JPS61121320A - Sintered type electrolytic battery - Google Patents

Sintered type electrolytic battery

Info

Publication number
JPS61121320A
JPS61121320A JP59242845A JP24284584A JPS61121320A JP S61121320 A JPS61121320 A JP S61121320A JP 59242845 A JP59242845 A JP 59242845A JP 24284584 A JP24284584 A JP 24284584A JP S61121320 A JPS61121320 A JP S61121320A
Authority
JP
Japan
Prior art keywords
wire
anode body
sintered
electrolytic capacitor
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59242845A
Other languages
Japanese (ja)
Inventor
政光 宮崎
康友 船越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59242845A priority Critical patent/JPS61121320A/en
Publication of JPS61121320A publication Critical patent/JPS61121320A/en
Pending legal-status Critical Current

Links

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高性能で安価な焼結型電解蓄電器に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a high-performance and inexpensive sintered electrolytic capacitor.

従来の技術 近年、電子機器の小形・薄形化とともに、多機能化が活
発に推進され、これに伴う部品の小形・薄形化およびコ
ストの低減、高信頼性の要求が、一段と強くなってきて
いる。
Conventional technology In recent years, electronic devices have become smaller and thinner, and multi-functionality has been actively promoted.As a result, demands for smaller and thinner parts, lower costs, and higher reliability have become even stronger. ing.

以下図面を参照しながら、従来の焼結型電解蓄電器−例
について説明する。第8図は従来の線型固体タンタル電
解蓄電゛器の断面構造を示すものである。第8図におい
て、1は陽極リード線で、その先端に弁作用金属線を円
筒上に巻回し陽極体2を形成している。3は電解質であ
る二酸化マンガン層を密着せしめ、さらにその上にグラ
ファイト層、次に4の金属陰極層を形成したもので構成
されていた。
An example of a conventional sintered electrolytic capacitor will be described below with reference to the drawings. FIG. 8 shows a cross-sectional structure of a conventional linear solid tantalum electrolytic capacitor. In FIG. 8, reference numeral 1 denotes an anode lead wire, and a valve metal wire is wound around the tip of the anode lead wire in a cylindrical manner to form an anode body 2. No. 3 consisted of a manganese dioxide layer, which is an electrolyte, adhered thereto, a graphite layer formed thereon, and then a metal cathode layer (No. 4) formed thereon.

発明が絆決しようとする問題点 しかしながら上記のような構成では、陽極体に弁作用金
属線材を用いている為、酸化皮膜の生成される表面積が
少なくしたがって単位体積当りの静電容量が小さい。そ
して容量を増大させるためには、長さを増加する方法を
とっていた。
Problems to be Solved by the Invention However, in the above configuration, since a valve metal wire is used for the anode body, the surface area on which an oxide film is formed is small, and the capacitance per unit volume is therefore small. In order to increase the capacity, a method was used to increase the length.

また弁作用金属粉末を用いて小型化すると成形型の開口
部が小さくなり粉末材料を上方から自然落下させたたけ
では、成形型内部に充填されなく重量が不均一となり電
解蓄電器の小形化には限界があるなどの問題点を有して
いた。
In addition, when miniaturizing by using valve metal powder, the opening of the mold becomes smaller, and if the powder material is simply allowed to fall from above, it will not fill the inside of the mold and the weight will be uneven, which will limit the miniaturization of electrolytic capacitors. It had some problems, such as:

本発明は上記の問題点を鑑み、弁作用金属粉末を、有機
結合剤などを用いて、線材に形成したものを陽極体とし
て用いることにより、単位体積当りの表面積が増加する
しだがって小形で大容量焼結型電解蓄電器を安価に提供
するものである。
In view of the above problems, the present invention uses a valve metal powder formed into a wire using an organic binder etc. as an anode body, thereby increasing the surface area per unit volume and making it compact. The aim is to provide large capacity sintered electrolytic capacitors at low cost.

問題点を解決するだめの手段 上記問題点を解決するために本発明の焼結型電解蓄電器
は、弁作用金属粉末から有機結合剤などを用いて、線材
を形成し、前記線材を円筒状または円盤上に巻回し、巻
回端部にリード線を設け、焼結して酸化皮膜を生成せし
めた陽極体に、二酸化マンガン層を密着し、その上にグ
ラファイト層、次に金属の陰極層という構成を備えたも
のである。
Means for Solving the Problems In order to solve the above problems, the sintered electrolytic capacitor of the present invention forms a wire from valve metal powder using an organic binder, and the wire is shaped into a cylindrical or The anode body is wound around a disk, a lead wire is provided at the end of the winding, and the anode body is sintered to form an oxide film.A manganese dioxide layer is adhered to the anode body, followed by a graphite layer and then a metal cathode layer. It has a configuration.

作  用 本発明は上記の構成から陽極体が弁作用金属粉末を有機
結合剤などを用いて、粘性体にし、流動性を向上せしめ
、微小径の線材を形成することが可能であり、常温では
、有機結合剤が昇華および熱分解しない為、形状を自由
に形成することが出来、かつ形状保持性が有る。上記線
材を用いて、所定の形状に陽極体に成形し、真空焼結を
行なえば多孔質の素体が出来る。
Effects of the present invention Due to the above-described structure, the anode body of the anode body uses valve action metal powder and an organic binder to make it into a viscous body to improve fluidity, and it is possible to form a wire rod with a minute diameter. Since the organic binder does not sublimate or thermally decompose, it can be formed into any shape and has shape retention. A porous element body can be obtained by forming an anode body into a predetermined shape using the above-mentioned wire and performing vacuum sintering.

この結果単位体積当りの表面積が増加し、小形で大容量
の電解蓄電器が可能となる。
As a result, the surface area per unit volume increases, making it possible to create a compact electrolytic capacitor with a large capacity.

実施例 以下本発明の一実施例の焼結型電解蓄電器について図面
を参照しながら説明する。
EXAMPLE Hereinafter, a sintered electrolytic capacitor according to an example of the present invention will be described with reference to the drawings.

第1図は本発明の第一実施例における焼結型電解蓄電器
の断面構造図を示すものであり第2図は陽極体詳細図で
ある。第1,2図において、1゜は陽極リードで先端部
に、円筒状に巻回した多孔質タンタル線11で陽極体1
2を形成し、酸化膜を生成せしめ、二酸化マンガン層1
3を密着せしめ、さらにその上にグラファイト層14、
次に金属の陰極層16を設け、陰極リード16が半田1
7で固定されている。
FIG. 1 shows a sectional structural view of a sintered electrolytic capacitor according to a first embodiment of the present invention, and FIG. 2 shows a detailed view of an anode body. In Figures 1 and 2, 1° is an anode lead, and a porous tantalum wire 11 wound in a cylindrical shape is attached to the anode body 1 at the tip.
2, an oxide film is formed, and a manganese dioxide layer 1 is formed.
3 in close contact with each other, and on top of that, a graphite layer 14,
Next, a metal cathode layer 16 is provided, and the cathode lead 16 is connected to the solder 1.
It is fixed at 7.

以上のように構成された焼結型電解蓄電器の陽極体の製
造方法について第3〜4図を用いて説明する。
A method for manufacturing the anode body of the sintered electrolytic capacitor constructed as described above will be described with reference to FIGS. 3 and 4.

まず第3図は、多孔質のタンタル線の製造装置を示すも
のである、タンタル粉末と有機結合剤数重量係と可塑剤
とを混練し、可塑性を持たせた成形材料18をシリンダ
ー19に注入し、プランジャー20を加圧すると、所定
の形状をした押出しダイ21より前記成形材料18が押
し出され線材11となり最小径0.1 mll++は可
能である。次に第4図には陽極体12の成形方法を示す
、押し出されたタンタル線材11を所定の形状をした棒
22に巻回し、巻回端部にリード線を埋込んだ後有機結
合剤が熱溶解性であれば固化するまで、また水溶性であ
れば乾燥し、水分を蒸発し、形状保持できるまで固定し
、陽極体12を形成せしめる。
First, Fig. 3 shows an apparatus for manufacturing porous tantalum wire, in which tantalum powder, an organic binder by weight, and a plasticizer are kneaded, and a molding material 18 that is made plastic is injected into a cylinder 19. However, when the plunger 20 is pressurized, the molding material 18 is extruded from the extrusion die 21 having a predetermined shape and becomes the wire rod 11, which can have a minimum diameter of 0.1 ml++. Next, FIG. 4 shows a method for forming the anode body 12. After winding the extruded tantalum wire 11 around a rod 22 having a predetermined shape and embedding a lead wire in the end of the winding, an organic binder is applied. The anode body 12 is formed by drying if it is heat-soluble and fixing it until it solidifies, or if it is water-soluble, by drying and evaporating the moisture and fixing it until it can maintain its shape.

次に第4図に焼結型電解蓄電器の製造工程図を示す。陽
極体12を形成した成型工程から次に真空焼結工程に移
り 10=rrrmHq ノ1600℃〜230o℃ぐ
らいで20分〜30分程度焼結して多孔性素体をつくる
。次に焼結体を陽極として電解酸化を行ない、酸化皮膜
を形成させ、次に陽極体12に硝酸マンガンを含浸し熱
処理を行ない硝酸マンガンを熱分解させる。そして生成
した二酸化マンガン層の表面に薄いグラファイト層を形
成した後、銀で陰極側の電極を形成する。
Next, FIG. 4 shows a manufacturing process diagram of a sintered electrolytic capacitor. The molding process in which the anode body 12 was formed is then moved to a vacuum sintering process, and sintering is performed at about 1600°C to 230°C at 10=rrrmHq for about 20 to 30 minutes to form a porous element. Next, electrolytic oxidation is performed using the sintered body as an anode to form an oxide film, and then the anode body 12 is impregnated with manganese nitrate and heat treated to thermally decompose the manganese nitrate. After forming a thin graphite layer on the surface of the produced manganese dioxide layer, a silver electrode is formed on the cathode side.

陰極側電極を形成した後、それぞれ要求される形状にし
たがい組立を行ない、エージング工程、検査工程を経て
完成品となる。
After forming the cathode side electrodes, they are assembled according to the required shapes, and then undergo an aging process and an inspection process to become a finished product.

以上のように本実施例によれば弁作用金属粉末を有機結
合剤を用いて線材を形成せしめ、円筒上に巻回し、陽極
体として用いることにより、単位体積当りの表面積が増
加し、静電容量を向上させることができる。
As described above, according to this embodiment, the valve action metal powder is formed into a wire using an organic binder, wound around a cylinder, and used as an anode body, thereby increasing the surface area per unit volume and increasing the electrostatic charge. Capacity can be improved.

以下本発明の第2実施例について図面を参照しながら説
明する。
A second embodiment of the present invention will be described below with reference to the drawings.

第6図は、本発明の第2実施例を示す焼結型電解蓄電器
の断面構造図と平面図である。同図において、23は、
円盤状に形成された陽極体で、第1図の構成と異なる点
である。
FIG. 6 is a cross-sectional structural diagram and a plan view of a sintered electrolytic capacitor showing a second embodiment of the present invention. In the same figure, 23 is
This is a disc-shaped anode body, which is different from the configuration shown in FIG.

第7図に第2実施例の陽極体23の製造方法を示す。第
2図のタンタル線製造装置zり押し出された線材11を
スパイラル状の凹部24を備えた金型25に注入し、巻
回し端部にリード線を設は固化せしめ、陽極体23を形
成する。以降後工程は第1実施例と同じである。
FIG. 7 shows a method of manufacturing the anode body 23 of the second embodiment. The wire 11 extruded from the tantalum wire manufacturing apparatus shown in FIG. 2 is injected into a mold 25 having a spiral recess 24, a lead wire is provided at the winding end, and the wire is solidified to form an anode body 23. . The subsequent post-processes are the same as in the first embodiment.

以上のように陽極体に多孔質タンタル線材を円盤上に巻
回して用いることにより、薄形で静電容量の高い焼結型
電解蓄電器ができる。
As described above, by using a porous tantalum wire wound around a disk for the anode body, a thin sintered electrolytic capacitor with high capacitance can be obtained.

発明の効果 以上のように本発明は、弁作用金属粉末から有機結合剤
などを用いて線材を形成し、前記線材を円筒状または、
円盤上に巻回し、巻回端部にIJ−ド線を設け、焼結し
て酸化皮膜を生成せしめた陽極体に、二酸化マンガンを
密着し、その上にグラファイト層、次に金属の陰槙層を
設けた電解蓄電器であり、陽極体が多孔性素体であるた
め、単位体積当りの表面積が増加し、同じ形状の弁作用
金属線材を用いた固体電解蓄電器より、容量の向上させ
ることが出きる。また、同じ容量であれば形状の小形化
、薄形化が図れるなどその効果は犬なるものがある。
Effects of the Invention As described above, the present invention forms a wire rod from valve metal powder using an organic binder, and forms the wire rod into a cylindrical or
The anode body is wound around a disk, an IJ wire is provided at the end of the winding, and the anode body is sintered to form an oxide film. Manganese dioxide is adhered to the anode body, and then a graphite layer is placed on top of the anode body, followed by a metal shade. It is an electrolytic capacitor with layers, and since the anode body is a porous element, the surface area per unit volume increases, and the capacity can be improved compared to a solid electrolytic capacitor using valve action metal wire of the same shape. I can come out. Furthermore, the effects are impressive, such as the ability to make the size smaller and thinner with the same capacity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の第1実施例における焼結型電解蓄電
器の断面構造図、第2図は第1図の陽極体詳細図、第3
図、第4図は第1実施例における実施例における焼結型
電解蓄電器の断面構造図、第7図は第2実施例における
焼結型電解蓄電器の製造方法を示す図、第8図は従来例
の焼結型電解蓄電器の断面構造図である。 10・・・・・・陽極リード、11・・・・・・弁作用
金属線、12・・・・・・陽極体、16・・・・・・陰
極側金属ケース、16・・・・・・陰極リード。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第3図 第4図 区  げ     。 /−区 塚                 嫉N 〜 S)
廿
FIG. 1 is a cross-sectional structural diagram of a sintered electrolytic capacitor according to the first embodiment of the present invention, FIG. 2 is a detailed diagram of the anode body in FIG. 1, and FIG.
4 is a cross-sectional structural diagram of a sintered electrolytic capacitor according to the first embodiment, FIG. 7 is a diagram showing a method for manufacturing a sintered electrolytic capacitor according to the second embodiment, and FIG. 8 is a conventional FIG. 2 is a cross-sectional structural diagram of an example sintered electrolytic capacitor. 10... Anode lead, 11... Valve metal wire, 12... Anode body, 16... Cathode side metal case, 16...・Cathode lead. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 3 Figure 4 Section Ge. /-Kuzuka Jealousy N ~ S)
廿

Claims (1)

【特許請求の範囲】[Claims] 弁作用金属粉末から有機結合剤などを用いて線材を形成
し、前記線材を円筒状または円盤上に巻回し、この巻回
端部にリード線を設け、焼結し、酸化皮膜を生成せしめ
た陽極体に二酸化マンガン層を密着し、その上にグラフ
ァイト層、次に金属の陰極層などを形成した焼結型電解
蓄電器。
A wire rod is formed from valve action metal powder using an organic binder, etc., the wire rod is wound into a cylindrical shape or a disk, a lead wire is provided at the end of this winding, and the wire is sintered to form an oxide film. A sintered electrolytic capacitor in which a manganese dioxide layer is adhered to the anode body, a graphite layer is formed on top of the manganese dioxide layer, and then a metal cathode layer is formed.
JP59242845A 1984-11-16 1984-11-16 Sintered type electrolytic battery Pending JPS61121320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59242845A JPS61121320A (en) 1984-11-16 1984-11-16 Sintered type electrolytic battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59242845A JPS61121320A (en) 1984-11-16 1984-11-16 Sintered type electrolytic battery

Publications (1)

Publication Number Publication Date
JPS61121320A true JPS61121320A (en) 1986-06-09

Family

ID=17095146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59242845A Pending JPS61121320A (en) 1984-11-16 1984-11-16 Sintered type electrolytic battery

Country Status (1)

Country Link
JP (1) JPS61121320A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090935A1 (en) * 2018-10-30 2020-05-07 Global Advanced Metals Japan K.K. Porous metal foil or wire and capacitor anodes made therefrom and methods of making same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090935A1 (en) * 2018-10-30 2020-05-07 Global Advanced Metals Japan K.K. Porous metal foil or wire and capacitor anodes made therefrom and methods of making same
CN112789361A (en) * 2018-10-30 2021-05-11 全球先进金属日本株式会社 Porous metal foil or wire, capacitor anode made therefrom and method for making same
JP2022508052A (en) * 2018-10-30 2022-01-19 グローバルアドバンストメタルジャパン株式会社 Porous metal leaf or wire, capacitor anode manufactured from it, and its manufacturing method
US11289276B2 (en) 2018-10-30 2022-03-29 Global Advanced Metals Japan K.K. Porous metal foil and capacitor anodes made therefrom and methods of making same
US11694850B2 (en) 2018-10-30 2023-07-04 Global Advanced Metals Japan K.K. Porous metal foil or wire and capacitor anodes made therefrom and methods of making same

Similar Documents

Publication Publication Date Title
US5198968A (en) Compact surface mount solid state capacitor and method of making same
JPH10106897A (en) Structure of capacitor element used for solid electrolytic capacitor an solid forming method for chip body of the capacitor element
GB2240216A (en) Manufacture of a tantalum capacitor.
US6985353B2 (en) Anode body for solid electrolytic capacitor and solid electrolytic capacitor using the same
JPS61121320A (en) Sintered type electrolytic battery
US3530342A (en) Method for making solid electrolytic capacitors utilizing a strip configuration
JPS6314458Y2 (en)
JPS6322048B2 (en)
JP3123083B2 (en) Method for manufacturing solid electrolytic capacitor
JPS61237412A (en) Chip capacitor and manufacture thereof
JPS5930528Y2 (en) solid electrolytic capacitor
JPS62277715A (en) Anode unit for electrolytic capacitor and manufacture of thesame
JPS58171811A (en) Method of producing solid electrolytic condenser
JPH09134854A (en) Manufacture of solid electrolytic capacitor and anode body for the same
JPH09167719A (en) Tantalum solid electrolytic capacitor
JPH04164308A (en) Chip type solid electrolytic tantalum capacitor
JPH09129512A (en) Tantalum solid electrolytic capacitor
JPS6249980B2 (en)
JPS605577Y2 (en) Chip type solid electrolytic capacitor
JPS6193611A (en) Manufacture of solid electrolytic capacitor
JPH104032A (en) Multi-terminal solid-state electrolytic capacitor
JPS5851440U (en) Chip type solid electrolytic capacitor
JPH04167416A (en) Solid electrolytic capacitor
JPS58168121U (en) molded capacitor
JPS629619A (en) Manufacture of solid electrolytic capacitor