JPS61134071A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61134071A
JPS61134071A JP25693784A JP25693784A JPS61134071A JP S61134071 A JPS61134071 A JP S61134071A JP 25693784 A JP25693784 A JP 25693784A JP 25693784 A JP25693784 A JP 25693784A JP S61134071 A JPS61134071 A JP S61134071A
Authority
JP
Japan
Prior art keywords
substrate
gate electrode
oxide film
conductive layer
leakage current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25693784A
Other languages
Japanese (ja)
Inventor
Kenji Shibata
健二 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25693784A priority Critical patent/JPS61134071A/en
Publication of JPS61134071A publication Critical patent/JPS61134071A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates

Abstract

PURPOSE:To contrive to reduce leakage current by a method wherein an intersection of the edge of the element-isolating region on the surface of a semiconductor substrate with the gate electrode is provided with a conductive layer on which negative voltage to that of the substrate has been impressed. CONSTITUTION:An N-channel MOS transistor is provided with a field oxide film 2 on the surface of the P type Si substrate 1, an element region 3 surrounded by the oxide film 2, N<+> type source and drain regions 8, 9, a gate electrode 6, and a conductive layer 21, on which negative potential to that of the substrate 1 has been impressed, at an intersection of the edge of the oxide film 2 with the gate electrode 6. The presence of the conductive layer 21 on which negative potential to that of the substrate 1 has been impressed enables reduction in leakage current at the edge of the oxide film 2 under the gate electrode 6 and the complete cut of leakage current particularly at the field transistor part. Since the conductive layer 21 is made of polycrystalline Si, an Si oxide film 22 that insulates the conductive layer 21 from the gate electrode 6 can be formed by oxidizing the polycrystalline Si film, and the process is simple.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置に関し、特に素子分離領域のエツジ
部を改良したMOSトランジスタに係わる。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor device, and particularly to a MOS transistor with improved edge portions of element isolation regions.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、例えばnチャネルMOSトランジスタは、第6図
(a)〜(d)、第7図及び第8因に示すように製造さ
れている。
Conventionally, for example, n-channel MOS transistors have been manufactured as shown in FIGS. 6(a) to 6(d), FIGS. 7 and 8.

まず、P型のシリコン基板1の表面にフィールド酸化膜
(素子分離領域)2を形成した後、このフィールド酸化
ff!2で囲まれた素子領wt3に酸化膜4を形成する
(第6図(a)図示)。つづいて、酸化膜4の真上から
ホウ素またはヒ素を素子領域3のチャネル部のみに10
°l 〜10a114イオン注入し、イオン注入領域5
を形成する(第6図(b)図示)。ここで、注入領域5
は、MOSトランジスタのしきい値電圧を制御するため
のものである。更に、前記酸化膜4上に多結晶シリコン
からなるゲート電極6を形成した後、該ゲート電極6を
マスクとして酸化膜4を選択的にエツチング除去し、ゲ
ート酸化117を形成する。しかる後、ゲート電極6を
マスクとして素子領域3にn型不純物をイオン注入し、
1000℃前後の熱処理を施してN+型のソース、ドレ
イン領域8.9を形成する(第6図(C)図示)。ひき
つづき、全面に層間絶縁膜10を形成し、1000℃前
後のデンシファイ工程を経た後、層間絶縁膜10にコン
タクトホール11を形成し、更にこれに例えばA2電極
12を形成してnチャネルMOSトランジスタを製造す
る(第6図(d)、第7図及び第8図図示)。ここで、
第7図は第6図(d)の平面図を、第8図は第7図のX
−X線に沿う断面図を夫々示す。なお、これらの工程以
外にもA2電極の段切れを防止するために層間絶縁膜1
0の形成侵、平坦化工程として1000℃前後の熱処理
、リンゲッター熱処理、更にゲート電極6への不純物拡
散等が100℃の熱処理としてゲート酸化模形形工程後
に行なわれる。
First, after forming a field oxide film (element isolation region) 2 on the surface of a P-type silicon substrate 1, this field oxidation ff! An oxide film 4 is formed in the element region wt3 surrounded by 2 (as shown in FIG. 6(a)). Next, from directly above the oxide film 4, boron or arsenic is applied for 10 minutes only to the channel portion of the device region 3.
°l ~10a114 ion implantation, ion implantation area 5
(as shown in FIG. 6(b)). Here, injection region 5
is for controlling the threshold voltage of the MOS transistor. Furthermore, after forming a gate electrode 6 made of polycrystalline silicon on the oxide film 4, the oxide film 4 is selectively etched away using the gate electrode 6 as a mask to form a gate oxide 117. Thereafter, using the gate electrode 6 as a mask, n-type impurity ions are implanted into the element region 3.
A heat treatment is performed at about 1000° C. to form N+ type source and drain regions 8.9 (as shown in FIG. 6C). Subsequently, an interlayer insulating film 10 is formed on the entire surface, and after a densification process at around 1000° C., a contact hole 11 is formed in the interlayer insulating film 10, and furthermore, for example, an A2 electrode 12 is formed in this to form an n-channel MOS transistor. (Illustrated in FIG. 6(d), FIG. 7, and FIG. 8). here,
Figure 7 shows the plan view of Figure 6(d), and Figure 8 shows the X of Figure 7.
- A cross-sectional view taken along the X-ray is shown, respectively. In addition to these steps, an interlayer insulating film 1 is also added to prevent the A2 electrode from breaking.
After the gate oxidation modeling step, heat treatment at about 1000° C., ring getter heat treatment, and diffusion of impurities into the gate electrode 6 are performed as a heat treatment at 100° C. as a planarization step.

しかしながら、前述した如く製造されるMOSトランジ
スタは、次に示す欠点を有する。即ち、ゲート酸化膜7
に電子−正孔対が発生した場合、一方の正孔がゲート酸
化膜7とイオン注入1[5との界面に補促され、正の固
定電荷が形成される。
However, the MOS transistor manufactured as described above has the following drawbacks. That is, the gate oxide film 7
When an electron-hole pair is generated, one of the holes is attracted to the interface between the gate oxide film 7 and the ion implantation layer 1 [5], and a positive fixed charge is formed.

また、ゲート酸化膜7中の原子同志の結合を正孔が切る
ことによって界面単位が発生する。従って、こ−れらの
固定電荷や界面単位により、トランジスタのリーク電流
が増大する。詳述すれば、第7図及び第8図に示す如く
、ゲート酸化膜7中あるいはゲート酸化膜7と半導体基
板1との界面に形成された正の電荷により、フィールド
酸化12のエツジ部(点11Aで囲まれた領域)が反転
し易くなり、これによりエツジ部で電流が流れ易くなる
ためである。
In addition, interface units are generated when holes break bonds between atoms in the gate oxide film 7. Therefore, these fixed charges and interface units increase the leakage current of the transistor. Specifically, as shown in FIGS. 7 and 8, positive charges formed in the gate oxide film 7 or at the interface between the gate oxide film 7 and the semiconductor substrate 1 cause the edges (points) of the field oxide 12 to This is because the area surrounded by 11A) is more likely to be reversed, which makes it easier for current to flow at the edge portion.

このようなことから、リーク電流の増大を防ぐため半導
体製造工程を従来より低温にして行なう方法等が考えら
れたが、工程が複雑になることや、従来にはなかった工
夫を必要とする等問題が多い。
In view of this, methods have been considered in which the semiconductor manufacturing process is performed at a lower temperature than before in order to prevent an increase in leakage current, but this method complicates the process and requires ingenuity that was not available in the past. There are many problems.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされもので、リーク電流を
防止し得る半導体装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a semiconductor device that can prevent leakage current.

〔発明の概要〕[Summary of the invention]

本発明は、半導体基板表面の素子分離領域のエツジ部と
ゲート電極との交差部に、前記基板に対して負の電圧が
印加された導電層を設け、これによりリーク電流の減少
を図ったものである。
The present invention aims to reduce leakage current by providing a conductive layer to which a negative voltage is applied to the substrate at the intersection of the edge of the element isolation region on the surface of the semiconductor substrate and the gate electrode. It is.

(発明の実施例) 以下、本発明の一実施例に係るnチャネルMOSトラン
ジスタを製造工程順に第1図(a)〜(d)、第2図〜
第4図を参照して説明する。なお、従来のトランジスタ
と同部材は同符号を付して説明を省略する。
(Embodiment of the Invention) Hereinafter, an n-channel MOS transistor according to an embodiment of the present invention will be manufactured in the order of manufacturing steps in FIGS. 1(a) to (d) and FIGS.
This will be explained with reference to FIG. Note that the same members as those of the conventional transistor are given the same reference numerals, and the description thereof will be omitted.

まず、P型のシリコン基板1の表面にフィールド酸化1
12を形成した後、素子領域3に酸化114を形成した
く第1図(a)図示)。つづいて、素子領域3のチャネ
ル部のみにイオン注入領域5を形成したく第1図(b)
図示)。次いで、全面に例えば多結晶シリコン層(図示
せず)を堆積した後、これをバターニングしてフィール
ド@R2のエツジ部とゲート電極形成形成予定部との交
差部に多結晶シリコンからなる導電層21を形成した。
First, field oxidation 1 is applied to the surface of a P-type silicon substrate 1.
After forming oxide 12, it is desired to form oxide 114 in element region 3 (as shown in FIG. 1(a)). Next, we want to form the ion implantation region 5 only in the channel part of the element region 3, as shown in FIG. 1(b).
(Illustrated). Next, after depositing, for example, a polycrystalline silicon layer (not shown) on the entire surface, this is patterned to form a conductive layer made of polycrystalline silicon at the intersection of the edge portion of field @R2 and the portion where the gate electrode is to be formed. 21 was formed.

ここで、導電層21は前記基板1に対して負の電位が印
加されている。しかる後、前記導電層21を酸化してそ
の周囲に酸化1!22を形成した。更に、素子領域3に
ゲート酸化I!!7を介してゲート電極6を形成した後
、素子領域3にN+型のソース、ドレイン領域8.9を
形成した(第1図(C)、第2図及び第3図図示)。な
お、第2図は第1図(d)の平面図を、第3図は第2図
のX−XIに沿う断面図を夫々示す。以下、従来の第6
図(d)と同様に、層間絶縁膜1o、コンタクトホール
11及びA2電極12を夫々形成してnチャネルMOS
トランジスタを製造したく第1図(d)及び第4図図示
)。ここで、第4図は第1図(d>を紙面に直交する方
向に切断した断面図である。
Here, a negative potential is applied to the conductive layer 21 with respect to the substrate 1. Thereafter, the conductive layer 21 was oxidized to form oxide 1!22 around it. Furthermore, gate oxidation I! is applied to the device region 3! ! After forming the gate electrode 6 through the gate electrode 7, N+ type source and drain regions 8.9 were formed in the element region 3 (as shown in FIG. 1(C), FIG. 2, and FIG. 3). 2 shows a plan view of FIG. 1(d), and FIG. 3 shows a sectional view taken along line X-XI in FIG. 2. Below, the conventional 6th
Similarly to FIG.
1(d) and 4). Here, FIG. 4 is a sectional view taken in a direction perpendicular to the plane of the paper in FIG. 1 (d>).

本発明に係るnチャネルMOSトランジスタは、第1図
(d)及び第4図に示す如く、P型のシリコン基板1の
表面にフィールド酸化膜2を設け、該フィールド酸化w
A2で囲まれた素子領域3にN“型のソース、ドレイン
領域8.9を設けるとともにゲート電極6を設け、更に
フィールド酸化膜2のエツジ部とゲート電極6との交差
部に基板1に対して負の電位が印加された導電層21を
設けた構造となっている。
As shown in FIG. 1(d) and FIG. 4, the n-channel MOS transistor according to the present invention includes a field oxide film 2 provided on the surface of a P-type silicon substrate 1, and the field oxide film 2
N" type source and drain regions 8.9 are provided in the element region 3 surrounded by A2, and a gate electrode 6 is provided, and furthermore, at the intersection of the edge portion of the field oxide film 2 and the gate electrode 6, a The structure includes a conductive layer 21 to which a negative potential is applied.

しかして、本発明によれば、基板1に対して負の電位が
印加された導電層21の存在により、ゲート電ff16
下のフィールド酸化1!2のエツジ部でのリーク電流が
減少し、特にフィールドトランジスタ部でのリーク電流
が完全にカットできる。従って、第5図に示す如くしき
い値(Vth)のバラツキを大幅に改善できる。なお、
第5図で、(イ)は従来のnチャネルMOSトランジス
タの場合の特性線を、(ロ)は本発明によるそれの特性
線を夫々示す。
According to the present invention, due to the presence of the conductive layer 21 to which a negative potential is applied to the substrate 1, the gate voltage ff16
Leakage current at the edge portion of the lower field oxides 1 and 2 is reduced, and in particular, leakage current at the field transistor portion can be completely cut. Therefore, as shown in FIG. 5, variations in threshold value (Vth) can be significantly improved. In addition,
In FIG. 5, (a) shows a characteristic line for a conventional n-channel MOS transistor, and (b) shows a characteristic line for the same according to the present invention.

また、導電層21は多結晶シリコンからなるため、該導
電層21とゲート電極6とを絶縁させるシリコン酸化1
1!22を多結晶シリコン層の酸化により形成でき、工
程が簡単である。
Further, since the conductive layer 21 is made of polycrystalline silicon, silicon oxide 1 is used to insulate the conductive layer 21 and the gate electrode 6.
1!22 can be formed by oxidizing a polycrystalline silicon layer, and the process is simple.

なお、上記実施例では、導電層の材料として多結晶シリ
コンを用いたが、これに限らず、例えばタングステン、
モリブデン、チタンなどの高融点金属、あるいはこれら
の高融点金属との化合物、あるいはA2等でもよい。
In the above embodiment, polycrystalline silicon was used as the material for the conductive layer, but the material is not limited to this, and for example, tungsten,
High melting point metals such as molybdenum and titanium, compounds with these high melting point metals, A2, etc. may be used.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、リーク電流を゛減少
し、もってしきい値電圧のバラツキを改善し得る等信頼
性の高い半導体装置を提供できる。
As described in detail above, according to the present invention, it is possible to provide a highly reliable semiconductor device that can reduce leakage current and thereby improve variations in threshold voltage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は本発明の一実施例に係るnチャ
ネルMOSトランジスタを製造工程順に示す断面図、第
2図は第1図(d)の平面図、第3図は第2図のX−X
線に沿う断面図、第4図は第1図の(d)を紙面と直交
する方向に切断した断面図、第5図は従来及び本発明に
係るトランジスタのゲート電圧とドレイン電圧との関係
を示す特性図、第6図(a)〜(d)は従来のnチャネ
ルMoSトランジスタを製造工程順に示す断面図、第7
図は第6図(d)の平面図、第8図は第7図のX−X線
に沿う断面図である。 1・・・P型のシリコン基板、2・・・フィールド酸化
膜(素子分離領域)、3・・・素子領域、5・・・イオ
ン注入領域、6・・・ゲート電極、7・・・ゲート酸化
膜、8・・・N+型のソース領域、9・・・N+型のド
レイン領域、10・・・層間絶縁膜、11・・・コンタ
クトホール、12・・・AJ2電極、21・・・導電層
、22・・・シリコン酸化膜。 出願人代理人 弁理士 鈴江武彦 第1図 t!、2図 第4図 N5図 116図 第7図
1(a) to 1(d) are cross-sectional views showing an n-channel MOS transistor according to an embodiment of the present invention in the order of manufacturing steps, FIG. 2 is a plan view of FIG. 1(d), and FIG. XX in figure 2
FIG. 4 is a cross-sectional view taken along the line, FIG. 4 is a cross-sectional view taken in a direction perpendicular to the plane of the paper in FIG. 6(a) to 6(d) are cross-sectional views showing conventional n-channel MoS transistors in the order of manufacturing steps;
The figure is a plan view of FIG. 6(d), and FIG. 8 is a sectional view taken along the line X--X of FIG. 7. DESCRIPTION OF SYMBOLS 1... P-type silicon substrate, 2... Field oxide film (element isolation region), 3... Element region, 5... Ion implantation region, 6... Gate electrode, 7... Gate Oxide film, 8... N+ type source region, 9... N+ type drain region, 10... Interlayer insulating film, 11... Contact hole, 12... AJ2 electrode, 21... Conductive Layer 22... silicon oxide film. Applicant's agent Patent attorney Takehiko Suzue Figure 1 t! ,2Figure 4Figure N5Figure 116Figure 7

Claims (3)

【特許請求の範囲】[Claims] (1)、第1導電型の半導体基板と、この基板の表面に
設けられた素子分離領域と、この素子分離領域に囲まれ
た基板表面に設けられた第2導電型のソース、ドレイン
領域と、同基板上にゲート酸化膜を介して設けられたゲ
ート電極と、前記素子分離領域のエッジ部とゲート電極
との交差部に設けられ、前記基板に対して負の電圧が印
加された導電層とを具備することを特徴とする半導体装
置。
(1) A first conductivity type semiconductor substrate, an element isolation region provided on the surface of this substrate, and a second conductivity type source and drain region provided on the substrate surface surrounded by this element isolation region. , a gate electrode provided on the same substrate via a gate oxide film, and a conductive layer provided at the intersection of the edge portion of the element isolation region and the gate electrode, and to which a negative voltage is applied to the substrate. A semiconductor device comprising:
(2)、導電層が、多結晶シリコン、高融点金属、ある
いはこの高融点金属との化合物からなることを特徴とす
る特許請求の範囲第1項記載の半導体装置。
(2) The semiconductor device according to claim 1, wherein the conductive layer is made of polycrystalline silicon, a high melting point metal, or a compound with the high melting point metal.
(3)、高融点金属が、タングステン、モリブデン、あ
るいはチタンであることを特徴とする特許請求の範囲第
2項記載の半導体装置。
(3) The semiconductor device according to claim 2, wherein the high melting point metal is tungsten, molybdenum, or titanium.
JP25693784A 1984-12-05 1984-12-05 Semiconductor device Pending JPS61134071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25693784A JPS61134071A (en) 1984-12-05 1984-12-05 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25693784A JPS61134071A (en) 1984-12-05 1984-12-05 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS61134071A true JPS61134071A (en) 1986-06-21

Family

ID=17299436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25693784A Pending JPS61134071A (en) 1984-12-05 1984-12-05 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61134071A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0361121A2 (en) * 1988-08-31 1990-04-04 Kabushiki Kaisha Toshiba Semiconductor IC device with improved element isolating scheme

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0361121A2 (en) * 1988-08-31 1990-04-04 Kabushiki Kaisha Toshiba Semiconductor IC device with improved element isolating scheme

Similar Documents

Publication Publication Date Title
US6344663B1 (en) Silicon carbide CMOS devices
US4422885A (en) Polysilicon-doped-first CMOS process
KR100387194B1 (en) Insulated gate field effect transistor and its manufacturing method
EP0234054B1 (en) Method of manufacturing a bipolar transistor
JPS61102782A (en) Making of dmos semiconductor element
JPS62156873A (en) Semiconductor device
JPH0557741B2 (en)
JPS6119164A (en) Supplementary integrated circuit and method of producing same
JPS60247974A (en) Semiconductor device
JPS61134071A (en) Semiconductor device
JPH0351313B2 (en)
JP3186298B2 (en) Method for manufacturing MOS type semiconductor device
JPS60175458A (en) Semiconductor device and manufacture thereof
JPS61237470A (en) Semiconductor device
JPS61154172A (en) Manufacture of semiconductor device
JP3049725B2 (en) MOS transistor
JPS61267365A (en) Semiconductor device
JP3856968B2 (en) Manufacturing method of semiconductor device
JPH0346272A (en) Manufacture of semiconductor device
JPS59138363A (en) Semiconductor device and manufacture thereof
JPH02296342A (en) Manufacture of mosfet
KR930010117B1 (en) Semiconductor device of bimes structure
JPH0221648A (en) Semiconductor device and manufacture thereof
JPH03204968A (en) Semiconductor device and manufacture thereof
JPH02254729A (en) Manufacture of semiconductor device