JPH104032A - Multi-terminal solid-state electrolytic capacitor - Google Patents
Multi-terminal solid-state electrolytic capacitorInfo
- Publication number
- JPH104032A JPH104032A JP17442596A JP17442596A JPH104032A JP H104032 A JPH104032 A JP H104032A JP 17442596 A JP17442596 A JP 17442596A JP 17442596 A JP17442596 A JP 17442596A JP H104032 A JPH104032 A JP H104032A
- Authority
- JP
- Japan
- Prior art keywords
- pellet
- layer
- electrolytic capacitor
- fine powder
- metal fine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、多端子の固体電解
コンデンサに関する。The present invention relates to a multi-terminal solid electrolytic capacitor.
【0002】[0002]
【従来の技術】従来の固体電解コンデンサは、図4に示
す如く、弁作用を有する金属微粉末に陽極導出線21を
埋植し、プレスにて弁作用を有する金属微粉末を圧縮し
ペレットとし、このペレットを焼結した多孔質ペレット
22の陽極導出線21の根元部が陰極形成時の原料液に
よって、必要以上に濡れるのを防止するため、多孔質ペ
レット22の陽極導出線21の根元部にふっ素樹脂から
なるスペーサー23を設置する。2. Description of the Related Art In a conventional solid electrolytic capacitor, as shown in FIG. 4, an anode lead wire 21 is buried in a metal powder having a valve action, and the metal powder having a valve action is compressed by a press into pellets. In order to prevent the base of the anode lead wire 21 of the porous pellet 22 obtained by sintering the pellet from being wetted more than necessary by the raw material liquid at the time of forming the cathode, the base of the anode lead wire 21 of the porous pellet 22 is required. The spacer 23 made of fluororesin is installed.
【0003】次に多孔質ペレット22の表面に誘電体で
ある酸化膜を生成し、この酸化膜を生成した多孔質ペレ
ット22を硝酸マンガン液に浸漬した後取出し熱処理を
行い半導体層である二酸化マンガン層24を形成する。
次いで、二酸化マンガン層24の表面に陰極層であるカ
ーボン層25、銀ペースト層26を順次形成し、固体電
解コンデンサ素子27とする。Next, an oxide film, which is a dielectric, is formed on the surface of the porous pellet 22. The porous pellet 22, on which the oxide film has been formed, is immersed in a manganese nitrate solution, and is then subjected to a heat treatment to perform manganese dioxide as a semiconductor layer. The layer 24 is formed.
Next, a carbon layer 25 serving as a cathode layer and a silver paste layer 26 are sequentially formed on the surface of the manganese dioxide layer 24 to obtain a solid electrolytic capacitor element 27.
【0004】固体電解コンデンサ素子27にリードフレ
ームである外部電極28を取り付け、それぞれ陽極外部
電極28A、陰極外部電極28Bとする。次に、エポキ
シ樹脂を用いトランスファーモールド法にて外装29を
行った後、外部電極28であるリードフレームを外装2
9に沿ってフォーミングし、固体電解コンデンサとす
る。An external electrode 28 which is a lead frame is attached to the solid electrolytic capacitor element 27, and is used as an anode external electrode 28A and a cathode external electrode 28B, respectively. Next, the exterior 29 is formed by transfer molding using an epoxy resin, and then the lead frame as the external electrode 28 is attached to the exterior 2.
Forming is performed along 9 to obtain a solid electrolytic capacitor.
【0005】[0005]
【発明が解決しようとする課題】従来の固体電解コンデ
ンサの外部電極は図4に示す如く、多孔質ペレット22
より導出している陽極導出線21の先端部にリードフレ
ームからなる外部電極28を抵抗溶接30にて取り付け
陽極外部電極28Aとしている。また、固体電解コンデ
ンサ素子27の銀ペースト層26の表面に導電性接着剤
31で外部電極28を取り付け陰極外部電極28Bとし
ている。As shown in FIG. 4, the external electrodes of the conventional solid electrolytic capacitor are porous pellets 22.
An external electrode 28 made of a lead frame is attached to the tip of the anode lead wire 21 that is led out by resistance welding 30 to form an anode external electrode 28A. An external electrode 28 is attached to the surface of the silver paste layer 26 of the solid electrolytic capacitor element 27 with a conductive adhesive 31 to form a cathode external electrode 28B.
【0006】しかし、この従来の構造であると、外部電
極28は陽極外部電極28A、陰極外部電極28Bに極
性を有するために、プリント配線板に固体電解コンデン
サを実装する際極性を逆に取り付けると、固体電解コン
デンサの焼損等の大事故につながることが多かった。こ
の極性を逆に取り付けても焼損等の大事故に継がらない
ように外部電極28と固体電解コンデンサ素子27の間
にヒューズを入れたものも実用化されている。しかし、
このヒューズを入れる方法は、 ヒューズの信頼性が低い。 固体電解コンデンサ素子27と外部電極28の間に
ヒューズを入れる工数が、かかり固体電解コンデンサの
価格が高くなる。等の欠点があり、大きな問題になって
いた。However, according to this conventional structure, since the external electrode 28 has polarities on the anode external electrode 28A and the cathode external electrode 28B, when mounting the solid electrolytic capacitor on the printed wiring board, the polarity is reversed. In many cases, this would lead to a major accident such as burning of the solid electrolytic capacitor. A fuse in which a fuse is inserted between the external electrode 28 and the solid electrolytic capacitor element 27 has been put to practical use so that even if the polarity is reversed, a large accident such as burnout does not occur. But,
This method of inserting a fuse has low reliability. The man-hour required to insert a fuse between the solid electrolytic capacitor element 27 and the external electrode 28 increases the cost of the solid electrolytic capacitor. There were drawbacks such as these, and it was a big problem.
【0007】[0007]
【課題を解決するための手段】前記のような問題点を解
決するため、図1に示す如く、弁作用を有する金属微粉
末にペレットを貫通する陽極導出線1を埋植し、圧縮成
形してペレットとする。次に、このペレットを焼結し多
孔質ペレット2とした後ペレットを貫通する陽極導出線
1の根元部が陰極形成時の原料によって、必要以上に濡
れるのを防止するため、多孔質ペレット2の根元部にふ
っ素樹脂からなるコスペーサー23を設置する。In order to solve the above-mentioned problems, as shown in FIG. 1, an anode lead wire 1 penetrating a pellet is implanted in a metal fine powder having a valve action and compression-molded. Into pellets. Next, after sintering the pellet to form a porous pellet 2, the base of the anode lead wire 1 penetrating the pellet is prevented from being wetted more than necessary by the raw material at the time of forming the cathode. A co-spacer 23 made of fluororesin is installed at the root.
【0008】次いで、多孔質ペレット2の表面に誘電体
である酸化膜を生成し、この酸化膜の上に半導体層であ
る二酸化マンガン層24を形成する。次に、二酸化マン
ガン層24の上に陰極層であるカーボン層25、銀ペー
スト層26を順次形成し、固体電解コンデンサ3とす
る。この固体電解コンデンサ素子3より貫通する陽極導
出線1の左右両側の先端部にリードフレームからなる外
部電極4を抵抗溶接30にて取り付け陽極外部電極4A
とする。次いで、図2に示す如く、固体電解コンデンサ
素子3の銀ペースト層26の表面とリードフレームから
なる外部電極4を導電性接着剤31で取り付け陰極外部
電極4Bとする。Next, an oxide film as a dielectric is formed on the surface of the porous pellet 2, and a manganese dioxide layer 24 as a semiconductor layer is formed on the oxide film. Next, a carbon layer 25 serving as a cathode layer and a silver paste layer 26 are sequentially formed on the manganese dioxide layer 24 to obtain a solid electrolytic capacitor 3. An external electrode 4 made of a lead frame is attached to the left and right ends of the anode lead wire 1 penetrating from the solid electrolytic capacitor element 3 by resistance welding 30 to form an anode external electrode 4A.
And Next, as shown in FIG. 2, the surface of the silver paste layer 26 of the solid electrolytic capacitor element 3 and the external electrode 4 made of a lead frame are attached with a conductive adhesive 31 to form a cathode external electrode 4B.
【0009】本発明は図1及び図2に示す如く陽極外部
電極4Aが固体電解コンデンサの外装29の左右両側よ
り導出し、陰極外部電極4Bは陽極外部電極4Aの90
°方向より導出しているため、極性逆をして取り付ける
ことがなく、焼損時の大事故が皆無となっていた。In the present invention, as shown in FIGS. 1 and 2, the anode external electrode 4A is led out from both the left and right sides of the outer casing 29 of the solid electrolytic capacitor, and the cathode external electrode 4B is 90% of the anode external electrode 4A.
Since it was derived from the ° direction, there was no mounting with the polarity reversed, and there was no major accident at the time of burning.
【0010】[0010]
【発明の実施の形態】本発明の実施例をチップ形タンタ
ル固体電解コンデンサを例に述べる。図3に示す如く、
タンタル金属微粉末13.5mgを用い直径0.25mmの
タンタル線よりなる陽極導出線1が貫通するペレット5
を圧縮成形にて製作する。次に、図1に示す如く陽極導
出線1が貫通するペレット5を真空中で1600℃の温
度を加え焼結し、1.1×1.7×1.1mmの多孔質ペ
レット2とする。次いで、この多孔質ペレット2から導
出する陽極導出線1の一方の先端を図5に示す如く、ス
テンレス製の帯板6の側端部に溶接に取り付け後、工程
の処理が行いやすい様にする。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described by taking a chip type tantalum solid electrolytic capacitor as an example. As shown in FIG.
Pellet 5 through which anode lead wire 1 made of tantalum wire having a diameter of 0.25 mm and penetrating through 13.5 mg of fine tantalum metal powder
Is manufactured by compression molding. Next, as shown in FIG. 1, the pellet 5 through which the anode lead-out wire 1 penetrates is sintered in a vacuum at a temperature of 1600 ° C. to obtain a porous pellet 2 of 1.1 × 1.7 × 1.1 mm. Next, as shown in FIG. 5, one end of the anode lead wire 1 derived from the porous pellet 2 is attached to the side end of the stainless steel strip 6 by welding, so that the process can be performed easily. .
【0011】次に、ステンレス製の帯板6に取り付けた
多孔質ペレット2を0.1%のリン酸液中に浸漬し、ス
テンレス製の帯板6とリン酸液の間に約65VCDCの
電圧を印加して、誘電体である酸化膜を形成する。次い
で、図1に示す如く誘電体である酸化膜を形成した多孔
質ペレット2を35℃の雰囲気中で貫通する陽極導出線
1が水平になる様に保持し、多孔質ペレット2の側面7
にディスペンサを用いて硝酸マンガン液を滴下、含浸さ
せた後、230℃の加湿雰囲気中で硝酸マンガン液を熱
分解させる。硝酸マンガン液の滴下、含浸→熱分解の操
作を10回繰り返して、図1に示すような半導体層であ
る二酸化マンガン層24を形成する。Next, the porous pellets 2 attached to the stainless steel strip 6 are immersed in a 0.1% phosphoric acid solution, and a voltage of about 65 V DCC is applied between the stainless steel strip 6 and the phosphoric acid solution. Is applied to form an oxide film as a dielectric. Next, as shown in FIG. 1, the porous pellet 2 on which an oxide film as a dielectric is formed is held in an atmosphere of 35 ° C. so that the lead wire 1 passing through the anode becomes horizontal.
After the manganese nitrate solution is dropped and impregnated using a dispenser, the manganese nitrate solution is thermally decomposed in a humidified atmosphere at 230 ° C. The operation of dropping and impregnating the manganese nitrate solution → pyrolysis is repeated 10 times to form a manganese dioxide layer 24 as a semiconductor layer as shown in FIG.
【0012】次に、二酸化マンガン層24の表面に陰極
層であるカーボン層25、銀ペースト層26を順次形成
して固体電解コンデンサ素子3とする。次いで、固体電
解コンデンサ素子3をステンレス製の帯板6より切り離
し図6で示す様なリードフレーム8に乗せ、貫通する陽
極導出線1の先端部を陽電極リード9に抵抗溶接し、こ
れと直行する方向に設けた陰電極リード10に固体電解
コンデンサ素子3の銀ペースト層26を図2に示す如
く、導電性接着剤31を用いて取り付ける。なお、抵抗
溶接30を行う前に貫通する陽極導出線1に形成する酸
化膜を溶接部分のみ機械的に削り取り、溶接の信頼性を
上げた。Next, a carbon layer 25 serving as a cathode layer and a silver paste layer 26 are sequentially formed on the surface of the manganese dioxide layer 24 to obtain a solid electrolytic capacitor element 3. Next, the solid electrolytic capacitor element 3 is separated from the stainless steel strip 6 and placed on a lead frame 8 as shown in FIG. 6, and the tip of the penetrating anode lead wire 1 is resistance-welded to the positive electrode lead 9 and goes directly to this The silver paste layer 26 of the solid electrolytic capacitor element 3 is attached to the negative electrode lead 10 provided in the direction in which the conductive paste 31 is provided, as shown in FIG. Note that the oxide film formed on the anode lead wire 1 penetrating before performing the resistance welding 30 was mechanically scraped off only at the welded portion to improve the reliability of welding.
【0013】次いで、固体電解コンデンサ素子3を搭載
したリードフレーム8をトランスファーモールドの金型
に挿入し、エポキシ樹脂で外装29を行った。次に、リ
ードフレーム8の不必要な部分を切り離し図1に示す如
く、陽電極リード9である外部電極4を外装29に沿っ
てフォーミングし陽極外部電極4Aとする。次いで、図
2に示す如く、陰電極10である外部電極4を外装9に
沿ってフォーミングし陰極外部電極4Bとする。前記で
得られたチップ形タンタル固体電解コンデンサの外形寸
法は3.4×2.6×1.9mmで、定格電圧は16.V
DC、静電容量は6.8μFであった。Next, the lead frame 8 on which the solid electrolytic capacitor element 3 was mounted was inserted into a transfer mold, and the exterior 29 was made of epoxy resin. Next, unnecessary portions of the lead frame 8 are cut off, and as shown in FIG. 1, the external electrodes 4 as the positive electrode leads 9 are formed along the outer package 29 to form the anode external electrodes 4A. Next, as shown in FIG. 2, the external electrode 4, which is the negative electrode 10, is formed along the exterior 9 to form a cathode external electrode 4B. The external dimensions of the chip-type tantalum solid electrolytic capacitor obtained above are 3.4 × 2.6 × 1.9 mm, and the rated voltage is 16. V
DC and capacitance were 6.8 μF.
【0014】[0014]
【発明の効果】本発明は以上のように構成されるので以
下のような効果を奏する。 極性を有しない構造のものにしたため従来の逆取り
付けによる焼損等の大事故が皆無になった。 従来よりヒューズを入れる工数が不要となったため
価格が従来より10〜15%低減した。As described above, the present invention has the following advantages. Because of the non-polar structure, there was no major accident such as burning due to the conventional reverse mounting. The cost has been reduced by 10 to 15% since the man-hour for inserting the fuse is no longer required.
【図1】本発明の断面図である。FIG. 1 is a sectional view of the present invention.
【図2】本発明のA−A1の断面図である。2 is a cross-sectional view of A-A 1 of the present invention.
【図3】本発明のペレットを現わす斜視図である。FIG. 3 is a perspective view showing a pellet of the present invention.
【図4】従来の断面図である。FIG. 4 is a conventional sectional view.
【図5】本発明のペレットをステンレス製の帯板に取り
付けた状態を示す斜視図である。FIG. 5 is a perspective view showing a state where the pellet of the present invention is attached to a stainless steel strip.
【図6】本発明に用いるリードフレーム。FIG. 6 is a lead frame used in the present invention.
1…貫通する陽極導出線 2…多孔質ペレット 3…固体電解コンデンサ素子 4…外部電極 4A…陽極外部電極 4B…陰極外部電極 5…ペレット 6…ステンレス製の帯板 7…側面 8…リードフレーム 9…陽電極リード 10…陰電極リード 21…陽極導出線 22…多孔質ペレット 23…スペーサー 24…二酸化マンガン層 25…カーボン層 26…銀ペースト層 28…外部電極 28A…陽極外部電極 28B…陰極外部電極 29…外装 30…抵抗溶接 31…導電性接着剤 DESCRIPTION OF SYMBOLS 1 ... Penetrating lead wire 2 ... Porous pellet 3 ... Solid electrolytic capacitor element 4 ... External electrode 4A ... Anode external electrode 4B ... Cathode external electrode 5 ... Pellet 6 ... Stainless steel strip 7 ... Side surface 8 ... Lead frame 9 ... Positive electrode lead 10 ... Negative electrode lead 21 ... Anode lead wire 22 ... Porous pellet 23 ... Spacer 24 ... Manganese dioxide layer 25 ... Carbon layer 26 ... Silver paste layer 28 ... External electrode 28A ... Anode external electrode 28B ... Cathode external electrode 29 ... exterior 30 ... resistance welding 31 ... conductive adhesive
Claims (1)
金属微粉末を圧縮し成形体とした後、焼結を行い多孔質
ペレットにし、この多孔質ペレットの表面に酸化膜、二
酸化マンガン層、カーボン層、ペースト層を順次形成し
てなる固体電解コンデンサにおいて、前記陽極導出線
が、前記多孔質ペレットを貫通する様に埋植したことを
特徴とする多端子固体電解コンデンサ。1. A metal powder having a valve action, in which an anode lead wire is implanted, is compressed into a compact, then sintered to form a porous pellet, and an oxide film, manganese dioxide is formed on the surface of the porous pellet. A solid electrolytic capacitor comprising a layer, a carbon layer, and a paste layer sequentially formed, wherein the anode lead wire is implanted so as to penetrate the porous pellet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17442596A JPH104032A (en) | 1996-06-14 | 1996-06-14 | Multi-terminal solid-state electrolytic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17442596A JPH104032A (en) | 1996-06-14 | 1996-06-14 | Multi-terminal solid-state electrolytic capacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH104032A true JPH104032A (en) | 1998-01-06 |
Family
ID=15978328
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17442596A Pending JPH104032A (en) | 1996-06-14 | 1996-06-14 | Multi-terminal solid-state electrolytic capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH104032A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7729102B2 (en) | 2004-12-16 | 2010-06-01 | Rohm Co., Ltd. | Solid electrolytic capacitor and structure for mounting this solid electrolytic capacitor on board |
-
1996
- 1996-06-14 JP JP17442596A patent/JPH104032A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7729102B2 (en) | 2004-12-16 | 2010-06-01 | Rohm Co., Ltd. | Solid electrolytic capacitor and structure for mounting this solid electrolytic capacitor on board |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR960026875A (en) | Chip Solid Electrolytic Capacitors and Manufacturing Method Thereof | |
GB2412243A (en) | A surface mount chip capacitor | |
JPS619833U (en) | electrical equipment | |
CN107275091A (en) | Solid electrolytic capacitor | |
US3516150A (en) | Method of manufacturing solid electrolytic capacitors | |
US4876451A (en) | Aluminum solid electrolytic capacitor and manufacturing method thereof | |
GB2412241A (en) | A surface mountable capacitor | |
JPH07320982A (en) | Manufacture of capacitor element for tantalum solid electrolytic capacitor | |
JPH104032A (en) | Multi-terminal solid-state electrolytic capacitor | |
JP2001126958A (en) | Chip-type solid electrolytic capacitor | |
JP2001035752A (en) | Solid electrolytic capacitor | |
JPS6334917A (en) | Capacitor | |
JP3624993B2 (en) | Chip-type electronic components | |
JPS63124511A (en) | Aluminum solid electrolytic capacitor | |
JPH05326341A (en) | Manufacture of solid electrolytic capacitor | |
JP3546451B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JPH09293646A (en) | Tantalum solid electrolytic capacitor | |
JP3082463B2 (en) | Solid electrolytic capacitors | |
JPH10233346A (en) | Manufacture of solid electrolytic chip capacitor | |
JPS6116684Y2 (en) | ||
JPS59211213A (en) | Electronic part | |
US3311797A (en) | Electrolytic capacitor including heat resistant spacer containing the electrolyte and method of making same | |
JPS6041720Y2 (en) | Chip type electrolytic capacitor | |
JPH0319215Y2 (en) | ||
JP4119167B2 (en) | Manufacturing method of capacitor element used for solid electrolytic capacitor |