JP4653643B2 - Element for solid electrolytic capacitor, solid electrolytic capacitor and method for producing the same - Google Patents

Element for solid electrolytic capacitor, solid electrolytic capacitor and method for producing the same Download PDF

Info

Publication number
JP4653643B2
JP4653643B2 JP2005337081A JP2005337081A JP4653643B2 JP 4653643 B2 JP4653643 B2 JP 4653643B2 JP 2005337081 A JP2005337081 A JP 2005337081A JP 2005337081 A JP2005337081 A JP 2005337081A JP 4653643 B2 JP4653643 B2 JP 4653643B2
Authority
JP
Japan
Prior art keywords
solid electrolytic
electrolytic capacitor
shrinkage rate
inner part
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005337081A
Other languages
Japanese (ja)
Other versions
JP2007142323A (en
Inventor
成友 大原
政幸 若月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Capacitor Ltd
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP2005337081A priority Critical patent/JP4653643B2/en
Publication of JP2007142323A publication Critical patent/JP2007142323A/en
Application granted granted Critical
Publication of JP4653643B2 publication Critical patent/JP4653643B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は、タンタル、ニオブ等の弁作用金属粉末を使用した固体電解コンデンサ用素子、固体電解コンデンサおよびその製造方法に関するものである。   The present invention relates to a solid electrolytic capacitor element, a solid electrolytic capacitor using a valve action metal powder such as tantalum and niobium, and a method for manufacturing the same.

従来、弁作用金属粉末を用いた固体電解コンデンサ用素子の製造方法は、バインダーを混合した弁作用金属粉末に陽極ワイヤーを埋め込んだ状態で加圧成形する。その後、焼結すると加圧成形した素子の体積が収縮(焼縮み)し、素子内の陽極ワイヤーと焼結体が接合される(例えば、特許文献1参照)。
特開平5−41339号公報
Conventionally, in a method for producing a solid electrolytic capacitor element using a valve metal powder, pressure molding is performed with an anode wire embedded in a valve metal powder mixed with a binder. Thereafter, when sintered, the volume of the press-molded element shrinks (shrinks), and the anode wire and the sintered body in the element are joined (see, for example, Patent Document 1).
JP-A-5-41339

従来の技術では、弁作用金属粉末の焼結後の焼結体と陽極ワイヤーとの接合強度が十分ではないため、接合部分が組立時の外部からの熱的、物理的なストレスに弱くなり、ショート不良率および漏れ電流特性が悪化する問題があった。   In the conventional technology, since the bonding strength between the sintered body after sintering the valve action metal powder and the anode wire is not sufficient, the bonded portion becomes weak against external thermal and physical stress during assembly, There was a problem that the short-circuit defect rate and leakage current characteristics deteriorated.

この接合強度を上げるため、焼結温度を高くし、弁作用金属粉末の焼縮み率を大きくさせる方法がある。しかし、焼結後の焼結体の表面積が減少するため、静電容量が低下するという問題があった。   In order to increase the bonding strength, there is a method of increasing the sintering temperature and increasing the shrinkage rate of the valve action metal powder. However, since the surface area of the sintered body after sintering is reduced, there is a problem that the capacitance is lowered.

本発明は、上記課題を解決するもので、陽極ワイヤーと焼結体の接合性を向上させることで、ショート不良率、漏れ電流特性を改善し、かつ静電容量の低下を抑えた固体電解コンデンサ用素子および当該素子を含む固体電解コンデンサを提供することにある。   The present invention solves the above-mentioned problems, and improves the short-circuit defect rate and leakage current characteristics by improving the bondability between the anode wire and the sintered body, and suppresses the decrease in capacitance. It is providing the element for use and the solid electrolytic capacitor containing the said element.

上記課題を解決するため、本発明の固体電解コンデンサ用素子は、弁作用金属粉末を加圧成形し、焼結した焼結体と陽極ワイヤーとを有する固体電解コンデンサ用素子において、
陽極ワイヤー周辺の内側部分のリンの添加量が外側部分のリンの添加量より少なく、内側部分の焼縮み率が、その外側部分の焼縮み率より大きく、焼縮み率の差が、0.5〜5.0%であることを特徴とする固体電解コンデンサ用素子である。
In order to solve the above problems, the element for a solid electrolytic capacitor of the present invention is the element for a solid electrolytic capacitor having a sintered body and an anode wire obtained by pressure-molding and sintering a valve metal powder.
The addition amount of phosphorus in the inner portion of the peripheral anode wire less than the addition amount of the phosphorus of the outer portion, baked shrinkage of the inner part, rather greater than shrink shrinkage rate of the outer portion, the difference in shrink shrinkage rate, 0. It is 5 to 5.0%, It is an element for solid electrolytic capacitors characterized by the above-mentioned.

さらに、上記の素子を含むことを特徴とする固体電解コンデンサである。   Furthermore, it is a solid electrolytic capacitor characterized by including said element.

ここで、焼縮み率とは、成形体を焼結した後、収縮した割合を示している。具体的には、焼結体の体積と成形体の体積より算出する。
以下に、焼縮み率の算出式を示す。
Here, the shrinkage ratio indicates the ratio of shrinkage after sintering the molded body. Specifically, it is calculated from the volume of the sintered body and the volume of the molded body.
The calculation formula for shrinkage shrinkage is shown below.

[数1]

Figure 0004653643
[Equation 1]
Figure 0004653643

このように、陽極ワイヤー周辺の内側部分の焼縮み率を外側部分より大きくすることで、静電容量の低下がなく、かつショート不良率が低減し、漏れ電流特性の優れた固体電解コンデンサ用素子が得られる。   Thus, by making the shrinkage rate of the inner part around the anode wire larger than that of the outer part, there is no decrease in capacitance, the short-circuit defect rate is reduced, and the element for solid electrolytic capacitors with excellent leakage current characteristics Is obtained.

[実施例1]
以下、本発明の実施例について、図面を参照して説明する。
まず、リンを120ppm含有したタンタル粉末で陽極ワイヤー周辺の内側部分を成形密度5.50g/cmで1.2mm×1.8mm×0.2mmの大きさに成形した後、その周りの外側部分にリンを150ppm含有したタンタル粉末で成形密度5.50g/cmで1.2mm×1.8mm×1.0mmの大きさに成形した。次に加圧成形した素子を1450℃で焼結し、内側部分の焼縮み率と外側部分の焼縮み率との差を0.5%とした焼結体を作製した。
[Example 1]
Embodiments of the present invention will be described below with reference to the drawings.
First, the inner part around the anode wire was formed with a tantalum powder containing 120 ppm of phosphorus at a molding density of 5.50 g / cm 3 to a size of 1.2 mm × 1.8 mm × 0.2 mm, and then the outer part around it. The tantalum powder containing 150 ppm of phosphorus was molded into a size of 1.2 mm × 1.8 mm × 1.0 mm at a molding density of 5.50 g / cm 3 . Next, the pressure-molded element was sintered at 1450 ° C. to produce a sintered body in which the difference between the shrinkage rate of the inner portion and the shrinkage rate of the outer portion was 0.5%.

その後、焼結体を陽極酸化して、酸化皮膜層を形成し、硝酸マンガン水溶液への含浸、熱分解を複数回繰り返して二酸化マンガンからなる固体電解質層を形成した後、カーボン層、銀層からなる陰極引出層を順次形成した。続いて、陽極リードと陽極リードフレームとを抵抗溶接により接続し、陰極引出層と陰極リードフレームとを導電性接着剤で接続した後、トランスファーモールドにより樹脂外装し、定格4V−100μFの固体電解コンデンサを作製した。   Thereafter, the sintered body is anodized to form an oxide film layer, impregnation into an aqueous manganese nitrate solution, and thermal decomposition are repeated a plurality of times to form a solid electrolyte layer made of manganese dioxide, and then from the carbon layer and the silver layer. The cathode lead layers were sequentially formed. Subsequently, the anode lead and the anode lead frame are connected by resistance welding, the cathode lead layer and the cathode lead frame are connected by a conductive adhesive, and then resin-coated with a transfer mold, and a solid electrolytic capacitor having a rating of 4V-100 μF. Was made.

[実施例2]
リンを100ppm含有したタンタル粉末で陽極ワイヤー周辺の内側部分を成形し、内側部分の焼縮み率と外側部分の焼縮み率との差を1.0%とした焼結体を作製した以外は、実施例1と同様の方法で固体電解コンデンサを作製した。
[Example 2]
Except that the inner part around the anode wire was formed with tantalum powder containing 100 ppm of phosphorus, and a sintered body was prepared in which the difference between the shrinkage rate of the inner part and the shrinkage rate of the outer part was 1.0%. A solid electrolytic capacitor was produced in the same manner as in Example 1.

[実施例3]
リンを60ppm含有したタンタル粉末で陽極ワイヤー周辺の内側部分を成形し、内側部分の焼縮み率と外側部分の焼縮み率との差を5.0%とした焼結体を作製した以外は、実施例1と同様の方法で固体電解コンデンサを作製した。
[Example 3]
Except that the inner part around the anode wire was formed with tantalum powder containing 60 ppm of phosphorus, and a sintered body was prepared in which the difference between the shrinkage rate of the inner part and the shrinkage rate of the outer part was 5.0%. A solid electrolytic capacitor was produced in the same manner as in Example 1.

[比較例1]
リンを140ppm含有したタンタル粉末で陽極ワイヤー周辺の内側部分を成形し、内側部分の焼縮み率と外側部分の焼縮み率との差を0.1%とした焼結体を作製した以外は、実施例1と同様の方法で固体電解コンデンサを作製した。
[Comparative Example 1]
Except that the inner part around the anode wire was formed with tantalum powder containing 140 ppm of phosphorus, and a sintered body was prepared in which the difference between the shrinkage rate of the inner part and the shrinkage rate of the outer part was 0.1%. A solid electrolytic capacitor was produced in the same manner as in Example 1.

[比較例2]
リンを40ppm含有したタンタル粉末で陽極ワイヤー周辺の内側部分を成形した後焼結し、内側部分の焼縮み率と外側部分の焼縮み率との差を6.0%とした焼結体を作製した以外は、実施例1と同様の方法で固体電解コンデンサを作製した。
[Comparative Example 2]
After forming the inner part around the anode wire with tantalum powder containing 40 ppm of phosphorus, sintering is performed to produce a sintered body with a difference between the shrinkage rate of the inner part and the shrinkage ratio of the outer part of 6.0% A solid electrolytic capacitor was produced in the same manner as in Example 1 except that.

(従来例1)
リンを150ppm含有したタンタル粉末のみを用い、内側部分と外側部分に分けず、1回で成形した後焼結し、内側部分の焼縮み率と外側部分の焼縮み率との差がない焼結体を作製した以外は、実施例1と同様の方法で固体電解コンデンサを作製した。
(Conventional example 1)
Using only tantalum powder containing 150 ppm of phosphorus, without dividing the inner part and the outer part, sintering after molding after one molding, there is no difference between the shrinkage rate of the inner part and the shrinkage rate of the outer part A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the body was produced.

(従来例2)
リンを120ppm含有したタンタル粉末のみを用い、内側部分と外側部分に分けず、1回で成形した後焼結し、内側部分の焼縮み率と外側部分の焼縮み率との差がない焼結体を作製した以外は、実施例1と同様の方法で固体電解コンデンサを作製した。
(Conventional example 2)
Using only tantalum powder containing 120 ppm of phosphorus, without dividing the inner part and the outer part, sintering after molding once, and there is no difference between the shrinkage rate of the inner part and the shrinkage rate of the outer part A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the body was produced.

上記実施例1〜3、比較例1、2および従来例1、2により作製した固体電解コンデンサの電気特性を測定した。結果を表1に示す。

Figure 0004653643
The electrical characteristics of the solid electrolytic capacitors produced according to Examples 1 to 3, Comparative Examples 1 and 2 and Conventional Examples 1 and 2 were measured. The results are shown in Table 1.
Figure 0004653643

表1から明らかなように、実施例1〜3は、従来例1と比較すると、静電容量は同等でありながら、ショート不良率、漏れ電流不良率ともに低く、改善効果が見られる。また、従来例2と比較し、静電容量の低下もない。
ただし、焼結体の内側部分と外側部分の焼縮み率の差を0.1%とした場合(比較例1)は、ショート不良率、漏れ電流不良率とも高くなり、6.0%とした場合(比較例2)は、静電容量が低下傾向にあるため好ましくない。
以上より、焼結体の内側部分と外側部分の焼縮み率の差は0.5〜5.0%が望ましい。
As can be seen from Table 1, Examples 1 to 3 have the same capacitance, but both the short-circuit defect rate and the leakage current defect rate are low compared to Conventional Example 1, and an improvement effect is seen. Further, there is no decrease in capacitance as compared with Conventional Example 2.
However, when the difference in shrinkage rate between the inner part and the outer part of the sintered body is 0.1% (Comparative Example 1), both the short-circuit defect rate and the leakage current defect rate are increased to 6.0%. The case (Comparative Example 2) is not preferable because the capacitance tends to decrease.
As mentioned above, 0.5 to 5.0% of the difference of the shrinkage rate of the inner part and outer part of a sintered compact is desirable.

また、成形体の内側部分の体積は、成形体全体の体積に対し、10.0〜20.0%とすることが望ましい。10.0%未満では、本発明の効果が十分に得られず、20.0%を超えると、静電容量が低下するおそれがある。   In addition, the volume of the inner part of the molded body is desirably 10.0 to 20.0% with respect to the volume of the entire molded body. If it is less than 10.0%, the effect of the present invention cannot be sufficiently obtained, and if it exceeds 20.0%, the capacitance may be lowered.

さらに、実施例では、弁作用金属粉末としてタンタルを用いたが、ニオブを使用しても同様の効果が得られる。   Furthermore, in the examples, tantalum was used as the valve action metal powder, but the same effect can be obtained even if niobium is used.

実施例1の固体電解コンデンサ用素子の断面図。1 is a cross-sectional view of a solid electrolytic capacitor element of Example 1. FIG. 従来例1の固体電解コンデンサ用素子の断面図。Sectional drawing of the element for solid electrolytic capacitors of the prior art example 1. FIG.

符号の説明Explanation of symbols

1 陽極ワイヤー
2 焼縮み率の大きい内側部分
3 焼縮み率の小さい外側部分
4 一種類の弁作用金属粉末のみ使用した素子
DESCRIPTION OF SYMBOLS 1 Anode wire 2 Inner part 3 with large shrinkage rate Outer part 4 with small shrinkage rate Element using only one kind of valve metal powder

Claims (2)

弁作用金属粉末を加圧成形し、焼結した焼結体と陽極ワイヤーとを有する固体電解コンデンサ用素子において、
陽極ワイヤー周辺の内側部分のリンの添加量が外側部分のリンの添加量より少なく、内側部分の焼縮み率が、その外側部分の焼縮み率より大きく、焼縮み率の差が、0.5〜5.0%であることを特徴とする固体電解コンデンサ用素子。
In an element for a solid electrolytic capacitor having a sintered body and an anode wire formed by pressure-molding and sintering a valve metal powder,
The addition amount of phosphorus in the inner portion of the peripheral anode wire less than the addition amount of the phosphorus of the outer portion, baked shrinkage of the inner part, rather greater than shrink shrinkage rate of the outer portion, the difference in shrink shrinkage rate, 0. The element for solid electrolytic capacitors, characterized by being 5 to 5.0% .
請求項1記載の固体電解コンデンサ用素子を備えたことを特徴とする固体電解コンデンサ。
A solid electrolytic capacitor comprising the element for a solid electrolytic capacitor according to claim 1.
JP2005337081A 2005-11-22 2005-11-22 Element for solid electrolytic capacitor, solid electrolytic capacitor and method for producing the same Expired - Fee Related JP4653643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005337081A JP4653643B2 (en) 2005-11-22 2005-11-22 Element for solid electrolytic capacitor, solid electrolytic capacitor and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005337081A JP4653643B2 (en) 2005-11-22 2005-11-22 Element for solid electrolytic capacitor, solid electrolytic capacitor and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007142323A JP2007142323A (en) 2007-06-07
JP4653643B2 true JP4653643B2 (en) 2011-03-16

Family

ID=38204795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005337081A Expired - Fee Related JP4653643B2 (en) 2005-11-22 2005-11-22 Element for solid electrolytic capacitor, solid electrolytic capacitor and method for producing the same

Country Status (1)

Country Link
JP (1) JP4653643B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102515A (en) * 1985-10-29 1987-05-13 日本電気株式会社 Anode unit for electrolytic capacitor and manufacture of thesame
JPH04362102A (en) * 1991-06-06 1992-12-15 Showa Kiyabotsuto Suupaa Metal Kk Production of tantalum powder
JPH10233347A (en) * 1997-02-19 1998-09-02 Nec Corp Manufacture of electrolytic capacitor element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102515A (en) * 1985-10-29 1987-05-13 日本電気株式会社 Anode unit for electrolytic capacitor and manufacture of thesame
JPH04362102A (en) * 1991-06-06 1992-12-15 Showa Kiyabotsuto Suupaa Metal Kk Production of tantalum powder
JPH10233347A (en) * 1997-02-19 1998-09-02 Nec Corp Manufacture of electrolytic capacitor element

Also Published As

Publication number Publication date
JP2007142323A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
US6775127B2 (en) Anode member for a solid electrolytic capacitor, method of producing the same and solid electrolytic capacitor using the same
EP2769394B1 (en) Sintered article and method of making sintered article
JP2010153454A (en) Solid electrolytic capacitor
US11915886B2 (en) Solid electrolytic capacitor
JP4566593B2 (en) Sintered body electrode and solid electrolytic capacitor using the sintered body electrode
JP4776522B2 (en) Solid electrolytic capacitor
WO2005086193A1 (en) Solid electrolytic capacitor, anode used for solid electrolytic capacitor, and method of manufacturing the anode
JP5340092B2 (en) Solid electrolytic capacitor
JP4653643B2 (en) Element for solid electrolytic capacitor, solid electrolytic capacitor and method for producing the same
JP4748726B2 (en) Solid electrolytic capacitor
JP2009158579A (en) Solid-state electrolytic capacitor element and manufacturing method thereof
JP2004014667A (en) Solid electrolytic capacitor
JP2006080266A (en) Solid electrolytic capacitor element and its manufacturing method
JP4589187B2 (en) Manufacturing method of solid electrolytic capacitor
JP3826153B1 (en) Multilayer solid electrolytic capacitor and method for forming cathode lead layer in multilayer solid electrolytic capacitor
JP2007149732A (en) Solid electrolytic capacitor
JP5796195B2 (en) Solid electrolytic capacitor
JP4574544B2 (en) Solid electrolytic capacitor
JP2008034429A (en) Solid electrolytic capacitor
JP2010080600A (en) Chip-shaped solid electrolytic capacitor
JP4811941B2 (en) Solid electrolytic capacitor element and manufacturing method thereof
JP2006013031A (en) Solid-state electrolytic capacitor and its manufacturing method
JP4776453B2 (en) Solid electrolytic capacitor element and manufacturing method thereof
JP4247974B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2007324243A (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees