JPS6249980B2 - - Google Patents

Info

Publication number
JPS6249980B2
JPS6249980B2 JP54060000A JP6000079A JPS6249980B2 JP S6249980 B2 JPS6249980 B2 JP S6249980B2 JP 54060000 A JP54060000 A JP 54060000A JP 6000079 A JP6000079 A JP 6000079A JP S6249980 B2 JPS6249980 B2 JP S6249980B2
Authority
JP
Japan
Prior art keywords
sintered
metal
electrolytic capacitor
core wire
tantalum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54060000A
Other languages
Japanese (ja)
Other versions
JPS55151325A (en
Inventor
Hirotsugu Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP6000079A priority Critical patent/JPS55151325A/en
Publication of JPS55151325A publication Critical patent/JPS55151325A/en
Publication of JPS6249980B2 publication Critical patent/JPS6249980B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は焼結形電解コンデンサの製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a sintered electrolytic capacitor.

従来、焼結形電解コンデンサはタンタル、ニオ
ブ、アルミニウムなどの弁作用を有する金属粉末
をシヨウノウなどのバインダーとともに混合し、
これを圧縮成形した後焼結して多孔体を形成し、
ついで多孔体の表面に化成処理して酸化被膜を生
成し、該多孔体内に硝酸マンガンを含む溶液に浸
漬した後、これを熱分解して二酸化マンガン層を
形成し、さらにグラフアイト層、銀ペイント層、
はんだ層などを形成して外装した焼結形固体電解
コンデンサがあつた。
Conventionally, sintered electrolytic capacitors are made by mixing metal powders with valve action such as tantalum, niobium, and aluminum with binders such as Shonou.
This is compression molded and then sintered to form a porous body.
Next, the surface of the porous body is subjected to chemical conversion treatment to form an oxide film, and after immersing the porous body in a solution containing manganese nitrate, this is thermally decomposed to form a manganese dioxide layer, and then a graphite layer and silver paint are added. layer,
There was a sintered solid electrolytic capacitor that was packaged with a solder layer.

また上述の多孔体内に電解液を注入して金属ケ
ースに収納し密封した焼結形湿式電解コンデンサ
があつた。
There was also a sintered wet electrolytic capacitor in which an electrolytic solution was injected into the above-mentioned porous body and the capacitor was sealed in a metal case.

上述のような焼結形電解コンデンサの静電容量
は主として金属粉末の大きさに起因する多孔体の
表面積と化成条件に起因する酸化皮膜の誘電率お
よび厚さから決定されるが、タンタル、ニオブな
どの金属粉末は比較的高価である欠点があつた。
The capacitance of a sintered electrolytic capacitor as described above is determined mainly by the surface area of the porous body, which is caused by the size of the metal powder, and the dielectric constant and thickness of the oxide film, which is caused by the chemical formation conditions. The disadvantage of metal powders such as these is that they are relatively expensive.

そのために上述の多孔体の表面積を有効に利用
するために電気絶縁性物質から本質的になるコア
材料上の弁作用金属の被膜とからなり、コア材料
が焼結することなく多孔性の密着した陽極体に成
形されているところの陽極体を有する電解コンデ
ンサが特開昭54−7563号公報に記載され試みられ
ているが、コア材料上の弁作用金属の被膜を誘電
体として利用しているために小形化し難い欠点が
あり、静電容量は末だ充分満足できる状態には至
つていない。
To this end, in order to effectively utilize the surface area of the porous body mentioned above, a valve-acting metal coating is formed on the core material, which is essentially made of an electrically insulating material. An electrolytic capacitor having an anode body molded into the anode body is described and attempted in Japanese Patent Laid-Open No. 54-7563, but the valve metal coating on the core material is used as the dielectric. Therefore, it has the drawback that it is difficult to miniaturize, and the capacitance has not yet reached a fully satisfactory state.

本発明は上述の欠点を除去し、小形かつ大容量
の焼結形電解コンデンサの製造方法を提供しよう
とするものである。
The present invention aims to eliminate the above-mentioned drawbacks and provide a method for manufacturing a small-sized, large-capacity sintered electrolytic capacitor.

すなわち、芯線の外周部にタンタル、ニオブな
どの弁作用を有する金属を付着させた後、これを
細かく切断して成形、焼結し、芯線を蒸発させる
ことにより多孔質陽極体を形成したことを特徴と
する焼結形電解コンデンサの製造方法である。
In other words, a porous anode body was formed by attaching a valve-acting metal such as tantalum or niobium to the outer periphery of the core wire, cutting it into pieces, molding and sintering it, and then evaporating the core wire. This is a method for manufacturing a sintered electrolytic capacitor.

以下、本発明を第1図〜第4図に示す実施例に
ついて説明する。
The present invention will be described below with reference to embodiments shown in FIGS. 1 to 4.

まず第1図に示すようにタンタル、ニオブなど
の弁作用を有する金属の蒸発温度よりも低いアル
ミニウムの芯線1の外周部にスパツターによつ
て、タンタル、ニオブなどの弁作用を有する金属
2を付着させた後、これを芯線1の軸方向に細か
く切断してシヨウノウなどのバインダーと混合し
て第2図に示すように成形する。3は陽極用引出
電極である。ついで真空中で昇温してバインダー
を蒸発させ、さらに上記芯線1を蒸発させて第3
図に示すように弁作用を有する金属2を焼結して
三次元多孔体を形成する。ついで該多孔体の表面
に化成処理して酸化皮膜を生成し、該多孔体内に
硝酸マンガンを含む溶液を浸透させ、熱分解する
工程を数回繰返して二酸化マンガン層を形成し、
さらにグラフアイト層、銀ペイン層、はんだ層を
形成し、該はんだ層より陰極用引出電極を導出し
樹脂外装して完成したものである。
First, as shown in Fig. 1, a metal 2 having a valve action such as tantalum or niobium is attached by sputtering to the outer periphery of an aluminum core wire 1 whose temperature is lower than the evaporation temperature of the metal having a valve action such as tantalum or niobium. After this, this is cut into pieces in the axial direction of the core wire 1, mixed with a binder such as Shonou, and formed as shown in FIG. 3 is an anode extraction electrode. Next, the temperature is raised in a vacuum to evaporate the binder, and the core wire 1 is further evaporated to form the third
As shown in the figure, a metal 2 having a valve action is sintered to form a three-dimensional porous body. Next, the surface of the porous body is subjected to chemical conversion treatment to form an oxide film, a solution containing manganese nitrate is infiltrated into the porous body, and the process of thermal decomposition is repeated several times to form a manganese dioxide layer.
Further, a graphite layer, a silver pane layer, and a solder layer were formed, and a cathode lead electrode was led out from the solder layer and covered with resin to complete the structure.

本発明は以上のようにして構成されているの
で、弁作用を有する金属2の外面のみならず、ア
ルミニウムなどの芯線1が除去されているので、
金属2の内面にも酸化皮膜が生成されるために表
面積が著しく増加し、大容量の焼結形電解コンデ
ンサが得られる。また芯線1の直径、弁作用を有
する金属2の厚さを適当に設定することにより空
孔率を大きくすることができ、二酸化マンガン
層、含浸液などの浸透性が向上し、損失、周波数
特性が良好になるなどの効果がある。
Since the present invention is constructed as described above, not only the outer surface of the metal 2 having a valve action but also the core wire 1 made of aluminum or the like is removed.
Since an oxide film is also formed on the inner surface of the metal 2, the surface area increases significantly, and a sintered electrolytic capacitor with a large capacity can be obtained. In addition, by appropriately setting the diameter of the core wire 1 and the thickness of the metal 2 having a valve action, the porosity can be increased, which improves the permeability of the manganese dioxide layer and impregnating liquid, and improves loss and frequency characteristics. It has the effect of making things better.

第4図は上記本発明法の実施例により得られた
焼結形電解コンデンサと前述の従来の焼結形電解
コンデンサを各25個用いタンタルの使用重量当り
の静電容量と化成電圧との積を比較したグラフ
で、本発明法により得られた焼結形電解コンデン
サの静電容量は著しく増加していることが判る。
Figure 4 shows the product of capacitance and formation voltage per weight of tantalum used using 25 each of the sintered electrolytic capacitor obtained by the embodiment of the method of the present invention and the conventional sintered electrolytic capacitor described above. It can be seen from the graph comparing the above that the capacitance of the sintered electrolytic capacitor obtained by the method of the present invention is significantly increased.

なお、上述の実施例は芯線としてアルミニウム
の金属を用いた焼結形電解コンデンサについて述
べたが、焼結形湿式電解コンデンサについても同
様の効果があり、また芯線はアルミニウム以外の
錫、鉛などの金属、それらの合金、あるいはカル
シウムなどの非金属のものであつてもよく、また
芯線の外周部にタンタル、ニオブなどの弁作用金
属の付着方法はスパツター法に限らず蒸着法など
であつてもよい。
In addition, although the above-mentioned example described a sintered type electrolytic capacitor using a metal such as aluminum as the core wire, the same effect can be obtained for a sintered type wet electrolytic capacitor. It may be a metal, an alloy thereof, or a non-metal such as calcium, and the method of attaching the valve metal such as tantalum or niobium to the outer periphery of the core wire is not limited to the sputtering method, but may also be a vapor deposition method. good.

叙上のように本発明は弁作用金属の使用量を低
減できるとともに表面積を著しく増加させ大容量
小形化が可能となり、工業的ならびに実用的価値
の極めて大なるものである。
As mentioned above, the present invention can reduce the amount of valve metal used, significantly increase the surface area, and make it possible to achieve large capacity and miniaturization, and is of great industrial and practical value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明の焼結形電解コンデン
サの製造過程を示し、第1図イは弁作用を有する
金属を外周部に付着した芯線の断面図、ロは同芯
線のX―X′断面図、第2図は成形体の断面図、
第3図は焼結体の断面図、第4図は従来法と本発
明法により得られた焼結形電解コンデンサのタン
タルの使用重量当りの静電容量と化成電圧との積
を比較したグラフである。 1:芯線、2:弁作用を有する金属。
Figures 1 to 3 show the manufacturing process of the sintered electrolytic capacitor of the present invention. X' cross-sectional view, Figure 2 is a cross-sectional view of the molded body,
Figure 3 is a cross-sectional view of the sintered body, and Figure 4 is a graph comparing the product of capacitance per weight of tantalum used and formation voltage in sintered electrolytic capacitors obtained by the conventional method and the method of the present invention. It is. 1: Core wire, 2: Metal with valve action.

Claims (1)

【特許請求の範囲】[Claims] 1 芯線の外周部にタンタル、ニオブなどの弁作
用を有する金属を付着させた後、これを細かく切
断して成形、焼結し、上記芯線を蒸発させて多孔
質陽極体を形成したことを特徴とする焼結形電解
コンデンサの製造方法。
1. A porous anode body is formed by attaching a valve-acting metal such as tantalum or niobium to the outer periphery of the core wire, cutting it into pieces, molding and sintering, and evaporating the core wire. A method for manufacturing a sintered electrolytic capacitor.
JP6000079A 1979-05-15 1979-05-15 Sintered electrolytic condenser Granted JPS55151325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6000079A JPS55151325A (en) 1979-05-15 1979-05-15 Sintered electrolytic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6000079A JPS55151325A (en) 1979-05-15 1979-05-15 Sintered electrolytic condenser

Publications (2)

Publication Number Publication Date
JPS55151325A JPS55151325A (en) 1980-11-25
JPS6249980B2 true JPS6249980B2 (en) 1987-10-22

Family

ID=13129395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6000079A Granted JPS55151325A (en) 1979-05-15 1979-05-15 Sintered electrolytic condenser

Country Status (1)

Country Link
JP (1) JPS55151325A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443984U (en) * 1990-04-27 1992-04-14

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59200411A (en) * 1983-04-27 1984-11-13 日本電気株式会社 Tantalum electrolytic condenser anode element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443984U (en) * 1990-04-27 1992-04-14

Also Published As

Publication number Publication date
JPS55151325A (en) 1980-11-25

Similar Documents

Publication Publication Date Title
US2936514A (en) Electrolytic device
JP3434041B2 (en) Tantalum powder and electrolytic capacitor using the same
US3445731A (en) Solid capacitor with a porous aluminum anode containing up to 8% magnesium
WO2007130234A1 (en) Capacitive element comprising an anode with flutes and process for forming a capacitor
McLean et al. Tantalum solid electrolytic capacitors
US4604260A (en) Method of producing electrolytic capacitor with Al-Ti anode body
US3627520A (en) Method of producing porous sintered tantalum
KR100380925B1 (en) Metal electrode material, capacitor using metal electrode material, and method of manufacture
US3330999A (en) Electrolytic capacitor with dielectric film formed on ceramic material
JP5289669B2 (en) Method for producing fine powder of Nb compound, method for producing solid electrolytic capacitor using fine powder of Nb compound
JPS6249980B2 (en)
US3325698A (en) Electrical capacitor electrode and method of making the same
JPS6249979B2 (en)
JPS6248891B2 (en)
JPS6334917A (en) Capacitor
JPS6314458Y2 (en)
JPS5832490B2 (en) Condenser capacitor
JPH06267803A (en) Electrode material for capacitor
JPH0353511A (en) Manufacture of solid electrolytic capacitor
JP5497076B2 (en) Fine powder of Nb compound, porous sintered body, solid electrolytic capacitor using the same, and production method thereof
JPS6035816B2 (en) Manufacturing method of solid electrolytic capacitor
KR830000439B1 (en) Sintered Body of Semiconductor Ceramic Material
JPS6011635Y2 (en) Electrolytic capacitor
KR100264841B1 (en) Tantalum sintering element manufacturing method
JPS60219722A (en) Solid electrolytic condenser