JP4648202B2 - Method for manufacturing anode element for solid electrolytic capacitor - Google Patents

Method for manufacturing anode element for solid electrolytic capacitor Download PDF

Info

Publication number
JP4648202B2
JP4648202B2 JP2006007712A JP2006007712A JP4648202B2 JP 4648202 B2 JP4648202 B2 JP 4648202B2 JP 2006007712 A JP2006007712 A JP 2006007712A JP 2006007712 A JP2006007712 A JP 2006007712A JP 4648202 B2 JP4648202 B2 JP 4648202B2
Authority
JP
Japan
Prior art keywords
sintering
temperature
reduction
sintered body
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006007712A
Other languages
Japanese (ja)
Other versions
JP2007189163A (en
Inventor
政幸 若月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Capacitor Ltd
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP2006007712A priority Critical patent/JP4648202B2/en
Publication of JP2007189163A publication Critical patent/JP2007189163A/en
Application granted granted Critical
Publication of JP4648202B2 publication Critical patent/JP4648202B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は、タンタル、ニオブ等の弁作用金属粉末の焼結体で陽極を構成した固体電解コンデンサにおいて、特にその陽極となる素子の製造方法に関するものである。   The present invention relates to a method of manufacturing an element that serves as an anode of a solid electrolytic capacitor in which an anode is formed of a sintered body of valve action metal powder such as tantalum or niobium.

近年、固体電解コンデンサを小型化し、且つその静電容量をできるだけ大きくするために、陽極を構成する弁作用金属粉末の粒径をできるだけ小さくして粉末全体の比表面積を大きくすること、即ち粉体のCV値を高く選定することが広く行なわれている。
しかし、弁作用金属粉末の比表面積が大きくなると一般的には弁作用金属粉末に含まれる酸素濃度が増大し、固体電解コンデンサの漏れ電流値に悪影響を与えることも知られている。
In recent years, in order to reduce the size of a solid electrolytic capacitor and increase its capacitance as much as possible, the particle size of the valve metal powder constituting the anode is made as small as possible to increase the specific surface area of the powder, that is, the powder. It is widely practiced to select a high CV value.
However, it is also known that when the specific surface area of the valve action metal powder increases, the oxygen concentration contained in the valve action metal powder generally increases and adversely affects the leakage current value of the solid electrolytic capacitor.

また、陽極素子に電極引き出し用のワイヤーを埋設する場合には、弁作用金属粉末を所定の成形金型に充填する際、ワイヤーを一緒に挿入しておいて加圧成形することも行われる。   In addition, when an electrode lead wire is embedded in the anode element, when filling a predetermined molding die with the valve action metal powder, the wire is inserted together and then pressure molding is performed.

上記背景において、素子内の酸素濃度を低く抑え漏れ電流を低減する方法として、電極引き出し用ワイヤーを埋設した弁作用金属粉末を加圧成形し、これを真空中で焼結して焼結体素子とした後、この焼結体素子をマグネシウムなどの還元剤とともに熱処理して内部の酸素を還元処理する方法が提案され、またこの還元処理した陽極素子を上記焼結温度以下の低い温度で再度焼結して素子を安定化する方法も提案されている。(例えば特許文献1参照)
この技術により、焼結体素子の酸素濃度が低減され漏れ電流を低減することができる。
In the above background, as a method of reducing the leakage current by suppressing the oxygen concentration in the element, a valve element metal powder having an electrode lead wire embedded therein is pressure-molded and sintered in vacuum to obtain a sintered body element. After that, a method of reducing the internal oxygen by heat-treating the sintered body element together with a reducing agent such as magnesium has been proposed, and the anode element subjected to the reduction process is fired again at a temperature lower than the sintering temperature. As a result, a method for stabilizing the element has also been proposed. (For example, see Patent Document 1)
With this technique, the oxygen concentration of the sintered body element can be reduced and the leakage current can be reduced.

一方、固体電解コンデンサでは、前記陽極素子を化成液中において陽極酸化し、素子表面に誘電体となる酸化皮膜層を形成した後、これに二酸化マンガンや導電性高分子などの固体電解質層を含浸又は塗布して陰極を構成するが、全体を小型化し且つ容量を大きくするために、高いCV値の弁作用金属粉末を用いることも考えられる。
しかし、単純にCV値を高くしたのではその比表面積が大きくなるため、焼結した陽極素子表面および内部の空隙が小さくなる。このために前記酸化皮膜層表面への固体電解質層の形成が不均一となり、結果として固体電解コンデンサの電気特性、特にtanδ、ESRに悪影響を与えることも知られている。
On the other hand, in a solid electrolytic capacitor, the anode element is anodized in a chemical conversion solution, an oxide film layer serving as a dielectric is formed on the element surface, and then impregnated with a solid electrolyte layer such as manganese dioxide or a conductive polymer. Alternatively, the cathode is formed by coating, but it is also conceivable to use a valve metal powder having a high CV value in order to reduce the overall size and increase the capacity.
However, if the CV value is simply increased, the specific surface area is increased, so that the surface of the sintered anode element and the internal voids are reduced. For this reason, it is known that the formation of the solid electrolyte layer on the surface of the oxide film layer becomes non-uniform, and as a result, the electrical characteristics of the solid electrolytic capacitor, particularly tan δ and ESR, are adversely affected.

またtanδ、ESRを低減するため、一般的には陽極素子の密度を低下させる即ち加圧成形する際の粉末体の単位容積当りの量を少なくして焼結素子内部の空隙を大きくすることで、化成処理後の金属酸化物表面に対する固体電解質の形成状態を均一化する方法がある。
特開平07−142290号公報
Also, in order to reduce tan δ and ESR, in general, the density of the anode element is reduced, that is, the amount per unit volume of the powder body during pressure molding is reduced to increase the void inside the sintered element. There is a method of homogenizing the formation state of the solid electrolyte on the surface of the metal oxide after the chemical conversion treatment.
JP 07-142290 A

近年、弁作用金属粉末の比表面積拡大(弁作用金属粉末の高CV化)が進み、還元前の焼結温度を従来のように高い焼結温度で焼結後、焼結体素子を化成すると静電容量が低下するという問題があった。   In recent years, the expansion of the specific surface area of valve metal powder (high CV of valve metal powder) has progressed, and after sintering at a high sintering temperature as before, the sintered body element is formed. There was a problem that the capacitance was lowered.

この静電容量低下を防止する方法の一つとして、焼結温度と還元温度を低い温度とすることが考えられるが、弁作用金属粉末の高CV化が進み、弁作用金属粉末の酸素濃度が増加し、焼結体素子の酸素吸着量が増える状況においては、還元温度を低くすると還元能力が落ち酸素濃度低減効果が十分達成できないという問題があることも判った。   One way to prevent this decrease in capacitance is to lower the sintering temperature and the reduction temperature. However, the CV of the valve metal powder has increased, and the oxygen concentration of the valve metal powder has decreased. It has also been found that in the situation where the oxygen adsorption amount of the sintered body element increases and the reduction temperature is lowered, there is a problem that if the reduction temperature is lowered, the reduction ability is lowered and the oxygen concentration reduction effect cannot be sufficiently achieved.

また、逆に還元温度を余り高くすると全体がもろくなり、還元後の弁作用金属粉末と電極引き出し用ワイヤーとの電気的接合が低下し、しかも低下した電気的接合は、その後の焼結では回復せず、陽極と引き出し線との接触抵抗が大きくなるという問題もある。   On the other hand, if the reduction temperature is too high, the whole becomes brittle, and the electrical connection between the reduced valve metal powder and the electrode lead wire is reduced, and the reduced electrical connection is recovered by subsequent sintering. In addition, there is a problem that the contact resistance between the anode and the lead wire increases.

さらに、[0006]に述べたように、tanδ、ESRを低減する方法としては、弁作用金属粉末を加圧成形する際の成形密度を低くし(成形時の粉末の充填量を少なくする)、焼結体素子内部の空隙を大きくすることが一般的であるが、成形密度を低くすると、素子全体の強度が弱くなるので弁作用金属と電極引き出し用ワイヤーとの焼結後の接合強度が低下し、固体電解コンデンサ製造時の熱的・物理的ストレスにより漏れ電流特性が悪化するという問題も起こる。   Furthermore, as described in [0006], as a method for reducing tan δ and ESR, the molding density when pressure-molding the valve metal powder is lowered (the amount of powder filling during molding is reduced), It is common to increase the void inside the sintered body element, but if the molding density is lowered, the strength of the entire element will be weakened, so the joint strength after sintering of the valve metal and electrode lead wire will decrease. However, there is also a problem that the leakage current characteristic is deteriorated due to thermal and physical stress during the production of the solid electrolytic capacitor.

本発明は上記の課題を解決し、漏れ電流特性が良く、tanδ・ESR特性が良い、高い静電容量を有する固体電解コンデンサ用陽極素子の製造方法を提供することにある。   An object of the present invention is to provide a method for manufacturing an anode element for a solid electrolytic capacitor having a high electrostatic capacity, which solves the above-described problems and has a good leakage current characteristic and a good tan δ · ESR characteristic.

また上記電気特性の向上と併せて、弁作用金属と電極引き出し用ワイヤーとの接合強度も高く、極めて緻密で強固な電解コンデンサ用陽極体を提供するための効果的な素子の製造方法を提供する。   In addition to the improvement of the electrical characteristics, there is provided an effective element manufacturing method for providing a very dense and strong anode body for an electrolytic capacitor with high bonding strength between the valve action metal and the electrode lead wire. .

以上に鑑み本発明は、電極引き出し用ワイヤーを埋設した弁作用金属粉末を加圧成形する工程と、この成形体を真空中で第1の焼結を行って仮焼結体素子とする工程と、この仮焼結体素子を還元物質の存在下において熱処理する工程と、この還元処理した仮焼結体素子を真空中で前記第1の焼結温度より高い温度で第2の焼結を行う工程とを、順次施行することを特徴とするコンデンサ素子の製造方法である。   In view of the above, the present invention includes a step of pressure-molding a valve-acting metal powder in which an electrode lead wire is embedded, and a step of performing a first sintering of the formed body in a vacuum to form a pre-sintered element. The step of heat-treating the temporary sintered body element in the presence of a reducing substance and the second sintering of the temporary sintered body element subjected to the reduction treatment in vacuum at a temperature higher than the first sintering temperature. And a step of sequentially performing the steps.

また本発明の望ましい実施態様として、第1の焼結温度をT1、還元時の熱処理温度を
T2、第2の焼結温度をT3とするとき、これらの温度条件を
T2 < T1 < T3
の関係に選定するコンデンサ素子の製造方法を提供する。
As a preferred embodiment of the present invention, when the first sintering temperature is T1, the heat treatment temperature during reduction is T2, and the second sintering temperature is T3, these temperature conditions are T2 <T1 <T3.
A method of manufacturing a capacitor element selected for the relationship is provided.

更に前記温度条件において、還元時の熱処理温度T2を800〜900℃の範囲に選定するコンデンサ素子の製造方法を提供する。   Furthermore, the manufacturing method of the capacitor | condenser element which selects the heat processing temperature T2 at the time of a reduction | restoration in the range of 800-900 degreeC on the said temperature conditions is provided.

また、上記本発明は、弁作用金属粉末の粒子サイズを70kCV以上の微粒子のものを選定した陽極素子に対して特に有効となる製造方法である。   Further, the present invention is a manufacturing method that is particularly effective for an anode element in which the particle size of the valve action metal powder is selected to be 70 kCV or more.

以上のように本発明は、弁作用金属粉末を所定の形状に加圧成形した後、その成形体の第1の焼結工程を第2の焼結時より低い温度での仮焼結工程とし、還元工程後の第2の焼結を本焼結工程として第1の焼結温度より高い温度で再焼結するようにしたので、弁作用金属粉末の比表面積を大きくした場合でも陽極体の酸素濃度の増大が抑制され、漏れ電流特性の悪化が防止できるようになった。   As described above, in the present invention, after pressure-molding the valve action metal powder into a predetermined shape, the first sintering step of the molded body is a preliminary sintering step at a temperature lower than that during the second sintering. Since the second sintering after the reduction process is re-sintered at a temperature higher than the first sintering temperature as the main sintering process, the anode body is not affected even when the specific surface area of the valve action metal powder is increased. An increase in oxygen concentration is suppressed, and deterioration of leakage current characteristics can be prevented.

また更に第2、第3発明として示したように、還元物質による還元のための熱処理温度を800〜900℃の範囲に選定し、仮焼結温度をこれより若干高く且つ本焼結温度より低く選定することによって、還元工程による酸素濃度の低減が効果的に達成され、本焼結による酸素濃度の増加も抑えられる。   Furthermore, as shown in the second and third inventions, the heat treatment temperature for reduction with a reducing substance is selected in the range of 800 to 900 ° C., and the temporary sintering temperature is slightly higher than this and lower than the main sintering temperature. By selecting, reduction of the oxygen concentration by a reduction process is achieved effectively, and the increase in oxygen concentration by this sintering is also suppressed.

更に、高CV値の金属粉末を強固で緻密に加圧成形した状態で高い温度で本焼結を行っても静電容量が低下しないので、弁作用金属粉末の成形密度を低くすることなく、緻密で強固な焼結体が得られ、電極引き出し用ワイヤーとの接合強度・電気的導通性も向上し、結果的に漏れ電流の低下をもたらし、またtanδ、ESRの改善ができる。   Furthermore, since the capacitance does not decrease even if the main sintering is performed at a high temperature in a state where the metal powder having a high CV value is firmly and densely pressed, without reducing the molding density of the valve action metal powder, A dense and strong sintered body can be obtained, the bonding strength with the electrode lead wire and the electrical continuity can be improved, resulting in a decrease in leakage current and an improvement in tan δ and ESR.

尚、本発明に使用できる弁作用金属としては、ニオブ、タンタルなど従来この種固体電解コンデンサに利用される陽極金属が全て利用できる他、その粉末の粒子サイズも80kCVなどかなり小さい粒子サイズのものまで有効に利用できるので、従来の材料のままでより優れた電気特性をもつ小形で大容量の固体電解コンデンサが得られる。   In addition, as the valve metal that can be used in the present invention, all of the anode metals conventionally used for this type of solid electrolytic capacitor such as niobium and tantalum can be used, and the particle size of the powder is as small as 80 kCV. Since it can be used effectively, a small and large-capacity solid electrolytic capacitor having better electrical characteristics can be obtained with the conventional materials.

還元工程で使用する還元物質としては、マグネシウム、カーボン、アルミニウム、水素など各種の還元剤が利用でき、また還元雰囲気としてはアルゴン気流中で行なうのが望ましいが、真空中であってもよい。   As the reducing substance used in the reduction step, various reducing agents such as magnesium, carbon, aluminum, and hydrogen can be used. The reducing atmosphere is preferably performed in an argon stream, but may be in a vacuum.

この還元時の熱処理温度は800℃未満であると、陽極素子ブロックの比表面積が大きい場合還元作用が不十分となり有効な酸素濃度の低下が得られない。一方900℃を超えると弁作用金属粉末と電極引き出し用ワイヤーとの電気的接合が悪くなり、図2に示すようにこれが後の本焼結によっても改善されないことが実験の結果判明しているので、還元温度は800〜900℃とするのがもっとも望ましい。   If the heat treatment temperature during this reduction is less than 800 ° C., if the specific surface area of the anode element block is large, the reduction action becomes insufficient and an effective reduction in oxygen concentration cannot be obtained. On the other hand, when the temperature exceeds 900 ° C., the electrical connection between the valve action metal powder and the electrode lead wire is deteriorated, and as a result of the experiment, it has been found that this cannot be improved by the subsequent main sintering as shown in FIG. The reduction temperature is most preferably 800 to 900 ° C.

前記のように、本発明の製造方法によって陽極素子を加工することにより、小型高容量であって、漏れ電流が小さく且つtanδ・ESR特性に優れた固体電解コンデンサが得られる。   As described above, by processing the anode element by the manufacturing method of the present invention, a solid electrolytic capacitor having a small size and a high capacity, a small leakage current, and an excellent tan δ · ESR characteristic can be obtained.

以下、弁作用金属としてタンタルを用いた場合の望ましい実施の形態について概説する。
先ず70kCV程度の細かい粒子サイズのタンタル粉末を成形機に投入して通常の方法で加圧成形するが、このとき電極引き出し用ワイヤー(タンタル線などが使われる)を粉末中に差し込んだ状態で粉末集合体を加圧圧縮することにより、前記ワイヤーが埋設された状態の成形体を得る。(加圧成形工程)
Hereinafter, a preferred embodiment in the case where tantalum is used as the valve action metal will be outlined.
First, tantalum powder with a fine particle size of about 70 kCV is put into a molding machine and pressure-molded by a normal method. By pressing and compressing the aggregate, a molded body in which the wire is embedded is obtained. (Pressure forming process)

次にこのワイヤー付タンタル紛末成形体を、真空炉中において1250〜1275℃の温度(後工程である本焼結温度より25〜50℃低い温度)で5〜10分間加熱して仮焼結する。(第1の焼結工程)   Next, this wire-attached tantalum powder compact is pre-sintered by heating in a vacuum furnace at a temperature of 1250 to 1275 ° C. (a temperature lower by 25 to 50 ° C. than the main sintering temperature, which is a subsequent step) for 5 to 10 minutes. To do. (First sintering step)

この仮焼結体素子をマグネシウム、アルミニウムなどの還元物質とともに、真空中又はアルゴンなどの不活性ガス中で熱処理して仮焼結体素子中の酸素を還元し除去する。(還元工程)   This temporary sintered body element is heat-treated with a reducing substance such as magnesium and aluminum in a vacuum or an inert gas such as argon to reduce and remove oxygen in the temporary sintered body element. (Reduction process)

次いでこの還元処理した仮焼結体素子を、再び真空中において本焼結温度即ち1300〜1350℃で10〜15分間本焼結する。(第2の焼結工程)   Then, the reduction-treated temporary sintered body element is again subjected to main sintering at a main sintering temperature, that is, 1300 to 1350 ° C. for 10 to 15 minutes in a vacuum. (Second sintering step)

以下、上記基本実施形態における補足事項を、実験によって確認されたデータ図面を用いて説明を敷衍する。
本発明者等の実験によれば、前記第1の焼結温度は低い方が高容量のコンデンサ用陽極素子が得られるが、この焼結温度を低くすると還元後に弁作用金属粉末と電極引き出し用ワイヤーとの電気的接合が低下し、接触抵抗が高くなることが判った。
従って高容量を保ち且つワイヤーとの接触抵抗を低減する条件として、弁作用金属の本焼結温度より低い温度即ち、タンタルの場合その本焼結温度1300〜1350℃より25〜50℃程度低い温度である1250〜1275℃が効果的であり、またその焼結時間は、時間が長くなるに伴い、焼結が進行して静電容量が低下するので5〜10分程度が好ましいことを見出したもので、この工程を仮焼結工程と位置づけた。
Hereinafter, supplementary matters in the basic embodiment will be described using data drawings confirmed by experiments.
According to the experiments by the present inventors, a capacitor anode element having a higher capacity can be obtained when the first sintering temperature is lower. When the sintering temperature is lowered, the valve action metal powder and the electrode lead electrode are extracted after reduction. It was found that the electrical connection with the wire was lowered and the contact resistance was increased.
Therefore, as a condition for maintaining a high capacity and reducing the contact resistance with the wire, a temperature lower than the main sintering temperature of the valve action metal, that is, a temperature lower by about 25 to 50 ° C. than the main sintering temperature 1300 to 1350 ° C. in the case of tantalum. It was found that 1250 to 1275 ° C. is effective, and the sintering time is preferably about 5 to 10 minutes because the sintering progresses and the capacitance decreases with increasing time. Therefore, this process was positioned as a pre-sintering process.

また、還元工程における熱処理温度は、図1に示す様に高い方が、仮焼結体素子中の酸素濃度低減効果が大きい。しかし第2の本焼結時にこの還元後の仮焼結体素子が、再度酸素を吸着し、その酸素濃度が800ppm程度上昇することも実証された。
従って、本焼結を行った後の焼結体素子の酸素濃度が、還元前の仮焼結体素子の酸素濃度を超えないような還元温度範囲を選定する必要がある。即ち図1から判るように、750℃以上の熱処理温度で還元すれば素子の酸素濃度は本焼結後も低く維持できる。
一方、この還元温度を余り高くすると、図2に示されるように、仮焼結されている弁作用金属粉末と電極引き出し用ワイヤーの電気的接合が低下し、接触不良率が急激に増える。しかもこの接触不良は、第2の焼結即ち本焼結によっても回復しないことが実験的に確認された。
In addition, the higher the heat treatment temperature in the reduction step is, as shown in FIG. However, it was also demonstrated that during the second main sintering, the reduced pre-sintered element again adsorbs oxygen and the oxygen concentration increases by about 800 ppm.
Therefore, it is necessary to select a reduction temperature range in which the oxygen concentration of the sintered body element after the main sintering does not exceed the oxygen concentration of the pre-reduction sintered body element. That is, as can be seen from FIG. 1, the oxygen concentration of the device can be kept low after the main sintering if it is reduced at a heat treatment temperature of 750 ° C. or higher.
On the other hand, if the reduction temperature is too high, as shown in FIG. 2, the electrical bonding between the pre-sintered valve action metal powder and the electrode lead wire is lowered, and the contact failure rate is rapidly increased. Moreover, it has been experimentally confirmed that this contact failure is not recovered even by the second sintering, that is, main sintering.

従ってこの還元温度は極めて重要であり、本発明者等は前記酸素濃度の低減効果と、電極引き出しワイヤーと陽極素子ブロックとの緊密な接合確保との双方の条件を勘案し、800〜900℃の範囲で還元熱処理する(タンタル粉末の場合)のが最も有効であることを見出した。   Therefore, this reduction temperature is extremely important, and the present inventors consider the conditions of both the effect of reducing the oxygen concentration and ensuring the tight junction between the electrode lead wire and the anode element block, and the temperature of 800 to 900 ° C. It was found that reducing heat treatment in the range (in the case of tantalum powder) is most effective.

その後の第2の本焼結温度は、弁作用金属粉末の通常の焼結温度、即ちタンタルの場合は1300〜1350℃程度で加熱焼結する。   Thereafter, the second main sintering temperature is heated and sintered at a normal sintering temperature of the valve action metal powder, that is, about 1300 to 1350 ° C. in the case of tantalum.

以上本発明の最良の実施形態としては、第1の焼結温度をT1、還元熱処理温度を
T2、第2の焼結温度をT3とするとき、各工程の温度条件を
T2=800〜900℃<T1<T3
なる関係を満足することが望ましい。これによりワイヤーとの電気的接合も良好な極めて緻密で強固なコンデンサ素子が得られ、この素子で製造された固体電解コンデンサの電気特性も著しく向上する。
As described above, in the best embodiment of the present invention, when the first sintering temperature is T1, the reduction heat treatment temperature is T2, and the second sintering temperature is T3, the temperature condition of each step is T2 = 800 to 900 ° C. <T1 <T3
It is desirable to satisfy this relationship. As a result, a very dense and strong capacitor element with good electrical connection with the wire can be obtained, and the electrical characteristics of the solid electrolytic capacitor manufactured with this element can be remarkably improved.

次に、上記本発明の方法によって製造した固体電解コンデンサ用陽極素子の焼結素子特性(酸素濃度と焼結体CV値)と、従来の同等品の焼結素子特性との比較を表1に示す。
表1に示す陽極素子は、ともに公称70kCVのタンタル粉末を成形密度5.70g/ccで加圧成形した2012サイズ品(長さ2.0mm、幅1.2mmの矩形サイズ)用の成形体を、タンタルの焼結温度である1300℃で焼結したものであるが、本発明の素子はこの焼結前に、前記した仮焼結工程と還元工程を施して得た素子であり、従来の陽極素子として表示したものはこれら仮焼結工程、還元工程を経なかった素子である。
尚、焼結体CV値は、素子の単位重量当りの容量と電圧の積で表示した。
Next, Table 1 compares the sintered element characteristics (oxygen concentration and sintered body CV value) of the anode element for a solid electrolytic capacitor manufactured by the above-described method of the present invention and the sintered element characteristics of a conventional equivalent product. Show.
The anode element shown in Table 1 is a molded product for a 2012 size product (rectangular size with a length of 2.0 mm and a width of 1.2 mm) obtained by pressure-molding tantalum powder with a nominal 70 kCV at a molding density of 5.70 g / cc. The tantalum sintering temperature is 1300 ° C., but the element of the present invention is an element obtained by performing the above-described preliminary sintering step and reduction step before this sintering. The element indicated as the anode element is an element that has not undergone the preliminary sintering step and the reduction step.
The sintered body CV value was expressed as the product of the capacity per unit weight of the element and the voltage.

Figure 0004648202
Figure 0004648202

表1から判るように、本発明の陽極素子は従来方法による焼結素子に較べて、CV値は略同等で酸素濃度が低減されていることが判る。   As can be seen from Table 1, it can be seen that the anode element of the present invention has substantially the same CV value and reduced oxygen concentration as compared with the sintered element obtained by the conventional method.

(実施例)
以下前記本発明の製造方法によって製造した陽極素子の表面に、通常の方法によって酸化皮膜層、陰極層を形成したコンデンサ素子を使用した固体電解コンデンサの実施例について、その漏れ電流、tanδ、ESRを実測した結果を表2に示す。
(Example)
Hereinafter, the leakage current, tan δ, and ESR of an example of a solid electrolytic capacitor using a capacitor element in which an oxide film layer and a cathode layer are formed on a surface of an anode element manufactured by the manufacturing method of the present invention by a normal method are shown. The measured results are shown in Table 2.

実施例1は、電極引き出し用ワイヤーを埋設して公称70kCVのタンタル粉末を加圧成形し、真空中で1250℃の第1の焼結温度で5分間焼結を行い仮焼結体素子を得た後、この仮焼結体素子をマグネシウムとともに真空中において60分間850℃で熱処理し、焼結体素子中の酸素を還元除去した。この還元後の仮焼結体素子を硫酸で酸洗浄した後、真空中で弁作用金属粉末の焼結温度である第2の焼結温度1300℃で10分間焼結し、この焼結体を陽極酸化して、酸化皮膜層を形成し、硝酸マンガン水溶液への含浸、熱分解を複数回繰り返して二酸化マンガンからなる固体電解質層を形成した後、カーボン層、銀層からなる陰極引出層を順次形成した。続いて、陽極リードと陽極リードフレームとを抵抗溶接により接続し、陰極引出層と陰極リードフレームとを導電性接着剤で接続した後、トランスファーモールドにより樹脂外装し、フレームを外装樹脂に沿って折り曲げ、完成した固体電解コンデンサの例で、完成品のサイズを2012サイズ(長さ2.0mm×幅1.2mm)としたものである。   Example 1 embeds an electrode lead wire, press-molds a nominal 70 kCV tantalum powder, and sinters in a vacuum at a first sintering temperature of 1250 ° C. for 5 minutes to obtain a temporary sintered body element. Then, this temporary sintered body element was heat-treated with magnesium at 850 ° C. for 60 minutes in a vacuum to reduce and remove oxygen in the sintered body element. After the reduction, the temporarily sintered body element was acid-washed with sulfuric acid, and then sintered in vacuum at a second sintering temperature of 1300 ° C., which is the sintering temperature of the valve action metal powder, for 10 minutes. Anodized to form an oxide film layer, impregnation into manganese nitrate aqueous solution, thermal decomposition is repeated a plurality of times to form a solid electrolyte layer composed of manganese dioxide, and then a carbon lead layer and a cathode lead layer composed of a silver layer are sequentially formed. Formed. Subsequently, the anode lead and the anode lead frame are connected by resistance welding, and after the cathode lead layer and the cathode lead frame are connected by a conductive adhesive, the resin is sheathed by transfer molding, and the frame is bent along the sheathing resin. In the example of the completed solid electrolytic capacitor, the size of the finished product is set to 2012 size (length 2.0 mm × width 1.2 mm).

実施例2は、実施例1と全く同一条件でサイズを3216サイズ(3.2mm×1.6mm)としたもの、実施例3は、実施例1と同じ条件でさらに大きいサイズの3528サイズ品(3.5mm×2.8mm)を製造した例である。   In Example 2, the size was 3216 size (3.2 mm × 1.6 mm) under exactly the same conditions as in Example 1, and in Example 3, a 3528 size product having a larger size under the same conditions as in Example 1 ( 3.5 mm × 2.8 mm).

実施例4は、弁作用金属粉末の粒子をさらに細かい80kCVのものを用い、実施例1と同じ条件で製造した例で、その完成品サイズは実施例3と同様に大きいサイズ3528サイズとしたものである。   Example 4 is an example in which fine particles of valve action metal powder of 80 kCV are used and manufactured under the same conditions as in Example 1, and the size of the finished product is a large size of 3528 as in Example 3. It is.

Figure 0004648202
Figure 0004648202

(従来例)
表3は、従来例の測定データで、本発明実施例との比較のために、実施例と同じCV値のタンタル粉末を用い同様のサイズのものを製造して、その電気特性を実測したデータであるが、その陽極素子は下記[0042][0043]に示す従来の方法で作製した例である。
(Conventional example)
Table 3 shows the measurement data of the conventional example. For comparison with the embodiment of the present invention, the tantalum powder having the same CV value as that of the embodiment of the same size was manufactured and the electrical characteristics were measured. However, the anode element is an example manufactured by the conventional method shown in the following [0042] [0043].

従来例1、2は公称70kCVのタンタル粉末から製造された2012サイズ品、従来例3、4は公称70kCVのタンタル粉末から製造された3216サイズ品、従来例5、6は公称70kCVのタンタル粉末から製造された3528サイズ品、従来例7、8は公称80kCVのタンタル粉末から製造された3528サイズ品である。   Conventional Examples 1 and 2 are 2012 size products manufactured from nominal 70 kCV tantalum powder, Conventional Examples 3 and 4 are 3216 size products manufactured from nominal 70 kCV tantalum powder, and Conventional Examples 5 and 6 are from nominal 70 kCV tantalum powder. The manufactured 3528 size product, Conventional Examples 7 and 8 are 3528 size products manufactured from tantalum powder having a nominal 80 kCV.

従来例1、3、5、7は、電極引き出し用ワイヤーを埋設した各タンタル粉末を上記各サイズに、実施例1〜4と同じ密度(5.70g/cc)で加圧成形し、仮焼結工程、還元工程を経ず、真空中で弁作用金属粉末の焼結温度である1300℃で10分間焼結した以外は各実施例1〜4と同様の方法で固体電解コンデンサを作製した。
従来例2、4、6、8は、電極引き出し用ワイヤーを埋設した各タンタル粉末を上記各サイズに、実施例1〜4より低い密度(5.40g/cc)で加圧成形し、仮焼結工程、還元工程を経ず、真空中で弁作用金属粉末の焼結温度である1300℃で10分間焼結した以外は各実施例1〜4と同様の方法で固体電解コンデンサを作製した。
こうして得られた8種類の製品の漏れ電流、tanδ、ESR特性を表3に示す。
Conventional examples 1, 3, 5, and 7 are pressure-molded with the same density (5.70 g / cc) as in Examples 1 to 4 to each tantalum powder in which an electrode lead wire is embedded, and calcined. A solid electrolytic capacitor was produced in the same manner as in Examples 1 to 4 except that the sintering step and the reduction step were not performed and the valve action metal powder was sintered at 1300 ° C. for 10 minutes in a vacuum.
In the conventional examples 2, 4, 6, and 8, each tantalum powder in which an electrode lead wire is embedded is pressed into each of the above sizes at a density (5.40 g / cc) lower than those in Examples 1 to 4, and calcined. A solid electrolytic capacitor was produced in the same manner as in Examples 1 to 4 except that the sintering step and the reduction step were not performed and the valve action metal powder was sintered at 1300 ° C. for 10 minutes in a vacuum.
Table 3 shows the leakage current, tan δ, and ESR characteristics of the eight types of products thus obtained.

Figure 0004648202
Figure 0004648202

表2の実施例1〜4と、成形密度が同じである表3の従来例1、3、5、7との電気特性を各々比較すると、本発明の素子から製造された固体電解コンデンサは、漏れ電流が低く、tanδ・ESRも低いことが判る。また、表2の実施例1〜4と、成形密度を低くした表3の従来例2、4、6、8との電気特性を各々比較しても、tanδ・ESRが低いことがわかる。   When comparing the electrical characteristics of Examples 1 to 4 in Table 2 and Conventional Examples 1, 3, 5, and 7 in Table 3 having the same molding density, the solid electrolytic capacitor produced from the element of the present invention is as follows. It can be seen that the leakage current is low and the tan δ · ESR is also low. Further, even when the electrical characteristics of Examples 1 to 4 in Table 2 and Conventional Examples 2, 4, 6, and 8 in Table 3 with a reduced molding density are compared, it can be seen that tan δ · ESR is low.

この結果からも明らかなように、本発明実施例の素子によって製造された製品は、漏れ電流が低く、また成形密度を低くしなくてもtanδ・ESRが低減されることが実証された。   As is clear from this result, it was proved that the product manufactured by the element of the embodiment of the present invention has a low leakage current, and tan δ · ESR is reduced without reducing the molding density.

タンタル粉末を加圧成形し、焼結して得られた焼結体素子を還元した後の、還元時の熱処理温度と還元後の仮焼結体素子中の酸素濃度との関係を示すグラフである。A graph showing the relationship between the heat treatment temperature during reduction and the oxygen concentration in the temporary sintered body after reduction after reducing the sintered body obtained by pressure-molding and sintering tantalum powder. is there. 焼結体素子の還元工程における時の熱処理温度と、弁作用金属粉末と電極引き出し用ワイヤーとの電気的接合不良率の関係を示すグラフである。It is a graph which shows the heat processing temperature at the time of the reduction | restoration process of a sintered compact element, and the relationship of the electrical joining defect rate of the valve action metal powder and the electrode extraction wire.

Claims (3)

電極引き出し用ワイヤーを埋設したタンタル粉末を加圧成形して成型体を形成する工程と、この成形体を真空中で第1の焼結を行って焼結体素子とする第1の焼結工程と、この焼結体素子を還元物質の存在下において800〜900℃の範囲の熱処理温度で熱処理する還元熱処理工程と、この還元熱処理をした焼結体素子を真空中で第2の焼結を行なう第2の焼結工程とを順次施行してコンデンサの焼結体素子を製造する方法において、
前記第1の焼結工程を前記第2の焼結温度より低い温度で焼結する仮焼結工程としたことを特徴とするコンデンサ素子の製造方法。
A step of forming a molded body by press-molding a tantalum powder in which an electrode lead wire is embedded, and a first sintering step of performing a first sintering of the molded body in a vacuum to form a sintered body element And a reduction heat treatment step in which the sintered body element is heat- treated at a heat treatment temperature in the range of 800 to 900 ° C. in the presence of a reducing substance, and the sintered body element subjected to the reduction heat treatment is subjected to second sintering in a vacuum. In the method of manufacturing a sintered body element of a capacitor by sequentially performing the second sintering step to be performed,
A method of manufacturing a capacitor element, wherein the first sintering step is a pre-sintering step of sintering at a temperature lower than the second sintering temperature.
前記第1の焼結温度をT1、還元時の熱処理温度をT2、第2の焼結温度をT3とするとき、これらの温度条件を
T2 < T1 < T3
の関係に選定したことを特徴とする請求項1に記載のコンデンサ素子の製造方法。
Said first sintering temperature T1, and the heat treatment temperature for the reducing T2, when the second sintering temperature is T3, these temperature conditions T2 <T1 <T3
The capacitor element manufacturing method according to claim 1, wherein the relationship is selected.
前記タンタル粉末の粉末サイズを予め70kCV以上の細かいものを選定した状態で、前記第1の焼結工程、還元熱処理工程、第2の焼結工程を順次施行することを特徴とする請求項1または2に記載のコンデンサ素子の製造方法。 2. The first sintering step, the reduction heat treatment step, and the second sintering step are sequentially performed in a state where a fine powder size of 70 kCV or more is selected in advance. 2. A method for producing a capacitor element according to 2 .
JP2006007712A 2006-01-16 2006-01-16 Method for manufacturing anode element for solid electrolytic capacitor Active JP4648202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006007712A JP4648202B2 (en) 2006-01-16 2006-01-16 Method for manufacturing anode element for solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006007712A JP4648202B2 (en) 2006-01-16 2006-01-16 Method for manufacturing anode element for solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2007189163A JP2007189163A (en) 2007-07-26
JP4648202B2 true JP4648202B2 (en) 2011-03-09

Family

ID=38344098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006007712A Active JP4648202B2 (en) 2006-01-16 2006-01-16 Method for manufacturing anode element for solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4648202B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12100561B2 (en) 2021-09-22 2024-09-24 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a deoxidized anode

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5667921A (en) * 1979-11-06 1981-06-08 Nippon Electric Co Method of manufacturing soliddstate electrolytic condenser
JPS61107717A (en) * 1984-10-31 1986-05-26 松下電器産業株式会社 Manufacture of sintered type electrolytic battery
JPS6316613A (en) * 1986-07-09 1988-01-23 松下電器産業株式会社 Tantalum porous sintered unit
JPH02185013A (en) * 1989-01-12 1990-07-19 Hitachi Condenser Co Ltd Manufacture of anode body of tantalum capacitor
JPH07142290A (en) * 1993-11-16 1995-06-02 Nichicon Corp Manufacture of capacitor element
JP2004515072A (en) * 2000-11-30 2004-05-20 ヴィシャイ スプレイグ,インコーポレイテッド Nitrogen-doped, sintered tantalum capacitor pellets or sintered-of-capacitor pellets, and method of manufacturing
JP2005340792A (en) * 2004-04-27 2005-12-08 Showa Denko Kk Solid electrolytic capacitor and manufacturing method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5667921A (en) * 1979-11-06 1981-06-08 Nippon Electric Co Method of manufacturing soliddstate electrolytic condenser
JPS61107717A (en) * 1984-10-31 1986-05-26 松下電器産業株式会社 Manufacture of sintered type electrolytic battery
JPS6316613A (en) * 1986-07-09 1988-01-23 松下電器産業株式会社 Tantalum porous sintered unit
JPH02185013A (en) * 1989-01-12 1990-07-19 Hitachi Condenser Co Ltd Manufacture of anode body of tantalum capacitor
JPH07142290A (en) * 1993-11-16 1995-06-02 Nichicon Corp Manufacture of capacitor element
JP2004515072A (en) * 2000-11-30 2004-05-20 ヴィシャイ スプレイグ,インコーポレイテッド Nitrogen-doped, sintered tantalum capacitor pellets or sintered-of-capacitor pellets, and method of manufacturing
JP2005340792A (en) * 2004-04-27 2005-12-08 Showa Denko Kk Solid electrolytic capacitor and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12100561B2 (en) 2021-09-22 2024-09-24 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a deoxidized anode

Also Published As

Publication number Publication date
JP2007189163A (en) 2007-07-26

Similar Documents

Publication Publication Date Title
JP6285138B2 (en) Solid electrolytic capacitor
JP4527590B2 (en) Tantalum powder, anode for solid electrolytic capacitor and solid electrolytic capacitor
JP4776522B2 (en) Solid electrolytic capacitor
JP2011524629A (en) Method for manufacturing an electrolytic capacitor with low leakage current
US8057883B2 (en) Abrasive process for modifying corners, edges, and surfaces of capacitor anode bodies
CN110234451B (en) Improved wire to anode connection
JP4648202B2 (en) Method for manufacturing anode element for solid electrolytic capacitor
JP4748726B2 (en) Solid electrolytic capacitor
JP5350564B1 (en) Solid electrolytic capacitor
JP4803741B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0869946A (en) Manufacture of capacitor element
JP4366259B2 (en) Method for manufacturing element for solid electrolytic capacitor
JP4589187B2 (en) Manufacturing method of solid electrolytic capacitor
JP2007081067A (en) Electrolytic capacitor and its manufacturing method
JP2007096264A (en) Solid electrolytic capacitor element, its manufacturing method, and solid electrolytic capacitor
JPH088144A (en) Manufacture of capacitor element
JP2010192502A (en) Capacitor, and method of manufacturing capacitor
JP4571040B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2008205190A (en) Solid electrolytic capacitor and its manufacturing method
JP2792480B2 (en) Method for manufacturing tantalum anode body
JP4811941B2 (en) Solid electrolytic capacitor element and manufacturing method thereof
JP2007088144A (en) Solid electrolytic capacitor and anode body therefor
JP4895210B2 (en) Anode element for solid electrolytic capacitor and manufacturing method thereof
JP4653643B2 (en) Element for solid electrolytic capacitor, solid electrolytic capacitor and method for producing the same
JP2006013031A (en) Solid-state electrolytic capacitor and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080716

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090209

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4648202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250