JPH08268716A - Method for controlling particle diameter of pseudo-boehmite powder - Google Patents

Method for controlling particle diameter of pseudo-boehmite powder

Info

Publication number
JPH08268716A
JPH08268716A JP7095928A JP9592895A JPH08268716A JP H08268716 A JPH08268716 A JP H08268716A JP 7095928 A JP7095928 A JP 7095928A JP 9592895 A JP9592895 A JP 9592895A JP H08268716 A JPH08268716 A JP H08268716A
Authority
JP
Japan
Prior art keywords
solution
pseudo
soln
boehmite powder
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7095928A
Other languages
Japanese (ja)
Inventor
Takayuki Tsukada
高行 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP7095928A priority Critical patent/JPH08268716A/en
Publication of JPH08268716A publication Critical patent/JPH08268716A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To control the particle diameter and crystallinity of pseudo-boehmite powder by adding a specified compd. to starting material when pseudo-boehmite powder is synthesized by a neutralization decomposition method. CONSTITUTION: An aluminum salt soln. is mixed with an alkali aluminate soln., an aluminum salt soln. is mixed with an alkali soln. or an alkali aluminate soln. is mixed with an acidic soln. and the resultant mixture is aged, washed and dried to synthesize pseudo-boehmite powder. At this time, one of an aluminum salt soln. and an acidic soln. each contg. a cerium salt soln. or a titanium salt soln. or one of an alkali aluminate soln. and an alkali soln. each contg. an alkali silicate soln. is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、触媒担体として使用さ
れる擬ベーマイト粉を中和分解法で作製する際の擬ベー
マイト粉の粒径制御方法に関するものである。ここで言
う粒径とは、一次粒子径のことであり結晶子径と同意で
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the particle size of pseudo-boehmite powder when the pseudo-boehmite powder used as a catalyst carrier is produced by a neutralization decomposition method. The particle size mentioned here is the primary particle size and is synonymous with the crystallite size.

【0002】[0002]

【従来の技術】水酸化アルミニウム、オキシ水酸化アル
ミニウム、アルミナ等のアルミニウム化合物は、触媒担
体の原料もしくは製品として広く用いられている。一般
的には、熱安定性に優れ機械的強度に優れるγ−アルミ
ナが、触媒担体としてよく用いられ、これは、一般にベ
ーマイトゲル(擬ベーマイト)を焼成することにより製造
される。この擬ベーマイト粉末の作製には、アルミニウ
ム塩の中和分解法やアルミニウムアルコキシドの加水分
解法が一般的に用いられる。
2. Description of the Related Art Aluminum compounds such as aluminum hydroxide, aluminum oxyhydroxide, and alumina are widely used as raw materials or products for catalyst carriers. In general, γ-alumina, which has excellent thermal stability and mechanical strength, is often used as a catalyst carrier, and it is generally produced by firing boehmite gel (pseudo-boehmite). In order to produce this pseudo-boehmite powder, a neutralization decomposition method of an aluminum salt and a hydrolysis method of an aluminum alkoxide are generally used.

【0003】一般的な中和分解法は、 アルミニウム塩溶液とアルミン酸アルカリ、またはア
ルミニウム塩溶液とアルカリ、またはアルミン酸アルカ
リ溶液と酸を室温以上、pH4〜11の条件になるように混
合する。 により作製されたベーマイトゲルを、必要に応じて
加温、熟成する。 得られたスラリーをフィルタープレス等で濾過し、純
水中に分散させて洗浄する工程を繰り返した後、スプレ
ードライで乾燥し、擬ベーマイト粉末を得る。から成
る。また、アルミニウムアルコキシドの加水分解法は、 アルミニウムアルコキシドに水を添加、混合する。 、上記の上記中和分解法の工程と同様。 である。得られた擬ベーマイト粉は、硝酸、酢酸等の解
こう剤を含む水溶液を添加し、混練後、押出し、乾燥・
焼成工程を経て、アルミナ触媒担体となる。
In a general neutralization decomposition method, an aluminum salt solution and an alkali aluminate, an aluminum salt solution and an alkali, or an alkali aluminate solution and an acid are mixed at room temperature or higher and a pH of 4 to 11. The boehmite gel prepared in Step 1 is heated and aged as required. The resulting slurry is filtered by a filter press or the like, dispersed in pure water, and washed to repeat the process, and then dried by spray drying to obtain pseudo-boehmite powder. Consists of. In addition, in the hydrolysis method of aluminum alkoxide, water is added to and mixed with aluminum alkoxide. The same as the steps of the above-mentioned neutralization decomposition method. Is. The obtained pseudo-boehmite powder was added with an aqueous solution containing a peptizer such as nitric acid and acetic acid, kneaded, extruded, and dried.
It becomes an alumina catalyst carrier through a firing process.

【0004】一般に触媒担体としての性状は、大きい比
表面積、適切な細孔径及び細孔分布、大きい細孔容積、
強い機械的強度、活性金属種の分散性が良好なこと、成
形性の良いこと等が挙げられる。これらの条件は、粉体
や触媒担体の製造条件に大きく支配される。特に、沈殿
形成時、沈殿熟成時における溶液のpH、温度、アル
ミニウム濃度、塩濃度、時間等が重要なパラメータであ
る。中和分解法の場合、一般的には、沈殿形成時、沈
殿熟成時とも、pHは4〜11、温度は室温〜100℃、必要
に応じて100℃〜200℃の温度範囲で処理される。しか
し、100℃以上では圧力容器が必要となりコスト的に問
題がある。
Generally, the properties as a catalyst carrier are as follows: large specific surface area, appropriate pore size and pore distribution, large pore volume,
It has strong mechanical strength, good dispersibility of active metal species, and good moldability. These conditions are largely controlled by the manufacturing conditions of the powder and the catalyst carrier. In particular, the pH, temperature, aluminum concentration, salt concentration, time, etc. of the solution at the time of precipitation formation and precipitation aging are important parameters. In the case of the neutralization decomposition method, generally, the pH is 4 to 11, the temperature is room temperature to 100 ° C, and the treatment is carried out in the temperature range of 100 ° C to 200 ° C as needed, both at the time of forming the precipitate and at the time of aging the precipitate. . However, if the temperature is 100 ° C or higher, a pressure vessel is required, which causes a cost problem.

【0005】[0005]

【発明が解決しようとする課題】アルミニウムアルコキ
シドの加水分解法によって得られた擬ベーマイト粉は不
純物が少なく結晶性も良く、粉体として好ましい特性を
有しているが、非常にコストが高いという問題点があ
る。一方、中和分解法はコストは安価である。しかし、
中和分解法により作製された擬ベーマイト粉の粒子径の
制御は上記の沈殿形成時のパラメータ(溶液のpH、温
度、アルミニウム濃度、塩濃度、時間等)の制御により
可能であるが、粒径の大きな擬ベーマイト粉の製造はこ
れらのパラメータの制御では困難であるという欠点があ
った。
The pseudo-boehmite powder obtained by the hydrolysis method of aluminum alkoxide has few impurities and good crystallinity, and has desirable characteristics as a powder, but it is very expensive. There is a point. On the other hand, the neutralization decomposition method is inexpensive. But,
The particle size of the pseudo-boehmite powder produced by the neutralization decomposition method can be controlled by controlling the above-mentioned precipitation formation parameters (solution pH, temperature, aluminum concentration, salt concentration, time, etc.) However, the production of large pseudo-boehmite powders with a large number of particles is difficult by controlling these parameters.

【0006】[0006]

【課題を解決するための手段】そこで、本発明者は上記
問題点を解決するために鋭意検討した結果、中和分解法
において、出発原料としてセリウム塩溶液またはチタン
塩溶液を添加したアルミニウム塩溶液または酸性溶液、
または、ケイ酸アルカリ溶液を添加したアルミン酸アル
カリ溶液またはアルカリ溶液を用い、これを水酸化アル
ミニウムと共沈させ、熟成、洗浄、乾燥することによ
り、擬ベーマイト粉の粒子径、結晶性を制御できること
を見出した。
The inventors of the present invention have made extensive studies to solve the above problems, and as a result, in the neutralization decomposition method, an aluminum salt solution to which a cerium salt solution or a titanium salt solution was added as a starting material. Or acidic solution,
Alternatively, it is possible to control the particle size and crystallinity of the pseudo-boehmite powder by using an alkaline aluminate solution or an alkaline solution to which an alkaline silicate solution is added, coprecipitating this with aluminum hydroxide, and aging, washing and drying. Found.

【0007】すなわち、本発明は、アルミニウム塩溶液
とアルミン酸アルカリ溶液、またはアルミニウム塩溶液
とアルカリ溶液、またはアルミン酸アルカリ溶液と酸性
溶液を、混合、熟成、洗浄、乾燥することにより擬ベー
マイト粉を合成する方法において、セリウム塩溶液また
はチタン塩溶液を含有したアルミニウム塩溶液または酸
性溶液、または、ケイ酸アルカリ溶液を含有したアルミ
ン酸アルカリ溶液またはアルカリ溶液を用いることを特
徴とする擬ベーマイト粉の粒径制御方法である。
That is, according to the present invention, a pseudo-boehmite powder is obtained by mixing, aging, washing and drying an aluminum salt solution and an alkali aluminate solution, an aluminum salt solution and an alkali solution, or an alkali aluminate solution and an acidic solution. In the method of synthesizing, pseudo-boehmite powder particles characterized by using an aluminum salt solution or an acidic solution containing a cerium salt solution or a titanium salt solution, or an alkaline aluminate solution or an alkaline solution containing an alkali silicate solution. This is a diameter control method.

【0008】[0008]

【発明の具体的説明】本発明は、セリウム塩溶液または
チタン塩溶液を添加したアルミニウム塩溶液または酸性
溶液、ケイ酸アルカリ溶液を添加したアルミン酸アルカ
リ溶液またはアルカリ溶液を出発原料として用いる。こ
こで、セリウム塩としては、硝酸セリウム、塩化セリウ
ムなどを用いることができる。または、チタン塩溶液と
しては、四塩化チタン、硫酸チタン、硝酸チタン、チタ
ンアルコキシドなどを用いることができる。ケイ酸アル
カリ溶液としては、ケイ酸ソーダなどを用いることがで
きる。添加量は目的の粒径、結晶性に応じて適宜調整す
る。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, an aluminum salt solution or an acidic solution to which a cerium salt solution or a titanium salt solution is added, and an alkaline aluminate solution or an alkaline solution to which an alkaline silicate solution is added are used as starting materials. Here, as the cerium salt, cerium nitrate, cerium chloride, or the like can be used. Alternatively, titanium tetrachloride, titanium sulfate, titanium nitrate, titanium alkoxide, or the like can be used as the titanium salt solution. Sodium silicate or the like can be used as the alkali silicate solution. The addition amount is appropriately adjusted according to the target particle size and crystallinity.

【0009】一方、アルミニウム塩溶液、酸性溶液、ア
ルミン酸アルカリ溶液、アルカリ溶液としては一般的に
中和法に用いられる塩を使用する。代表的には、アルミ
ニウム塩溶液としては、塩化アルミニウム、硫酸アルミ
ニウム、硝酸アルミニウム溶液等を、アルミン酸アルカ
リとしてはアルミン酸ソーダ等を、アルカリとしては、
アンモニア、苛性ソーダ等を、酸としては、硫酸、塩
酸、硝酸等を用いる。
On the other hand, as the aluminum salt solution, the acidic solution, the alkaline aluminate solution, and the alkaline solution, salts generally used in the neutralization method are used. Typically, the aluminum salt solution is aluminum chloride, aluminum sulfate, an aluminum nitrate solution, etc., the alkali aluminate is sodium aluminate, etc., and the alkali is
Ammonia, caustic soda and the like are used, and as the acid, sulfuric acid, hydrochloric acid, nitric acid and the like are used.

【0010】尚、熟成、洗浄、乾燥条件は、目的の担体
特性となる操作条件で、一般的な中和分解法の作製方法
が用いられる。
The aging, washing, and drying conditions are the operating conditions that give the desired carrier properties, and a general method for preparing a neutralization decomposition method is used.

【0011】[0011]

【実施例1】濃度0.5mol/lの塩化アルミニウム水溶液
に四塩化チタン水溶液を乾燥後の粉末中にTiが0.1wt%
となるように添加混合し、さらに濃度0.5mol/lの水酸
化ナトリウム溶液を添加してpHを9.0に調整した。その
後、80℃に加温し20時間熟成した後、フィルタープレス
で濾過洗浄した。スラリーの電気伝導度が、0.05mS/cm
以下となった時点で、得られたスラリーをスプレードラ
イで乾燥して擬ベーマイト粉を得た。擬ベーマイト粉の
X線回折図形の(020)ピークより求めた結晶子径、及び
示差熱分析(DTA)より求めた擬ベーマイトからγ−アル
ミナへの相転移温度を表1に示す。結晶子径は33Å、相
転移温度は450℃であった。
Example 1 Ti was 0.1 wt% in the powder after drying an aqueous solution of titanium tetrachloride in an aqueous solution of aluminum chloride having a concentration of 0.5 mol / l.
The mixture was added and mixed so that the concentration became 0.5 mol / l, and a sodium hydroxide solution having a concentration of 0.5 mol / l was added to adjust the pH to 9.0. Then, the mixture was heated to 80 ° C. and aged for 20 hours, and then filtered and washed with a filter press. The electrical conductivity of the slurry is 0.05 mS / cm
When the following was obtained, the obtained slurry was dried by spray drying to obtain pseudo-boehmite powder. Table 1 shows the crystallite size obtained from the (020) peak of the X-ray diffraction pattern of the pseudo-boehmite powder and the phase transition temperature from pseudo-boehmite to γ-alumina obtained by the differential thermal analysis (DTA). The crystallite size was 33Å and the phase transition temperature was 450 ℃.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【実施例2】実施例1の四塩化チタン水溶液の代わりに
塩化セリウムを用い、濃度0.5mol/lの塩化アルミニウ
ム水溶液に乾燥後粉末中にCeが0.1wt%となるように添
加混合し、実施例1と同様に擬ベーマイト粉を得た。擬
ベーマイト粉のX線回折図形の(020)ピークより求めた
結晶子径、及び示差熱分析(DTA)より求めた擬ベーマイ
トからγ−アルミナへの相転移温度を表1に示す。結晶
子径は35Å、相転移温度は455℃であった。
[Example 2] Cerium chloride was used in place of the titanium tetrachloride aqueous solution of Example 1, and an aluminum chloride aqueous solution having a concentration of 0.5 mol / l was added and mixed so that Ce was 0.1 wt% in the powder after drying, Pseudo-boehmite powder was obtained in the same manner as in Example 1. Table 1 shows the crystallite size obtained from the (020) peak of the X-ray diffraction pattern of the pseudo-boehmite powder and the phase transition temperature from pseudo-boehmite to γ-alumina obtained by the differential thermal analysis (DTA). The crystallite size was 35Å and the phase transition temperature was 455 ° C.

【0014】[0014]

【実施例3】濃度0.5mol/lのアルミン酸ソーダ溶液に
ケイ酸ソーダ水溶液を乾燥後の粉末中にSiが0.1wt%と
なるように添加混合し、塩酸を添加してpHを9.0に調整
した。その後、80℃に加温し20時間熟成した後、フィル
タープレスで濾過洗浄した。スラリーの電気伝導度が、
0.05mS/cm以下となった時点で、得られたスラリーをス
プレードライで乾燥して擬ベーマイト粉を得た。擬ベー
マイト粉のX線回折図形の(020)ピークより求めた結晶
子径、及び示差熱分析(DTA)より求めた擬ベーマイトか
らγ−アルミナへの相転移温度を表1に示す。結晶子径
は30Å、相転移温度は440℃であった。
Example 3 A sodium aluminate solution having a concentration of 0.5 mol / l was mixed with an aqueous solution of sodium silicate so that Si in the powder after drying was 0.1 wt%, and hydrochloric acid was added to adjust the pH to 9.0. did. Then, the mixture was heated to 80 ° C. and aged for 20 hours, and then filtered and washed with a filter press. The electrical conductivity of the slurry is
When it became 0.05 mS / cm or less, the obtained slurry was dried by spray drying to obtain pseudo-boehmite powder. Table 1 shows the crystallite size obtained from the (020) peak of the X-ray diffraction pattern of the pseudo-boehmite powder and the phase transition temperature from pseudo-boehmite to γ-alumina obtained by the differential thermal analysis (DTA). The crystallite size was 30Å and the phase transition temperature was 440 ℃.

【0015】[0015]

【比較例1】実施例1の四塩化チタン水溶液を添加せず
実施例1と同様に擬ベーマイト粉を得た。擬ベーマイト
粉のX線回折図形の(020)ピークより求めた結晶子径、
及び示差熱分析(DTA)より求めた擬ベーマイトからγ−
アルミナへの相転移温度を表1に示す。結晶子径は26
Å、相転移温度は420℃であった。
Comparative Example 1 A pseudo-boehmite powder was obtained in the same manner as in Example 1 without adding the titanium tetrachloride aqueous solution of Example 1. Crystallite diameter obtained from the (020) peak of the X-ray diffraction pattern of pseudo-boehmite powder,
And γ − from pseudoboehmite obtained by differential thermal analysis (DTA)
Table 1 shows the phase transition temperatures to alumina. Crystallite size is 26
Å The phase transition temperature was 420 ℃.

【0016】このように、セリウム塩溶液またはチタン
塩溶液を添加したアルミニウム塩溶液、ケイ酸アルカリ
溶液を添加したアルミン酸アルカリ溶液を出発原料とし
て用いることで、擬ベーマイト粉末の結晶子径が大きく
なり、また擬ベーマイトからγ−アルミナへの相転移温
度が高くなっていることがわかる。従って、擬ベーマイ
ト粉末の粒径、結晶性の制御が可能であることがわか
る。
As described above, by using the aluminum salt solution added with the cerium salt solution or the titanium salt solution and the alkali aluminate solution added with the alkali silicate solution as the starting materials, the crystallite diameter of the pseudo-boehmite powder is increased. It is also seen that the phase transition temperature from pseudo-boehmite to γ-alumina is high. Therefore, it is understood that the particle size and crystallinity of the pseudo-boehmite powder can be controlled.

【0017】[0017]

【発明の効果】本発明により、中和分解法においてセリ
ウム塩溶液またはチタン塩溶液を添加したアルミニウム
塩溶液または酸性溶液、ケイ酸アルカリ溶液を添加した
アルミン酸アルカリ溶液またはアルカリ溶液を出発原料
として用いることにより、擬ベーマイト粉の粒径、結晶
性を制御できる。
INDUSTRIAL APPLICABILITY According to the present invention, an aluminum salt solution or an acidic solution added with a cerium salt solution or a titanium salt solution, or an alkaline aluminate solution or an alkaline solution added with an alkali silicate solution is used as a starting material in the neutralization decomposition method. This makes it possible to control the particle size and crystallinity of the pseudo-boehmite powder.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】アルミニウム塩溶液とアルミン酸アルカリ
溶液、またはアルミニウム塩溶液とアルカリ溶液、また
はアルミン酸アルカリ溶液と酸性溶液を、混合、熟成、
洗浄、乾燥することにより擬ベーマイト粉を合成する方
法において、セリウム塩溶液またはチタン塩溶液を含有
したアルミニウム塩溶液または酸性溶液、または、ケイ
酸アルカリ溶液を含有したアルミン酸アルカリ溶液また
はアルカリ溶液を用いることを特徴とする擬ベーマイト
粉の粒径制御方法。
1. An aluminum salt solution and an alkali aluminate solution, an aluminum salt solution and an alkali solution, or an alkali aluminate solution and an acidic solution are mixed and aged.
In the method of synthesizing pseudo-boehmite powder by washing and drying, an aluminum salt solution or an acidic solution containing a cerium salt solution or a titanium salt solution, or an alkaline aluminate solution or an alkaline solution containing an alkaline silicate solution is used. A particle size control method for pseudo-boehmite powder, which is characterized by the above.
JP7095928A 1995-03-30 1995-03-30 Method for controlling particle diameter of pseudo-boehmite powder Pending JPH08268716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7095928A JPH08268716A (en) 1995-03-30 1995-03-30 Method for controlling particle diameter of pseudo-boehmite powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7095928A JPH08268716A (en) 1995-03-30 1995-03-30 Method for controlling particle diameter of pseudo-boehmite powder

Publications (1)

Publication Number Publication Date
JPH08268716A true JPH08268716A (en) 1996-10-15

Family

ID=14150942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7095928A Pending JPH08268716A (en) 1995-03-30 1995-03-30 Method for controlling particle diameter of pseudo-boehmite powder

Country Status (1)

Country Link
JP (1) JPH08268716A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999003783A1 (en) * 1997-07-15 1999-01-28 Japan Energy Corporation Pseudoboehmite powder for catalyst carrier and process for preparing the same
WO2001012553A1 (en) * 1999-08-11 2001-02-22 Akzo Nobel N.V. Process for the preparation of quasi-crystalline boehmites from inexpensive precursors
JP2003507299A (en) * 1999-08-11 2003-02-25 アクゾ ノーベル ナムローゼ フェンノートシャップ Method for producing pseudocrystalline boehmite
JP2003507297A (en) * 1999-08-11 2003-02-25 アクゾ ノーベル ナムローゼ フェンノートシャップ Microcrystalline boehmite containing additives and shaped particles and catalyst composition containing such microcrystalline boehmite
JP2003507296A (en) * 1999-08-11 2003-02-25 アクゾ ノーベル ナムローゼ フェンノートシャップ Pseudocrystalline boehmite with additives
WO2003066215A1 (en) * 2002-02-06 2003-08-14 Japan Energy Corporation Method for preparing hydrogenation purification catalyst
JP2007167842A (en) * 2004-03-12 2007-07-05 Saint-Gobain Ceramics & Plastics Inc Method of forming spray dried alumina catalyst carrier material
JP2015500788A (en) * 2011-12-20 2015-01-08 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Method for producing spheroidal alumina particles
CN104671265A (en) * 2013-11-26 2015-06-03 中国石油化工股份有限公司 A method of preparing pseudoboehmite
CN105271331A (en) * 2015-10-22 2016-01-27 中国海洋石油总公司 Method for preparing pseudo-boehmite by taking waste silicon-aluminum molecular sieve as raw material
JP2016028993A (en) * 2014-07-25 2016-03-03 Dic株式会社 α-ALUMINA FINE PARTICLE AND PRODUCTION METHOD OF THE SAME
JP2019507087A (en) * 2016-01-29 2019-03-14 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Method for producing alumina gel having high dispersibility and specific crystallite size

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999003783A1 (en) * 1997-07-15 1999-01-28 Japan Energy Corporation Pseudoboehmite powder for catalyst carrier and process for preparing the same
US6174511B1 (en) 1997-07-15 2001-01-16 Japan Energy Corporation Pseudoboehmite powder for catalyst carrier and process for preparing the same
US6689333B1 (en) * 1999-08-11 2004-02-10 Akzo Nobel N.V. Process for the preparation of quasi-crystalline boehmites from inexpensive precursors
WO2001012553A1 (en) * 1999-08-11 2001-02-22 Akzo Nobel N.V. Process for the preparation of quasi-crystalline boehmites from inexpensive precursors
JP2003507297A (en) * 1999-08-11 2003-02-25 アクゾ ノーベル ナムローゼ フェンノートシャップ Microcrystalline boehmite containing additives and shaped particles and catalyst composition containing such microcrystalline boehmite
JP2003507296A (en) * 1999-08-11 2003-02-25 アクゾ ノーベル ナムローゼ フェンノートシャップ Pseudocrystalline boehmite with additives
JP2003507298A (en) * 1999-08-11 2003-02-25 アクゾ ノーベル ナムローゼ フェンノートシャップ Process for producing pseudocrystalline boehmite from inexpensive precursors
JP2003507299A (en) * 1999-08-11 2003-02-25 アクゾ ノーベル ナムローゼ フェンノートシャップ Method for producing pseudocrystalline boehmite
US6919294B2 (en) 2002-02-06 2005-07-19 Japan Energy Corporation Method for preparing hydrogenation purification catalyst
WO2003066215A1 (en) * 2002-02-06 2003-08-14 Japan Energy Corporation Method for preparing hydrogenation purification catalyst
KR100895632B1 (en) * 2002-02-06 2009-05-07 쟈판에나지 덴시자이료 가부시키가이샤 Method for preparing hydrogenation purification catalyst
JP2007167842A (en) * 2004-03-12 2007-07-05 Saint-Gobain Ceramics & Plastics Inc Method of forming spray dried alumina catalyst carrier material
JP2015500788A (en) * 2011-12-20 2015-01-08 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Method for producing spheroidal alumina particles
CN104671265A (en) * 2013-11-26 2015-06-03 中国石油化工股份有限公司 A method of preparing pseudoboehmite
JP2016028993A (en) * 2014-07-25 2016-03-03 Dic株式会社 α-ALUMINA FINE PARTICLE AND PRODUCTION METHOD OF THE SAME
CN105271331A (en) * 2015-10-22 2016-01-27 中国海洋石油总公司 Method for preparing pseudo-boehmite by taking waste silicon-aluminum molecular sieve as raw material
JP2019507087A (en) * 2016-01-29 2019-03-14 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Method for producing alumina gel having high dispersibility and specific crystallite size

Similar Documents

Publication Publication Date Title
US4117105A (en) Process for preparing dispersible boehmite alumina
US4211667A (en) Process for producing alumina sols
JP5117657B2 (en) Process for producing pseudocrystalline boehmite from inexpensive precursors
JPH0324411B2 (en)
JPH08268716A (en) Method for controlling particle diameter of pseudo-boehmite powder
JP4343697B2 (en) Cu / Zn / Al catalyst for methanol synthesis
JPWO2015152237A1 (en) Strontium titanate fine particle powder and method for producing the same
US7632477B2 (en) Process for preparing zirconium oxides and zirconium-based mixed oxides
JP3759208B2 (en) Method for producing alumina particles
KR20020026565A (en) PROCESS FOR PRODUCING Al-CONTAINING NON-Mg-ANIONIC CLAY
Huang et al. Control of porosity and surface area in alumina: I. Effect of preparation conditions
JPH08268715A (en) Production of high purity pseudo-boehmite powder
KR101587110B1 (en) Alumina particles and its manufacturing method
JP2000256011A (en) Boehmite and its production
JPH0238527B2 (en)
JP4359531B2 (en) Zirconium-based oxide production method and automobile exhaust gas purification catalyst
KR100473399B1 (en) Process for the preparation of fine ceramic powders
JPH0624743A (en) Production of spherical zinc oxide powder
KR100523451B1 (en) Production Method of Nano-sized Crystalline Titania Powders
JP2006248862A (en) Sol comprising al-o-based particle as dispersoid, its production method, and alumina particle
JPH0573696B2 (en)
JPS62283811A (en) Manufacture of cordierite precursor
US11577964B2 (en) Method for producing an alumina gel having a high dispersibility and a specific crystallite size
JPS6183627A (en) Production of powdery zirconium oxide
JP4829771B2 (en) Spherical peroxotitanium hydrate and method for producing spherical titanium oxide