JPS6116684Y2 - - Google Patents

Info

Publication number
JPS6116684Y2
JPS6116684Y2 JP1932380U JP1932380U JPS6116684Y2 JP S6116684 Y2 JPS6116684 Y2 JP S6116684Y2 JP 1932380 U JP1932380 U JP 1932380U JP 1932380 U JP1932380 U JP 1932380U JP S6116684 Y2 JPS6116684 Y2 JP S6116684Y2
Authority
JP
Japan
Prior art keywords
capacitor
capacitor element
solid electrolytic
composite
lead wires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1932380U
Other languages
Japanese (ja)
Other versions
JPS56121249U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1932380U priority Critical patent/JPS6116684Y2/ja
Publication of JPS56121249U publication Critical patent/JPS56121249U/ja
Application granted granted Critical
Publication of JPS6116684Y2 publication Critical patent/JPS6116684Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は複合コンデンサに関し、とくにインピ
ーダンス特性を改良した固体電解コンデンサに関
する。
[Detailed Description of the Invention] The present invention relates to a composite capacitor, and particularly to a solid electrolytic capacitor with improved impedance characteristics.

従来の固体電解コンデンサは例えば、第1図に
示す様にタンタル、ニオブ、アルミニウムなどの
弁作用を有する金属粉末を円柱状などの形状に加
圧成型してなるコンデンサ素子1に、予め弁作用
を有する金属線を陽極リードBとして埋設して植
立するか溶接などにより導出している。次にコン
デンサ素子を温度2000℃前後の高真空で焼結した
のちリン酸水溶浴用い、多孔質表面を陽極酸化法
にて酸化皮膜の誘電体層を形成する。次にその表
面に硝酸マンガン塩などのマンガン塩を温度250
℃前後の恒温炉中で熱分解して二酸化マンガン層
を形成する。次に常温のグラフアイト溶液に浸漬
して温度200℃前後で焼成した後、銀微粒子を主
体とした銀ペーストを浸漬して塗布する。さらに
溶融半田等に浸漬して陰極リードを引き出してい
る。
For example, in a conventional solid electrolytic capacitor, as shown in Fig. 1, a capacitor element 1 is made by press-molding metal powder having a valve action such as tantalum, niobium, or aluminum into a cylindrical shape or the like, and a valve action is applied in advance to the capacitor element 1. The metal wire is buried as the anode lead B, and is then led out by welding or the like. Next, the capacitor element is sintered in a high vacuum at a temperature of around 2000°C, and then a dielectric layer of an oxide film is formed on the porous surface by anodizing using a phosphoric acid aqueous bath. Next, apply manganese salt such as manganese nitrate to the surface at a temperature of 250.
It is thermally decomposed in a constant temperature furnace at around ℃ to form a manganese dioxide layer. Next, it is immersed in a graphite solution at room temperature and fired at a temperature of around 200°C, and then a silver paste consisting mainly of silver fine particles is applied by immersion. Furthermore, the cathode lead is pulled out by immersing it in molten solder or the like.

しかしこのような従来手段では (イ) 固体電解コンデンサ素子が多孔質体であるた
めに誘電体層表面から半田層までの等価直列抵
抗が大きくなり、周波数に依存しない、すなわ
ち共振周波数でのインピーダンス値が0.5Ω〜
1Ωの値となる。このため周波数1MHz〜10M
Hz帯での応答が悪くなり、論理回路の電源ノイ
ズ吸収が完全にできず誤動作を生じていた。
However, with such conventional means, (a) since the solid electrolytic capacitor element is a porous material, the equivalent series resistance from the surface of the dielectric layer to the solder layer becomes large, and the impedance value does not depend on the frequency, that is, the impedance value at the resonant frequency. is 0.5Ω~
The value is 1Ω. For this reason frequency 1MHz ~ 10M
The response in the Hz band deteriorated, and the logic circuit was unable to completely absorb power supply noise, causing malfunctions.

(ロ) (イ)の固体電解コンデンサの改善策として0.1
μF程度の静電容量のセラミツクスコンデンサ
を固体電解コンデンサと並列に実装する手段が
取られているが、このような従来手段では実装
時の工数の増加及び実装面積の増大が生ずる欠
点があつた。
(b) 0.1 as an improvement measure for the solid electrolytic capacitor in (a)
Measures have been taken to mount a ceramic capacitor with a capacitance on the order of .mu.F in parallel with a solid electrolytic capacitor, but such conventional means have the disadvantage of increasing the number of steps during mounting and increasing the mounting area.

(ハ) 上記の固体電解コンデンサの多くはコンデン
サ素子Aに植立したリード線に接合可能なニツ
ケルなどの金属線を溶接するとともに、半田面
より陰極リード線6を同一方向に取り出し、そ
の後樹脂ケースに挿入してエポキシなどの樹脂
を注入するか、樹脂デイツプなどの手段でコン
デンサ素子Aの周囲を覆うなどの外装が行われ
ている。しかしこの従来手段は陽陰両面リード
線間の距離を一定に保つことが困難であり、プ
リント基板等へ実装する場合に多大な工数を必
要としていた。
(c) In many of the solid electrolytic capacitors mentioned above, a metal wire such as nickel that can be joined to the lead wire planted on the capacitor element A is welded, and the cathode lead wire 6 is taken out from the solder surface in the same direction, and then the resin case is The exterior of the capacitor element A is either inserted into the capacitor element A and injected with a resin such as epoxy, or covered around the capacitor element A with a resin dip or the like. However, with this conventional means, it is difficult to maintain a constant distance between the positive and negative lead wires, and a large number of man-hours are required when mounting on a printed circuit board or the like.

これらの従来手段の改善策として端子板3をリ
ード線に通して固定する手段がとられることが多
いが、インピーダンス特性の改善にはならなかつ
た。
As an improvement over these conventional means, a method of fixing the terminal board 3 by passing it through a lead wire is often taken, but this does not improve the impedance characteristics.

本考案の目的はかかる従来欠点を解決した場合
コンデンサを提供することにある。
It is an object of the present invention to provide a capacitor that overcomes the drawbacks of the prior art.

本考案によれば弁作用を有する金属の陽極体の
周辺に酸化皮膜層、半導体層を介して電極引出し
層を形成し陰極リード線に接続させたコンデンサ
素子に同種弁作用金属線を導出させた第1のコン
デンサ素子と、この第1のコンデンサの陽陰極リ
ード線間に積層チツプ型セラミツクスコンデンサ
素子を第2のコンデンサとして接続し、かつ第1
のコンデンサのリード線間を一定距離に保持させ
樹脂板外装することを特徴とする複合コンデンサ
が得られる。
According to the present invention, an electrode lead layer is formed around a metal anode body having a valve action through an oxide film layer and a semiconductor layer, and a valve metal wire of the same type is led out to a capacitor element connected to a cathode lead wire. A multilayer chip type ceramic capacitor element is connected as a second capacitor between the first capacitor element and the anode and cathode lead wires of the first capacitor, and
A composite capacitor is obtained in which the lead wires of the capacitor are maintained at a constant distance and are covered with a resin plate.

以下本考案の実施例を第2図a,b、第3図
a,b、第4図a,bおよび第5図について説明
する。
Embodiments of the present invention will be described below with reference to FIGS. 2a, b, 3 a, b, 4 a, b, and 5.

図中符号1は第1コンデンサで36V1μF定格
のタンタル固体電解コンデンサを用いる。第1の
コンデンサ1は約5000CV(静電容量(μF)×陽
極酸化電圧)/grのタンタル粉末を用いて幅4mm
×厚さ1mm×高さ1.8mmに成型し、その中央に0.3
φのタンタルの陽極導出リード線4を植出し、温
度1900℃の高温真空炉中で30分間焼結した素子を
公知の手段で酸化皮膜、二酸化マンガン、グラフ
アイト、銀ペースト、半田の各層を順次層状に形
成する。この素子は半田メツキニツケル線を取り
付けた際のインピーダンス特性を第6図Aに示
す。
Reference numeral 1 in the figure is the first capacitor, and a tantalum solid electrolytic capacitor with a rating of 36V1μF is used. The first capacitor 1 is made of tantalum powder of approximately 5000CV (capacitance (μF) x anodizing voltage)/gr and has a width of 4mm.
×Molded to 1mm thick × 1.8mm high, with 0.3 mm in the center
A tantalum anode lead wire 4 of φ was implanted, and the element was sintered for 30 minutes in a high-temperature vacuum furnace at a temperature of 1900°C, and each layer of oxide film, manganese dioxide, graphite, silver paste, and solder was sequentially applied using known methods. Form in layers. Figure 6A shows the impedance characteristics of this element when a soldered nickel wire is attached.

次に符号2はチタン酸バリウムをベースにした
50V、0.1μFの定格の低等価直列抵抗の積層チ
ツプ型セラミツクスコンデンサで、リード線間距
離が5mmで、かつ幅5mm、厚さ1.5mmとなる構造
の第2のコンデンサを形成した。この第2のコン
デンサ素子2のインピーダンス特性を第6図Bに
示す。
Next, code 2 is based on barium titanate.
A second capacitor was formed with a low equivalent series resistance multilayer chip ceramic capacitor rated at 50 V and 0.1 μF, with a distance between lead wires of 5 mm, a width of 5 mm, and a thickness of 1.5 mm. The impedance characteristics of this second capacitor element 2 are shown in FIG. 6B.

次に第1のコンデンサ素子1のリード線5およ
び6の間隔を一定距離にするための孔または切欠
き部を有する第2のコンデンサ2(第2図〜第4
図を参照)を半田7により固定し、外装ケース9
内に樹脂板8を施した後のインピーダンス特性を
第6図cに示す。
Next, a second capacitor 2 (FIGS. 2 to 4
(see figure) with solder 7, and
The impedance characteristic after the resin plate 8 is applied inside is shown in FIG. 6c.

以上本考案による複合コンデンサは周波数1M
Hzから10MHzにおいて、タンタル固体電解コンデ
ンサのインピーダンスを大幅に改善することがで
き、かつ従来の固体電解コンデンサの外形寸法内
にセラミツクスコンデンサを収めることができる
複合コンデンサが得られる効果は大である。
As mentioned above, the composite capacitor according to the present invention has a frequency of 1M.
A composite capacitor that can significantly improve the impedance of a tantalum solid electrolytic capacitor from Hz to 10 MHz, and also allows a ceramic capacitor to fit within the external dimensions of a conventional solid electrolytic capacitor, has a great effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の固体電解コンデンサの一例を示
す断面図、第2図a,b、第3図a,b、第4図
a,bは本考案の実施例による積層チツプ型セラ
ミツクスコンデンサのそれぞれ上面図および側面
図、第5図は本考案の複合コンデンサの一実施例
を示す断面図、第6図はインピーダンス特性図を
示し、縦軸、横軸とも対数軸となつている。 1……第1のコンデンサ素子、2……第2のコ
ンデンサ素子、3……端子板、4……陽極導出リ
ード線、5……陽極リード線、6……陰極リード
線、7……半田、8……樹脂、9……外装ケー
ス。
FIG. 1 is a sectional view showing an example of a conventional solid electrolytic capacitor, FIGS. A top view and a side view, FIG. 5 is a sectional view showing one embodiment of the composite capacitor of the present invention, and FIG. 6 is an impedance characteristic diagram, in which both the vertical and horizontal axes are logarithmic axes. DESCRIPTION OF SYMBOLS 1... First capacitor element, 2... Second capacitor element, 3... Terminal plate, 4... Anode lead wire, 5... Anode lead wire, 6... Cathode lead wire, 7... Solder , 8...resin, 9...exterior case.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 第1のコンデンサ素子と第2のコンデンサ素子
とが同一容器内に収容されてかつ前記第1のコン
デンサ素子の一対のリード線が前記第2のコンデ
ンサ素子の電極に接続されて外部に引き出された
複合コンデンサにおいて、前記第1のコンデンサ
素子は固体電解コンデンサであり前記第2のコン
デンサ素子は前記一対のリード線間を一定距離に
保持する切欠きまたは孔を有する積層チツプ型セ
ラミツクスコンデンサであることを特徴とする複
合コンデンサ。
A first capacitor element and a second capacitor element are housed in the same container, and a pair of lead wires of the first capacitor element are connected to electrodes of the second capacitor element and drawn out. In the composite capacitor, the first capacitor element is a solid electrolytic capacitor, and the second capacitor element is a multilayer chip-type ceramic capacitor having a notch or hole that maintains a constant distance between the pair of lead wires. Composite capacitor with special features.
JP1932380U 1980-02-18 1980-02-18 Expired JPS6116684Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1932380U JPS6116684Y2 (en) 1980-02-18 1980-02-18

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1932380U JPS6116684Y2 (en) 1980-02-18 1980-02-18

Publications (2)

Publication Number Publication Date
JPS56121249U JPS56121249U (en) 1981-09-16
JPS6116684Y2 true JPS6116684Y2 (en) 1986-05-22

Family

ID=29615587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1932380U Expired JPS6116684Y2 (en) 1980-02-18 1980-02-18

Country Status (1)

Country Link
JP (1) JPS6116684Y2 (en)

Also Published As

Publication number Publication date
JPS56121249U (en) 1981-09-16

Similar Documents

Publication Publication Date Title
US6563693B2 (en) Solid electrolytic capacitor
JP4010447B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH07320982A (en) Manufacture of capacitor element for tantalum solid electrolytic capacitor
JPH02105512A (en) Electrolytic capacitor and its manufacture
JPS6116684Y2 (en)
JPH0794369A (en) Solid electrolytic capacitor
JP2875452B2 (en) Manufacturing method of surface mount type solid electrolytic capacitor
JP3378285B2 (en) Structure of solid electrolytic capacitor and method of manufacturing solid electrolytic capacitor
JP3624993B2 (en) Chip-type electronic components
JPS63124511A (en) Aluminum solid electrolytic capacitor
JPS593571Y2 (en) chip type capacitor
JPS5914884B2 (en) chip capacitor
JP3294361B2 (en) Structure of solid electrolytic capacitor and method of manufacturing solid electrolytic capacitor
JP2950586B2 (en) Method for manufacturing solid electrolytic capacitor
JPS61278124A (en) Manufacture of solid electrolytic capacitor
JPH0220822Y2 (en)
JP2895907B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPS5915489Y2 (en) electronic components
JPS6011635Y2 (en) Electrolytic capacitor
JPH09102442A (en) Manufacture of nonpolar solid-state electrolytic capacitor
JP2946657B2 (en) Chip type solid electrolytic capacitor
JPH04192405A (en) Solid electrolytic capacitor
JP2902715B2 (en) Method for manufacturing solid electrolytic capacitor
JPS6012277Y2 (en) Electrolytic capacitor
JPS6481210A (en) Solid electrolytic capacitor