JPS6035816B2 - Manufacturing method of solid electrolytic capacitor - Google Patents

Manufacturing method of solid electrolytic capacitor

Info

Publication number
JPS6035816B2
JPS6035816B2 JP14412179A JP14412179A JPS6035816B2 JP S6035816 B2 JPS6035816 B2 JP S6035816B2 JP 14412179 A JP14412179 A JP 14412179A JP 14412179 A JP14412179 A JP 14412179A JP S6035816 B2 JPS6035816 B2 JP S6035816B2
Authority
JP
Japan
Prior art keywords
powder
metal powder
oxide
valve action
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14412179A
Other languages
Japanese (ja)
Other versions
JPS5667921A (en
Inventor
裕司 川嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Home Electronics Ltd
Original Assignee
NEC Home Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Home Electronics Ltd filed Critical NEC Home Electronics Ltd
Priority to JP14412179A priority Critical patent/JPS6035816B2/en
Publication of JPS5667921A publication Critical patent/JPS5667921A/en
Publication of JPS6035816B2 publication Critical patent/JPS6035816B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 本発明は固体電解コンデンサの製造方法の改良に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for manufacturing a solid electrolytic capacitor.

一般に固体電解コンデンサは例えば第1図〜第2図に示
すように、タンタル、ニオブ、アルミニウムなどのよう
に弁作用を有する金属粉末を円柱状に加圧成形し暁結し
てなるコンデンサェレメントAに予め予作用を有する金
属線を陽極リードBとして桶立し、この陽極リードBの
突出部分に第1の外部リード部材Cを溶接すると共に、
第2の外部リード部村DをコンデンサェレメントAの岡
面に酸化層E、半導体層F、グラフアィト層Gを介して
形成された電極引出し層日に半田付けし、然る後、コン
デンサェレメントAの全周面を樹脂材Kにて被覆して構
成されている。
In general, a solid electrolytic capacitor is a capacitor element A made by press-molding a metal powder having a valve action such as tantalum, niobium, aluminum, etc. into a cylindrical shape, as shown in Figures 1 and 2. A metal wire having a pre-effect is placed in a tub as an anode lead B, and a first external lead member C is welded to the protruding portion of this anode lead B.
The second external lead part D is soldered to the electrode lead layer formed on the outer surface of the capacitor element A via the oxide layer E, the semiconductor layer F, and the graphite layer G, and then the capacitor element The entire circumferential surface of A is covered with a resin material K.

ところで、このコンデンサェレメントAは例えば弁作用
を有する金属粉末、樟脳など有機質のバィンダ、溶剤よ
りなる混合粉末を成形ダイスに所要量供給し、上、下パ
ンチにて加圧成形する工程、この成形体を700〜80
0℃の温度で予備焼結してバインダ、溶剤を除去する工
程、さらに真空中で1400〜2000℃の高温下で本
競結する工程を経て多孔質に製作されている。
By the way, this capacitor element A is manufactured by a process in which a required amount of a mixed powder consisting of a metal powder having a valve action, an organic binder such as camphor, and a solvent is supplied to a molding die, and then pressure-formed using upper and lower punches. Body 700-80
It is made porous through a step of preliminary sintering at a temperature of 0° C. to remove the binder and solvent, and then a main bonding step in a vacuum at a high temperature of 1,400 to 2,000° C.

しかし乍ら、コンデンサェレメントAにおけるバインダ
はその大部分が予備競結工程、本競結工程で除去される
のであるが、それの極く一部分は例えば第2図に示すよ
うにカーボンMとして残る鏡向にある。
However, most of the binder in capacitor element A is removed during the preliminary binding process and the main binding process, but a small portion of it remains as carbon M, as shown in Figure 2. It's facing the mirror.

ところが、このカーボンMはコンデンサエレメントAを
構成する金属粉末とは異なり全く弁作用を有しないため
に、コンデンサェレメントAの化成処理時にそれの表面
に酸化層Eを形成することはできない。
However, unlike the metal powder constituting the capacitor element A, this carbon M has no valve action at all, and therefore the oxide layer E cannot be formed on the surface of the capacitor element A during the chemical conversion treatment.

しかも、カーボンMは金属粉末aの表面に密着している
関係で、金属粉末aにおけるカーボンMの密着部分にも
酸化層Eを形成することはできない。従って、カーボン
M上に半導体層F、グラフアィト層Gなどが重合して形
成されると、陰極機能を有する半導体層FはカーボンM
を介して陽極機能を有する金属粉末aに抵抗接続されて
しまうために、動作時の漏洩電流が増加し、コンデンサ
としての特性、信頼性が損なわれるという問題がある。
Furthermore, since the carbon M is in close contact with the surface of the metal powder a, the oxide layer E cannot be formed on the portion of the metal powder a where the carbon M is in close contact. Therefore, when a semiconductor layer F, a graphite layer G, etc. are polymerized and formed on carbon M, the semiconductor layer F having a cathode function is formed by carbon M.
Since the capacitor is resistively connected to the metal powder a having an anode function through the capacitor, there is a problem in that leakage current increases during operation, and the characteristics and reliability of the capacitor are impaired.

これがために、コンデソサエレメントAのバインダを残
澄成分としてのカーボンMが残らないように完全に除去
すべく、暁結温度を一層高くしたり、暁結時間を長くし
たりすることが試みられているが、カーボンMの沸点が
高いことから、通常の真空暁結温度範囲では除去するこ
とは非常に困難である。
For this reason, in order to completely remove the binder of the condensation element A so that no carbon M remains as a residual component, attempts have been made to raise the dawning temperature even higher or to lengthen the dawning time. However, since carbon M has a high boiling point, it is extremely difficult to remove it within the normal vacuum temperature range.

本発明はこのような点に鑑み、焼給条件に特に変更を加
えることなく、コンデンサェレメントのカーボン残澄を
簡単かつ有効に除去しうる固体電解コンデンサの製造方
法を提供するもので、以下その一製造方法について説明
する。
In view of these points, the present invention provides a method for manufacturing a solid electrolytic capacitor that can easily and effectively remove carbon residue from a capacitor element without making any particular changes to firing conditions. A manufacturing method will be explained.

まず、弁作用を有する金属粉末と弁作用を有する金属粉
末の酸化物と有機質のバィンダと溶剤とからなる混合粉
末を成形ダイスに所要量供給し、上、下パンチによって
円柱状に加圧成形する。
First, a required amount of mixed powder consisting of a metal powder with a valve action, an oxide of the metal powder with a valve action, an organic binder, and a solvent is supplied to a forming die, and the mixture is press-formed into a cylindrical shape using upper and lower punches. .

次に、この成形体を真空凝結炉にセットすると共に、炉
温度を700〜80000に設定する。すると、成形体
のバインダ、溶剤の大部分は除去される。次に炉温度を
1400〜2000ooに高めて本競結を行う。この際
に、弁作用を有する金属粉末の酸化物は純金属と酸素に
熱分解される結果、成形体内は若干の酸素雰囲気となる
。酸素の一部は残湾としてのカーボンと反応し、C○,
C02ガスが生成される。このガスは酸素と共に成形体
より紬孔を介して真空系に除去される。そして、冷却後
、燐結炉より取出すことによってコンデンサェレメント
が得られる。このように、弁作用を有する金属粉末には
弁作用を有する金属粉末の酸化物が適量混合されている
ので、仮に予備焼結工程においてバインダの除去が不充
分となってカーボンが残存していても、本焼結工程にお
いて金属酸化物粉末の熱分解による酸素と反応してC○
,C02ガスとして容易に除去できる。
Next, this molded body is set in a vacuum condensation furnace, and the furnace temperature is set to 700 to 80,000. Then, most of the binder and solvent in the molded body are removed. Next, the furnace temperature is raised to 1,400 to 2,000 oo and the main competition is carried out. At this time, the oxide of the metal powder having a valve action is thermally decomposed into pure metal and oxygen, resulting in a slight oxygen atmosphere inside the molded body. A part of the oxygen reacts with the remaining carbon, resulting in C○,
C02 gas is produced. This gas is removed together with oxygen from the molded body through the pongee hole into the vacuum system. After cooling, the condenser element is obtained by taking it out from the phosphorization furnace. In this way, the metal powder with valve action contains an appropriate amount of oxide of the metal powder with valve action, so even if the binder is not removed sufficiently in the preliminary sintering process and carbon remains. In the main sintering process, metal oxide powder reacts with oxygen due to thermal decomposition, resulting in C○
, can be easily removed as CO2 gas.

従って、半導体層と金属粉末とのカーボンによる抵抗接
続を防止でき、漏洩電流特性を改善できる。特にコンデ
ンサェレメント内のカーボン残澄は金属酸化物粉末の熱
分解によって発生する酸素を利用してガス化して除去さ
れる関係で、焼結温度を高くしたり、競結時間を長くし
たりする必要がない。
Therefore, resistance connection due to carbon between the semiconductor layer and the metal powder can be prevented, and leakage current characteristics can be improved. In particular, carbon residue in the capacitor element is gasified and removed using oxygen generated by thermal decomposition of metal oxide powder, so the sintering temperature must be raised or the sintering time lengthened. There's no need.

従って、暁結作業を能率化できるのみならず、コンデン
サェレメントの空孔度を良好に保つことができる結果、
所望のコンデンサ特性を得ることができる。この点、本
発明者は金属粉末としてタンタル粉末(Ta粉末)を、
金属酸化粉末としてタンタルの酸化物(Ta205)を
それぞれ用い、Ta粉末にバンィダを3重量%混合する
と共に、Ta2Q粉末をTa粉末に対して0〜2の重量
%の範囲で混合した種々の混合粉末を用いて円柱状に加
圧成形し、通常の方法によって20V22rF品のコン
デンサを製作し、漏洩電流特性を測定した処、第3図に
示す結果が得られた。
Therefore, it is not only possible to streamline the freezing work, but also to maintain good porosity of the capacitor element.
Desired capacitor characteristics can be obtained. In this regard, the present inventor uses tantalum powder (Ta powder) as the metal powder.
Various mixed powders using tantalum oxide (Ta205) as the metal oxide powder, mixing 3% by weight of Vanida with Ta powder, and mixing Ta2Q powder in a range of 0 to 2% by weight with respect to Ta powder. A 20V, 22rF capacitor was manufactured using a conventional method, and its leakage current characteristics were measured, and the results shown in FIG. 3 were obtained.

同図より明らかなように、Ta粉末にTa23粉末を混
合することによって漏洩電流特性が改善されている。
As is clear from the figure, the leakage current characteristics are improved by mixing Ta23 powder with Ta powder.

特に、それの混合量が2%以上の時に改善効果が顕著で
あって、従来品(0%)が1.3rAであるので対し本
発明品は0.6仏Aと半減している。尚、バィンダのT
a粉末に対する混合量を1〜5重量%の範囲で変えても
漏洩電流特性に大差は認められなかった。
In particular, the improvement effect is remarkable when the mixed amount is 2% or more, and while the conventional product (0%) has an output of 1.3 rA, the product of the present invention has reduced it by half to 0.6 rA. In addition, the binder T
No significant difference was observed in the leakage current characteristics even when the amount mixed with respect to the a powder was varied in the range of 1 to 5% by weight.

これは大部分のバィンダが予備焼結工程で除去されるこ
とに起因していると考えられる。しかし乍ら、Ta20
5粉末の混合量が2の重量%を越えると分解酸素の真空
系への除去に長時間を要し、作業性が低下して好ましく
ない。
This is considered to be due to the fact that most of the binder is removed during the preliminary sintering process. However, Ta20
If the mixed amount of the 5 powder exceeds 2% by weight, it will take a long time to remove the decomposed oxygen in the vacuum system, resulting in a decrease in workability, which is undesirable.

従って、Ta粉末に占めるTa205粉末の割合は2〜
2の重量%が好ましい。尚、本発明において、弁作用を
有する金属粉末は単一金属の他、合金を用いることもで
きるし、又、金属酸化物粉末も金属粉末とは異種の弁作
用を有する金属の酸化物を使用することができる。
Therefore, the proportion of Ta205 powder in Ta powder is 2~
A weight percent of 2 is preferred. In addition, in the present invention, the metal powder having a valve action can be an alloy in addition to a single metal, and the metal oxide powder may be an oxide of a metal having a valve action different from the metal powder. can do.

以上のように本発明によれば、弁作用を有する金属粉末
の酸化物を混合することによって、バィンダの力−ボン
残笹をガス化して簡単かつ確実に除去できるので、漏洩
電流特性を効果的に改善できる。
As described above, according to the present invention, by mixing the oxide of the metal powder that has a valve action, the force of the binder can be gasified and removed easily and reliably, so that the leakage current characteristics can be effectively reduced. can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の固体電解コンデンサの側断面図、第2図
は第1図の要部拡大断面図、第3図はタンタル粉末の酸
化物の混合量に対する漏洩電流の変化特性図である。 第1図 第2図 第3図
FIG. 1 is a side sectional view of a conventional solid electrolytic capacitor, FIG. 2 is an enlarged sectional view of the main part of FIG. 1, and FIG. 3 is a characteristic diagram of changes in leakage current with respect to the amount of oxide mixed in tantalum powder. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1 弁作用を有する金属粉末と弁作用を有する金属粉末
の酸化物と有機質のバインダと溶剤とを含む混合粉末を
所望形状に加圧成形すると共に、真空中で焼結すること
を特徴とする固体電解コンデンサの製造方法。
1. A solid that is characterized in that a mixed powder containing a metal powder having a valve action, an oxide of the metal powder having a valve action, an organic binder, and a solvent is pressure-molded into a desired shape and sintered in a vacuum. Method of manufacturing electrolytic capacitors.
JP14412179A 1979-11-06 1979-11-06 Manufacturing method of solid electrolytic capacitor Expired JPS6035816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14412179A JPS6035816B2 (en) 1979-11-06 1979-11-06 Manufacturing method of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14412179A JPS6035816B2 (en) 1979-11-06 1979-11-06 Manufacturing method of solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS5667921A JPS5667921A (en) 1981-06-08
JPS6035816B2 true JPS6035816B2 (en) 1985-08-16

Family

ID=15354673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14412179A Expired JPS6035816B2 (en) 1979-11-06 1979-11-06 Manufacturing method of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS6035816B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180028150A (en) * 2016-09-08 2018-03-16 현대중공업 주식회사 Reducing agent supply device for SCR system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3129679A1 (en) * 1981-07-28 1983-02-17 Varta Batterie Ag, 3000 Hannover GALVANIC ELEMENT WITH A POROUS, SOLID SOLID ELEMENTROLYTE CONTAINING THE CATHODE SUBSTANCE
JP4648202B2 (en) * 2006-01-16 2011-03-09 ニチコン株式会社 Method for manufacturing anode element for solid electrolytic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180028150A (en) * 2016-09-08 2018-03-16 현대중공업 주식회사 Reducing agent supply device for SCR system

Also Published As

Publication number Publication date
JPS5667921A (en) 1981-06-08

Similar Documents

Publication Publication Date Title
JP3434041B2 (en) Tantalum powder and electrolytic capacitor using the same
US6927967B2 (en) Capacitor substrates made of refractory metal nitrides
JP2004524674A (en) Tantalum and tantalum nitride powder mixtures for electrolytic capacitor substrates
US6540810B2 (en) Niobium powder for capacitor, sintered body using the powder and capacitor using the same
JP4508913B2 (en) Solid electrolytic capacitor and method for producing anode material for solid electrolytic capacitor
JPS6035816B2 (en) Manufacturing method of solid electrolytic capacitor
JP5289669B2 (en) Method for producing fine powder of Nb compound, method for producing solid electrolytic capacitor using fine powder of Nb compound
US20040182199A1 (en) Niobium powder, sintered body thereof and capacitor using the same
JP2004014667A (en) Solid electrolytic capacitor
KR100812687B1 (en) Niobium powder for capacitor, sintered body thereof and capacitor using the sintered body
JPH10135080A (en) Solid-state electrolytic capacitor and its manufacture
JP2004508726A (en) Electrode and capacitor with said electrode
EP1117110A2 (en) Fabrication method of solid electrolytic capacitor
JPS6053454B2 (en) Manufacturing method of sintered capacitor element
JP2885101B2 (en) Manufacturing method of electrolytic capacitor
JP4430440B2 (en) Manufacturing method of anode body for solid electrolytic capacitor
US4214293A (en) Electrolytic capacitors
US7324330B2 (en) Capacitor element for solid electrolytic capacitor and method of making the same
JP2004076063A (en) Niobium alloy powder, anode for solid electrolytic capacitor, and solid electrolytic capacitor
JPH06267803A (en) Electrode material for capacitor
JPH0521278A (en) Solid electrolytic capacitor and its manufacture
SU1101913A2 (en) Process for manufacturing bulk-porous anodes
JPH11288851A (en) Manufacture of solid electrolytic capacitor
JPH09167719A (en) Tantalum solid electrolytic capacitor
JP2734825B2 (en) Method for manufacturing solid electrolytic capacitor