide and a stabilizing element were coprecipitated.

得られたスラリーをヌッチェで吸引濾過を行ない、酸化物−kg当たり10L相当の純水により洗浄した。得られた水酸化物をさらに酸化物−kg当たり2.5Lの純水によりリスラリーを行ない、塩酸にてpHを8.0に調整し、ヌッチェで吸引濾過を行ない、酸化物−kg当たり7.5Lの純水により洗浄を行った後、110℃恒温槽にて大気下で乾燥を行ない前駆体水酸化物を得た。得られた前駆体水酸化物の不純物量を表1に示した。   The obtained slurry was subjected to suction filtration with a Nutsche, and washed with 10 L of pure water per kg of oxide. The obtained hydroxide was further reslurried with 2.5 L of pure water per oxide-kg, the pH was adjusted to 8.0 with hydrochloric acid, suction filtered with Nutsche, and 7. After washing with 5 L of pure water, drying was performed in the air in a 110 ° C. constant temperature bath to obtain a precursor hydroxide. The amount of impurities in the obtained precursor hydroxide is shown in Table 1.

得られた前駆体水酸化物を実施例1と同様に仮焼を行ない、ジルコニア複合酸化物粉末を得た。   The obtained precursor hydroxide was calcined in the same manner as in Example 1 to obtain a zirconia composite oxide powder.

比較例1
ジルコニウム溶液として、オキシ塩化ジルコニウムを純水に溶解して、ZrO2濃度で10wt%とした水溶液、硫酸根調整剤として無水硫酸ナトリウム粉末をそれぞれ用意した。
Comparative Example 1
As a zirconium solution, zirconium oxychloride was dissolved in pure water to prepare an aqueous solution with a ZrO 2 concentration of 10 wt%, and anhydrous sodium sulfate powder as a sulfate radical adjuster.

前記ジルコニウム水溶液を2000gと、この水溶液に硫酸根調整剤である無水硫酸ナトリウム粉末をZrO2モル当たり0.6モルに相当する100g添加し、原料水溶液とした。 2000 g of the zirconium aqueous solution and 100 g corresponding to 0.6 mol of ZrO 2 mol of anhydrous sodium sulfate powder as a sulfate radical adjusting agent were added to the aqueous solution to obtain a raw material aqueous solution.

この原料水溶液を80℃まで加温し、加温状態で1時間保持して、ジルコニア塩基性硫酸塩の析出したスラリーを得た。前記スラリーにpH調整剤として48%水酸化ナトリウム水溶液をpHが11.0となるまで添加した後15分間保持し、水酸化ジルコニウムが沈殿したスラリーを得た。   This raw material aqueous solution was heated to 80 ° C. and held for 1 hour in a heated state to obtain a slurry in which zirconia basic sulfate was precipitated. A 48% aqueous sodium hydroxide solution was added to the slurry as a pH adjuster until the pH reached 11.0 and then held for 15 minutes to obtain a slurry in which zirconium hydroxide was precipitated.

得られたスラリーをヌッチェで吸引濾過を行ない、酸化物−kg当たり20L相当の純水により洗浄した。得られた水酸化物を、110℃恒温槽にて大気下で乾燥を行ない前駆体水酸化物を得た。得られた前駆体水酸化物の不純物量を表1に示した。また、実施例と同等の不純物量となるまで追加洗浄を行なった際、要した洗浄水の量を表1に示した。   The obtained slurry was subjected to suction filtration with Nutsche, and washed with pure water equivalent to 20 L per oxide-kg. The obtained hydroxide was dried in the air at 110 ° C. in a constant temperature bath to obtain a precursor hydroxide. The amount of impurities in the obtained precursor hydroxide is shown in Table 1. Table 1 shows the amount of cleaning water required when additional cleaning was performed until the amount of impurities was the same as in the examples.

得られた前駆体水酸化物を実施例1と同様に仮焼を行ない、ジルコニア粉末を得た。   The obtained precursor hydroxide was calcined in the same manner as in Example 1 to obtain zirconia powder.

比較例2
ジルコニウム溶液として、オキシ塩化ジルコニウムを純水に溶解して、ZrO2濃度で10wt%とした水溶液、硫酸根調整剤として無水硫酸ナトリウム粉末をそれぞれ用意した。
Comparative Example 2
As a zirconium solution, zirconium oxychloride was dissolved in pure water to prepare an aqueous solution with a ZrO 2 concentration of 10 wt%, and anhydrous sodium sulfate powder as a sulfate radical adjuster.

前記ジルコニウム水溶液を2000gと、この水溶液に硫酸根調整剤である無水硫酸ナトリウム粉末をZrO2モル当たり0.6モルに相当する100g添加し、原料水溶液とした。 2000 g of the zirconium aqueous solution and 100 g corresponding to 0.6 mol of ZrO 2 mol of anhydrous sodium sulfate powder as a sulfate radical adjusting agent were added to the aqueous solution to obtain a raw material aqueous solution.

この原料水溶液を80℃まで加温し、加温状態で1時間保持して、ジルコニア塩基性硫酸塩の析出したスラリーを得た。前記スラリーにpH調整剤として48%水酸化ナトリウム水溶液をpHが9.5となるまで添加した後15分間保持し、水酸化ジルコニウムが沈殿したスラリーを得た。   This raw material aqueous solution was heated to 80 ° C. and held for 1 hour in a heated state to obtain a slurry in which zirconia basic sulfate was precipitated. A 48% aqueous sodium hydroxide solution was added to the slurry as a pH adjusting agent until the pH reached 9.5, and then maintained for 15 minutes to obtain a slurry in which zirconium hydroxide was precipitated.

得られたスラリーをヌッチェで吸引濾過を行ない、酸化物−kg当たり20L相当の純水により洗浄した。得られた水酸化物を、110℃恒温槽にて大気下で乾燥を行ない前駆体水酸化物を得た。得られた前駆体水酸化物の不純物量を表1に示した。また、実施例と同等の不純物量となるまで追加洗浄を行なった際、要した洗浄水の量を表1に示した。   The obtained slurry was subjected to suction filtration with Nutsche, and washed with pure water equivalent to 20 L per oxide-kg. The obtained hydroxide was dried in the air at 110 ° C. in a constant temperature bath to obtain a precursor hydroxide. The amount of impurities in the obtained precursor hydroxide is shown in Table 1. Table 1 shows the amount of cleaning water required when additional cleaning was performed until the amount of impurities was the same as in the examples.

得られた前駆体水酸化物を実施例1と同様に仮焼を行ない、ジルコニア粉末を得た。   The obtained precursor hydroxide was calcined in the same manner as in Example 1 to obtain zirconia powder.

比較例3
ジルコニウム溶液として、オキシ塩化ジルコニウムを純水に溶解して、ZrO2濃度で10wt%とした水溶液、安定化剤溶液として酸化イットリウムを塩酸で溶解しY23濃度で15wt%とした水溶液、硫酸根調整剤として無水硫酸ナトリウム粉末をそれぞれ用意した。
Comparative Example 3
As a zirconium solution, an aqueous solution in which zirconium oxychloride is dissolved in pure water to a ZrO 2 concentration of 10 wt%, an aqueous solution in which yttrium oxide is dissolved in hydrochloric acid as a stabilizer solution to a Y 2 O 3 concentration of 15 wt%, sulfuric acid Anhydrous sodium sulfate powder was prepared as a root adjuster.

前記ジルコニウム水溶液を2000gと、前記安定化剤水溶液をZrO2モル当たり3.0モル%相当量である60gの水溶液とを混合し、この混合液に硫酸根調整剤である無水硫酸ナトリウム粉末をZrO2モル当たり0.5モルに相当する90g添加し、原料水溶液とした。 The zirconium aqueous solution was mixed with 2000 g, and the stabilizer aqueous solution was mixed with 60 g of an aqueous solution corresponding to 3.0 mol% per 2 mol of ZrO, and anhydrous sodium sulfate powder as a sulfate radical adjusting agent was mixed with ZrO. 90 g corresponding to 0.5 mol per 2 mol was added to obtain a raw material aqueous solution.

この原料水溶液を80℃まで加温し、加温状態で1時間保持して、ジルコニア塩基性硫酸塩の析出したスラリーを得た。前記スラリーにpH調整剤として48%水酸化ナトリウム水溶液をpHが11.5となるまで添加した後、15分間保持し、安定化元素が共沈したスラリーを得た。   This raw material aqueous solution was heated to 80 ° C. and held for 1 hour in a heated state to obtain a slurry in which zirconia basic sulfate was precipitated. A 48% aqueous sodium hydroxide solution was added to the slurry as a pH adjuster until the pH reached 11.5, and then maintained for 15 minutes to obtain a slurry in which the stabilizing elements were coprecipitated.

得られたスラリーをヌッチェで吸引濾過を行ない、酸化物−kg当たり20L相当の純水により洗浄した。得られた水酸化物を、110℃恒温槽にて大気下で乾燥を行ない前駆体水酸化物を得た。得られた前駆体水酸化物の不純物量を表1に示した。また、実施例と同等の不純物量となるまで追加洗浄を行なった際、要した洗浄水の量を表1に示した。   The obtained slurry was subjected to suction filtration with Nutsche, and washed with pure water equivalent to 20 L per oxide-kg. The obtained hydroxide was dried in the air at 110 ° C. in a constant temperature bath to obtain a precursor hydroxide. The amount of impurities in the obtained precursor hydroxide is shown in Table 1. Table 1 shows the amount of cleaning water required when additional cleaning was performed until the amount of impurities was the same as in the examples.

得られた前駆体水酸化物を実施例1と同様に仮焼を行ない、部分安定化ジルコニア粉末を得た。   The obtained precursor hydroxide was calcined in the same manner as in Example 1 to obtain partially stabilized zirconia powder.

比較例4
ジルコニウム溶液として、オキシ塩化ジルコニウムを純水に溶解して、ZrO2濃度で10wt%とした水溶液、安定化剤溶液として酸化イットリウムを塩酸で溶解しY23濃度で15wt%とした水溶液、硫酸根調整剤として無水硫酸ナトリウム粉末をそれぞれ用意した。
Comparative Example 4
As a zirconium solution, an aqueous solution in which zirconium oxychloride is dissolved in pure water to a ZrO 2 concentration of 10 wt%, an aqueous solution in which yttrium oxide is dissolved in hydrochloric acid as a stabilizer solution to a Y 2 O 3 concentration of 15 wt%, sulfuric acid Anhydrous sodium sulfate powder was prepared as a root adjuster.

前記ジルコニウム水溶液を2000gと、前記安定化剤水溶液をZrO2モル当たり3.0モル%相当量である60gの水溶液とを混合し、この混合液に硫酸根調整剤である無水硫酸ナトリウム粉末をZrO2モル当たり0.5モルに相当する90g添加し、原料水溶液とした。 The zirconium aqueous solution was mixed with 2000 g, and the stabilizer aqueous solution was mixed with 60 g of an aqueous solution corresponding to 3.0 mol% per 2 mol of ZrO, and anhydrous sodium sulfate powder as a sulfate radical adjusting agent was mixed with ZrO. 90 g corresponding to 0.5 mol per 2 mol was added to obtain a raw material aqueous solution.

この原料水溶液を80℃まで加温し、加温状態で1時間保持して、ジルコニア塩基性硫酸塩の析出したスラリーを得た。前記スラリーにpH調整剤として48%水酸化ナトリウム水溶液をpHが8.5となるまで添加した後、15分間保持し、安定化元素が共沈したスラリーを得た。   This raw material aqueous solution was heated to 80 ° C. and held for 1 hour in a heated state to obtain a slurry in which zirconia basic sulfate was precipitated. A 48% aqueous sodium hydroxide solution was added to the slurry as a pH adjuster until the pH was 8.5, and then maintained for 15 minutes to obtain a slurry in which the stabilizing element was coprecipitated.

得られたスラリーをヌッチェで吸引濾過を行ない、酸化物−kg当たり20L相当の純水により洗浄した。得られた水酸化物を、110℃恒温槽にて大気下で乾燥を行ない前駆体水酸化物を得た。得られた前駆体水酸化物の不純物量を表1に示した。また、実施例と同等の不純物量となるまで追加洗浄を行なった際、要した洗浄水の量を表1に示した。   The obtained slurry was subjected to suction filtration with Nutsche, and washed with pure water equivalent to 20 L per oxide-kg. The obtained hydroxide was dried in the air at 110 ° C. in a constant temperature bath to obtain a precursor hydroxide. The amount of impurities in the obtained precursor hydroxide is shown in Table 1. Table 1 shows the amount of cleaning water required when additional cleaning was performed until the amount of impurities was the same as in the examples.

得られた前駆体水酸化物を実施例1と同様に仮焼を行ない、部分安定化ジルコニア粉末を得た。   The obtained precursor hydroxide was calcined in the same manner as in Example 1 to obtain partially stabilized zirconia powder.

比較例5
ジルコニウム溶液として、オキシ塩化ジルコニウムを純水に溶解して、ZrO2濃度で10wt%とした水溶液、塩化ストロンチウムを純水に溶解してSrO濃度で10wt%とした水溶液、安定化剤溶液として酸化イットリウムを塩酸で溶解しY23濃度で15wt%とした水溶液、硫酸根調整剤として無水硫酸ナトリウム粉末をそれぞれ用意した。
Comparative Example 5
As a zirconium solution, an aqueous solution in which zirconium oxychloride is dissolved in pure water to have a ZrO 2 concentration of 10 wt%, an aqueous solution in which strontium chloride is dissolved in pure water to have a SrO concentration of 10 wt%, and yttrium oxide as a stabilizer solution Was dissolved in hydrochloric acid to prepare an aqueous solution with a Y 2 O 3 concentration of 15 wt%, and anhydrous sodium sulfate powder was prepared as a sulfate radical conditioner.

前記ジルコニウム水溶液を1000gと前記ストロンチウム水溶液を1000gと、前記安定化剤水溶液をZrO2モル当たり6.0モル相当量である120gの水溶液とを混合し、この混合液に硫酸根調整剤である無水硫酸ナトリウム粉末をZrO2モル当たり0.5モルに相当する90g添加し、原料水溶液とした。 1000 g of the zirconium aqueous solution, 1000 g of the strontium aqueous solution, and 120 g of an aqueous solution equivalent to 6.0 mol of ZrO 2 mol per mole of ZrO are mixed, and this mixture is mixed with anhydrous sulfate radical adjuster. 90 g of sodium sulfate powder corresponding to 0.5 mol per 2 mol of ZrO was added to prepare a raw material aqueous solution.

この原料水溶液を80℃まで加温し、加温状態で1時間保持して、ジルコニア塩基性硫酸塩の析出したスラリーを得た。前記スラリーにpH調整剤として48%水酸化ナトリウム水溶液をpHを9.0となるまで添加した後、15分間保持し、水酸化ストロンチウムおよび安定化元素が共沈したスラリーを得た。   This raw material aqueous solution was heated to 80 ° C. and held for 1 hour in a heated state to obtain a slurry in which zirconia basic sulfate was precipitated. A 48% aqueous sodium hydroxide solution was added to the slurry as a pH adjuster until the pH was 9.0, and then maintained for 15 minutes to obtain a slurry in which strontium hydroxide and a stabilizing element were coprecipitated.

得られたスラリーをヌッチェで吸引濾過を行ない、酸赤物−kg当たり20L相当の純水により洗浄した。得られた水酸化物を、110℃恒温槽にて大気下で乾燥を行ない前駆体水酸化物を得た。得られた前駆体水酸化物の不純物量を表1に示した。また、実施例と同等の不純物量となるまで追加洗浄を行なった際、要した洗浄水の量を表1に示した。   The obtained slurry was subjected to suction filtration with a Nutsche, and washed with 20 L of pure water per kg of acid red product. The obtained hydroxide was dried in the air at 110 ° C. in a constant temperature bath to obtain a precursor hydroxide. The amount of impurities in the obtained precursor hydroxide is shown in Table 1. Table 1 shows the amount of cleaning water required when additional cleaning was performed until the amount of impurities was the same as in the examples.

得られた前駆体水酸化物を実施例1と同様に仮焼を行ない、ジルコニア複合酸化物粉末を得た。   The obtained precursor hydroxide was calcined in the same manner as in Example 1 to obtain a zirconia composite oxide powder.

比較例6
ジルコニウム溶液として、オキシ塩化ジルコニウムを純水に溶解して、ZrO2濃度で10wt%とした水溶液、塩化ストロンチウムを純水に溶解してSrO濃度で10wt%とした水溶液、安定化剤溶液として酸化イットリウムを塩酸で溶解しY23濃度で15wt%とした水溶液、硫酸根調整剤として無水硫酸ナトリウム粉末をそれぞれ用意した。
Comparative Example 6
As a zirconium solution, an aqueous solution in which zirconium oxychloride is dissolved in pure water to have a ZrO 2 concentration of 10 wt%, an aqueous solution in which strontium chloride is dissolved in pure water to have a SrO concentration of 10 wt%, and yttrium oxide as a stabilizer solution Was dissolved in hydrochloric acid to prepare an aqueous solution with a Y 2 O 3 concentration of 15 wt%, and anhydrous sodium sulfate powder was prepared as a sulfate radical conditioner.

前記ジルコニウム水溶液を1000gと前記ストロンチウム水溶液を1000gと、前記安定化剤水溶液をZrO2モル当たり6.0モル相当量である120gの水溶液とを混合し、この混合液に硫酸根調整剤である無水硫酸ナトリウム粉末をZrO2モル当たり0.5モルに相当する90g添加し、原料水溶液とした。 1000 g of the zirconium aqueous solution, 1000 g of the strontium aqueous solution, and 120 g of an aqueous solution equivalent to 6.0 mol of ZrO 2 mol per mole of ZrO are mixed, and this mixture is mixed with anhydrous sulfate radical adjuster. 90 g of sodium sulfate powder corresponding to 0.5 mol per 2 mol of ZrO was added to prepare a raw material aqueous solution.

この原料水溶液を80℃まで加温し、加温状態で1時間保持して、ジルコニア塩基性硫酸塩の析出したスラリーを得た。前記スラリーにpH調整剤として48%水酸化ナトリウム水溶液をpHを11.5となるまで添加した後、15分間保持し、水酸化ストロンチウムおよび安定化元素が共沈したスラリーを得た。   This raw material aqueous solution was heated to 80 ° C. and held for 1 hour in a heated state to obtain a slurry in which zirconia basic sulfate was precipitated. A 48% aqueous sodium hydroxide solution was added to the slurry as a pH adjusting agent until the pH reached 11.5, and then maintained for 15 minutes to obtain a slurry in which strontium hydroxide and a stabilizing element were coprecipitated.

得られたスラリーをヌッチェで吸引濾過を行ない、酸化物−kg当たり20L相当の純水により洗浄した。得られた水酸化物を、110℃恒温槽にて大気下で乾燥を行ない前駆体水酸化物を得た。得られた前駆体水酸化物の不純物量を表1に示した。また、実施例と同等の不純物量となるまで追加洗浄を行なった際、要した洗浄水の量を表1に示した。   The obtained slurry was subjected to suction filtration with Nutsche, and washed with pure water equivalent to 20 L per oxide-kg. The obtained hydroxide was dried in the air at 110 ° C. in a constant temperature bath to obtain a precursor hydroxide. The amount of impurities in the obtained precursor hydroxide is shown in Table 1. Table 1 shows the amount of cleaning water required when additional cleaning was performed until the amount of impurities was the same as in the examples.

得られた前駆体水酸化物を実施例1と同様に仮焼を行ない、ジルコニア複合酸化物粉末を得た。   The obtained precursor hydroxide was calcined in the same manner as in Example 1 to obtain a zirconia composite oxide powder.

Figure 0005242366
Figure 0005242366

以上、本発明のジルコニウム酸化物、その前駆体およびそれらの製造方法、ジルコニウム複合酸化物、その前駆体およびそれらの製造方法によれば、大量の純水またはアンモニア水を使用した洗浄を行わなくとも、不純物の含有量が少ない高純度なジルコニウム酸化物、その前駆体およびそれらの製造方法、ジルコニウム複合酸化物、その前駆体およびそれらの製造方法を提供することができる。   As described above, according to the zirconium oxide, the precursor thereof, and the production method thereof, the zirconium composite oxide, the precursor, and the production method of the present invention, cleaning using a large amount of pure water or ammonia water is not performed. Further, it is possible to provide a high-purity zirconium oxide having a low impurity content, a precursor thereof and a production method thereof, a zirconium composite oxide, a precursor thereof and a production method thereof.

Claims (4)

(1)水溶性ジルコニウム塩と、硫酸根とを溶解した原料溶液を加温し、塩基性硫酸ジルコニウム塩の沈殿が析出したスラリーを得る反応工程と、
(2)当該スラリーにアルカリを添加し、pHを11以上にして硫酸根を完全に溶出させる中和工程と、
(3)該中和工程で得られたスラリーを固液分離し、塩酸によりpHを7〜8にして洗浄を行ない、ジルコニウム水酸化物の粉体を得る洗浄工程とからなることを特徴とするジルコニウム酸化物粉体前駆体の製造方法。
(1) a reaction step of heating a raw material solution in which a water-soluble zirconium salt and a sulfate group are dissolved to obtain a slurry in which a precipitate of a basic zirconium sulfate salt is deposited;
(2) a neutralization step in which an alkali is added to the slurry, the pH is set to 11 or more, and the sulfate radical is completely eluted;
(3) The slurry obtained in the neutralization step is subjected to solid-liquid separation, and the pH is adjusted to 7 to 8 with hydrochloric acid to perform washing, thereby obtaining a zirconium hydroxide powder. A method for producing a zirconium oxide powder precursor.
前記(1)の反応工程が、水溶性ジルコニウム塩、硫酸根、および安定化元素としてアルカリ土類金属元素ならびに希土類元素からなる群から選ばれる少なくとも1種以上を含む水溶性塩とを溶解した原料溶液を加温し、前記安定化元素の一部が吸着した塩基性硫酸ジルコニウム塩の沈殿が析出したスラリーを得る工程である、請求項1記載のジルコニウム酸化物粉体前駆体の製造方法。 The raw material in which the reaction step (1) dissolves a water-soluble zirconium salt, a sulfate group, and a water-soluble salt containing at least one selected from the group consisting of alkaline earth metal elements and rare earth elements as stabilizing elements. The method for producing a zirconium oxide powder precursor according to claim 1, which is a step of heating the solution to obtain a slurry in which a precipitate of a basic zirconium sulfate salt on which a part of the stabilizing element is adsorbed is obtained. 前記(2)の中和工程におけるアルカリが水酸化ナトリウムであり、前記(2)の中和工程におけるpHが11〜12であることを特徴とする請求項1または2記載のジルコニウム酸化物粉体前駆体の製造方法。 The zirconium oxide powder according to claim 1 or 2, wherein the alkali in the neutralization step (2) is sodium hydroxide and the pH in the neutralization step (2) is 11 to 12. A method for producing a precursor. 請求項1〜3のいずれか1項に記載の製造方法により得られたジルコニウム酸化物粉体前駆体を焼成することを特徴とするジルコニウム酸化物の製造方法。 A method for producing a zirconium oxide, comprising calcining a zirconium oxide powder precursor obtained by the production method according to any one of claims 1 to 3.
JP2008325787A 2008-12-22 2008-12-22 Zirconium oxide, precursor thereof, and production method thereof Expired - Fee Related JP5242366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008325787A JP5242366B2 (en) 2008-12-22 2008-12-22 Zirconium oxide, precursor thereof, and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008325787A JP5242366B2 (en) 2008-12-22 2008-12-22 Zirconium oxide, precursor thereof, and production method thereof

Publications (2)

Publication Number Publication Date
JP2010143813A JP2010143813A (en) 2010-07-01
JP5242366B2 true JP5242366B2 (en) 2013-07-24

Family

ID=42564631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008325787A Expired - Fee Related JP5242366B2 (en) 2008-12-22 2008-12-22 Zirconium oxide, precursor thereof, and production method thereof

Country Status (1)

Country Link
JP (1) JP5242366B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6547749B2 (en) * 2014-07-14 2019-07-24 住友大阪セメント株式会社 Zirconium oxide, zirconium oxide dispersion liquid, zirconium oxide-containing composition, coating film, and display device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141619A (en) * 1984-12-13 1986-06-28 Dowa Mining Co Ltd Production of zirconia fine powder
JPH06171943A (en) * 1992-12-04 1994-06-21 Tosoh Corp Production of zirconium oxide powder
JP2003206137A (en) * 2002-01-11 2003-07-22 Dowa Mining Co Ltd Partially stabilized or stabilized zirconia fine powder, precursor thereof and production method therefor
JP2004345942A (en) * 2003-04-30 2004-12-09 Nikkei Meru Kk Zirconium based composite oxide and method for manufacturing the same
JP4660135B2 (en) * 2004-07-26 2011-03-30 第一稀元素化学工業株式会社 Zirconia-based porous body and method for producing the same
JP2007015898A (en) * 2005-07-08 2007-01-25 Nippon Denko Kk Method for manufacturing zirconium oxide powder and zirconium oxide powder
GB0602217D0 (en) * 2006-02-03 2006-03-15 Magnesium Elektron Ltd Zirconium hydroxide

Also Published As

Publication number Publication date
JP2010143813A (en) 2010-07-01

Similar Documents

Publication Publication Date Title
JP3946982B2 (en) Method for producing zirconia-ceria based composite oxide
JP2009528974A (en) Method for producing ceramic powder using a plurality of chelate precursors
JP5694847B2 (en) Method for producing high purity calcium carbonate
EP2540391A1 (en) Ceria zirconia alumina composition with enhanced thermal stability
JP5445412B2 (en) Method for producing composite oxide powder
CN100374376C (en) Process for preparing zirconium oxides and zirconium-based mixed oxides
KR20170127425A (en) METHOD FOR MANUFACTURING MAGNESIUM ALUMINATE SPINEL
KR102092183B1 (en) Preparation method of high purity alumina
JP5242366B2 (en) Zirconium oxide, precursor thereof, and production method thereof
CN110015887A (en) A kind of titanium nitride reinforcement Zirconia reinforced alumina ceramic powder and preparation method thereof
JP2003206137A (en) Partially stabilized or stabilized zirconia fine powder, precursor thereof and production method therefor
JP4928931B2 (en) Ceria-zirconia composite oxide and method for producing the same
KR101195629B1 (en) Method for preparing barium titanyl oxalate powder and method for preparing titanium based perovskite-type ceramic raw powder
JP5611382B2 (en) Method for producing stabilized zirconia powder and precursor thereof
JP3357420B2 (en) Niobium oxide sol and method for producing the same
JPS61141619A (en) Production of zirconia fine powder
CN104528824B (en) A kind of produce Zirconium powder and the method for ammonium salt and product simultaneously
JP6005528B2 (en) Method for producing titanium dioxide solution and method for producing perovskite titanium composite oxide
JP2004344878A (en) Zirconium group oxide catalyst and its production method
JP2981553B1 (en) Spinel manufacturing method
KR101533775B1 (en) Method of manufacturing cerium oxide from rare earth compounds
KR100473399B1 (en) Process for the preparation of fine ceramic powders
JPH0855706A (en) Manufacture of fine powder of oxide semiconductor
JP2009084098A (en) Method for producing silicon-containing tin dioxide powder
JP7200797B2 (en) Method for producing alkaline earth metal carbonate

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100701

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees