JPS62102515A - Anode unit for electrolytic capacitor and manufacture of thesame - Google Patents

Anode unit for electrolytic capacitor and manufacture of thesame

Info

Publication number
JPS62102515A
JPS62102515A JP60243205A JP24320585A JPS62102515A JP S62102515 A JPS62102515 A JP S62102515A JP 60243205 A JP60243205 A JP 60243205A JP 24320585 A JP24320585 A JP 24320585A JP S62102515 A JPS62102515 A JP S62102515A
Authority
JP
Japan
Prior art keywords
anode
lead
anode lead
electrolytic capacitor
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60243205A
Other languages
Japanese (ja)
Inventor
坂口 憲司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60243205A priority Critical patent/JPS62102515A/en
Publication of JPS62102515A publication Critical patent/JPS62102515A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電解コンデンサおよびその製造方法に関し、特
に焼結型の電解コンデンサに用いられる陽極体構造およ
びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrolytic capacitor and a method for manufacturing the same, and more particularly to an anode body structure used in a sintered electrolytic capacitor and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

一般に電解コンデンサの陽極体としてはタンタル、チタ
ン、ニオブのようないわゆる弁作用金属の微粉末を一定
の形状に加圧成型して得られる成型体を、高温真空中で
焼結して得られる多孔質体が用いられ、この陽極体表面
を電気化学的に酸化して誘電体酸化皮膜を形成させた後
、更にその外側に陰極層を設けてコンデンサを形成して
いる。
Generally, the anode bodies of electrolytic capacitors are made by press-molding fine powder of so-called valve metals such as tantalum, titanium, and niobium into a certain shape, and then sintering the molded body in a high-temperature vacuum. After electrochemically oxidizing the surface of this anode body to form a dielectric oxide film, a cathode layer is further provided on the outside to form a capacitor.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来、この種の成型体は一般に第4図(a)、Φ)に示
す如く、例えば円柱状の外形形状でその中心部に弁作用
金属の陽極リードの一部を埋設した構造で製造されてい
る。
Conventionally, this type of molded body has generally been manufactured to have a cylindrical external shape, for example, with a part of the valve metal anode lead buried in the center, as shown in FIG. 4(a), Φ). There is.

すなわち、この成型体の製造は第5図に示す如く、所望
する一定形状の内筒部を有するダイス41に弁作用金属
粉末43を充填するとともに、弁作用金属の陽極リード
44の先端部を、粉末43中に埋め込んだ状態でパンチ
42によシ上下方向より加圧することにより行なわれて
おり、その後この成型体を高温真空中で焼結して陽極体
を得ている。
That is, as shown in FIG. 5, this molded body is manufactured by filling a die 41 having an inner cylindrical portion with a desired constant shape with valve metal powder 43, and then inserting the tip of the anode lead 44 of the valve metal into This is done by applying pressure from above and below using a punch 42 while embedded in powder 43, and then this molded body is sintered in a high-temperature vacuum to obtain an anode body.

この様な成型体の製造方法においては、陽極リード44
を粉末43中へ導ひくため、片側のパンチ4の中心部に
リードガイド孔45が開けられており、このガイド孔4
5の内径と陽極リード44の外径との間には、陽極リー
ド44およびパンチ42の機械的動きを円滑ならしめる
ため、若干の隙間を持たせる必要がある。そのため、成
型の際パンチ42の先端部のガイド孔45近傍の粉末4
3が、陽極リード44とガイド孔45の隙間に逃げた状
態で加圧成型されるので、第4図に示す。
In the method of manufacturing such a molded body, the anode lead 44
In order to guide the powder into the powder 43, a lead guide hole 45 is formed in the center of the punch 4 on one side.
It is necessary to provide a slight gap between the inner diameter of the anode lead 5 and the outer diameter of the anode lead 44 in order to smooth the mechanical movement of the anode lead 44 and the punch 42. Therefore, during molding, the powder 4 near the guide hole 45 at the tip of the punch 42 is
3 is pressure molded in a state in which it escapes into the gap between the anode lead 44 and the guide hole 45, as shown in FIG.

陽極リード付け根部31近傍の成型体密度が他の部分と
比べて低くなってしまう。
The density of the molded body near the anode lead root 31 is lower than that in other parts.

この陽極リード付け根部31近傍は、そのため粉末43
同志の結合が弱く、かかる陽極体を用いて製品化した場
合、振動、衝撃等の外部からの機械的ストレスや、温度
変化による膨張・収縮により粉末同志の結合が損傷を受
け、それに伴って損傷箇所の弁作用金属粉末上に形成さ
れた誘電体酸化皮膜も損傷を受けるので漏れ電流の増大
や短絡などの、コンデンサと機能を低下もしくは消失さ
せてしまう欠点が有った。
Therefore, the powder 43 is near the anode lead base 31.
If the bond between powder particles is weak and such an anode body is manufactured into a product, the bond between powder particles will be damaged due to external mechanical stress such as vibration or shock, or expansion and contraction due to temperature changes, resulting in damage. Since the dielectric oxide film formed on the valve metal powder at the location is also damaged, there are drawbacks such as increased leakage current and short circuits, which degrade or eliminate capacitor functions.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の目的は、かかる従来欠点を除去し、機械的スト
レス・熱的ストレスに対し安定な’U%コンデンサ用陽
極体およびその製造方法を提供することにある。
An object of the present invention is to eliminate such conventional drawbacks and provide an anode body for a 'U% capacitor that is stable against mechanical stress and thermal stress, and a method for manufacturing the same.

すなわち本発明によれば陽極リードの一部を埋設した弁
作用金属粉末を加圧成形し真空焼結して成る電解コンデ
ンサ用陽極体の陽極リードの付け根部分が、他の部分に
比較して1Siik一段状に高い密度分布を有すること
を特徴とするta電解コンデンサ用陽極体得られ更に、
陽極リードの一端の局面に弁作用金属の高密度の小加圧
成型体を付着形成し。
That is, according to the present invention, the root part of the anode lead of the anode body for an electrolytic capacitor, which is formed by pressure-molding and vacuum sintering of valve metal powder in which a part of the anode lead is buried, is 1Siik compared to other parts. An anode body for a TA electrolytic capacitor characterized by having a high density distribution in a single stage is obtained, and further,
A small, high-density pressure-molded body of valve metal is adhered to the surface of one end of the anode lead.

真空焼結して小焼結陽極体を得る工程と、前記小焼結陽
極体を、同種弁作用金属粉末の成型体内に陽極リードを
突出させて加圧成型し真空焼結する工程とから成ること
を特徴とする陽極体の製造方法。
A step of vacuum sintering to obtain a small sintered anode body, and a step of press-molding the small sintered anode body with an anode lead protruding into a molded body of valve action metal powder of the same type, followed by vacuum sintering. A method for manufacturing an anode body characterized by the following.

〔実施例〕〔Example〕

以下、本発明の実施例を従来例と比較して詳細に説明す
る。
Hereinafter, embodiments of the present invention will be described in detail in comparison with conventional examples.

従来例としては第5図に示す構造のダイス41及びパン
チ42を有する成型装置を用い重量1gのタンタル粉末
を第4図(a)の如く円柱状に成型する。このとき陽極
リード44として0.5φのメンタル線をリードガイド
孔径0.52φを有するパンチ42を用いてメンタル粉
末φに埋め込み直径4mm x長さ5.5 mm、見掛
は密度8 g / Crn’ s陽極引出し線の埋め込
み長さ5 mm 、陽極リード44の成型体外部への露
出長さ5mmの成型体を形成した。
As a conventional example, tantalum powder weighing 1 g is molded into a columnar shape as shown in FIG. 4(a) using a molding apparatus having a die 41 and a punch 42 having the structure shown in FIG. At this time, a 0.5φ mental wire as the anode lead 44 was embedded in mental powder φ using a punch 42 having a lead guide hole diameter of 0.52φ, with a diameter of 4 mm x length of 5.5 mm, and an apparent density of 8 g/Crn'. A molded body was formed in which the embedded length of the anode lead wire was 5 mm, and the exposed length of the anode lead 44 to the outside of the molded body was 5 mm.

次いで、この成型体を真空焼結炉中に入れ、温度180
0℃にて30分間真空焼結して焼結体を得た。
Next, this molded body is placed in a vacuum sintering furnace, and the temperature is 180°C.
A sintered body was obtained by vacuum sintering at 0°C for 30 minutes.

次いで、この焼結体を陽極体として用い、電解コンデン
サ製造の公知手段により、その表面に誘電体酸化皮膜お
よび陰極層を設けて、コンデンサ素子を形成し、更に公
知の手段による樹脂外装を行って製品化した。
Next, this sintered body is used as an anode body, and a dielectric oxide film and a cathode layer are provided on the surface thereof by known means for manufacturing electrolytic capacitors to form a capacitor element, and a resin exterior is further applied by known means. Commercialized.

一方、本発明の実施例としては、第1図(a)に示す陽
極体を引出しリードとして用いた。この、陽極リード用
の陽極体2は、第5図と同様の成型装置を用い重量11
.5rngのタンクル粉末を直径1mm X長さ2 m
m 、見掛は密&9g/Ctn’にて、円柱状に成型し
たものであシ、陽に’J−ド1として0.5φのメンタ
ル線をタンタル粉末中に埋設した構造を有し陽極リード
の埋込み長さ1.5 mm 。
On the other hand, as an example of the present invention, the anode body shown in FIG. 1(a) was used as a lead. This anode body 2 for the anode lead was manufactured using a molding device similar to that shown in FIG.
.. 5rng of tankle powder 1mm in diameter x 2m in length
The anode lead has a structure in which a 0.5φ mental wire is embedded in tantalum powder as a J-do 1. Embedment length: 1.5 mm.

陽極リードのに出する長さを5mmとした成型体である
。次いでこの成型体は、真空焼結炉中で温度1900℃
、60分間の焼結を行った結果、密度10.3g/cr
n’の小焼結陽極体が得られ、この小焼結陽極体を引出
しリードとして用いることとした。
It is a molded body with an anode lead extending 5 mm in length. This molded body is then heated to a temperature of 1900°C in a vacuum sintering furnace.
As a result of sintering for 60 minutes, the density was 10.3 g/cr.
A small sintered anode body of n' was obtained, and this small sintered anode body was used as a lead.

次いでこの小焼結陽極体は第2図に示す成型装置のパン
チ12に装着した後タンタル粉末14をダイス11中に
充填しパンチ12によシ上下方向より加圧成型して成を
体を形成した。このとき、成型体の直径は従来例と同様
に4 mm 、長さは引出しリード用陽極体以外の密度
が従来例と同一の8g/cm’となる様勘案し5. l
 mmとした。
Next, this small sintered anode body is mounted on a punch 12 of a molding device shown in FIG. 2, and then tantalum powder 14 is filled into a die 11 and molded under pressure from above and below by the punch 12 to form a formed body. did. At this time, the diameter of the molded body was 4 mm as in the conventional example, and the length was taken into consideration so that the density of the parts other than the anode body for the drawer lead would be 8 g/cm', the same as in the conventional example.5. l
mm.

このようにして得られた成型体は従来例と同じく真空焼
結炉中で温度1800℃30分間の焼結を行って第1図
(ト)、0に示す如き外形および断面を有する焼結体を
得たが、この焼結体を研磨し、各部の密度を測定した結
果陽極体2はxo、sg/cm”、他の部分の陽極体3
は従来例の焼結体と同一の&7g/CIn3の密度を有
するとともに、両者の境界部で階段状に変化しているこ
とが明らかとなった。次いで、この焼結体を陽極体とし
て用い従来例と全く同一の手段を用いて製品化を行った
The molded body thus obtained was sintered in a vacuum sintering furnace at a temperature of 1800°C for 30 minutes in the same way as in the conventional example, resulting in a sintered body having an external shape and a cross section as shown in FIG. This sintered body was polished, and the density of each part was measured.
It has become clear that the density of the sintered body is &7g/CIn3, which is the same as that of the conventional sintered body, and that it changes stepwise at the boundary between the two. Next, this sintered body was used as an anode body, and the product was manufactured using exactly the same means as in the conventional example.

この様にして得られた従来方法による陽極体を用いた製
品100個と本発明による陽極体を用いた製品500個
に対し低温側−55℃30分−1高温側+85℃30分
の温度サイクルを50サイクル実施したときの不良発生
数を第1表に示す。
A temperature cycle of 100 products using the conventional anode bodies obtained in this way and 500 products using the anode bodies according to the present invention for 30 minutes on the low temperature side and +85℃ on the high temperature side for 30 minutes. Table 1 shows the number of defects that occurred when 50 cycles were performed.

第   1   表 また、これらの製品釜30個に対し、波高値1oo()
の鋸歯状衝撃を20回加えたときの不良発生数を第2表
に示す。
Table 1 Also, for 30 of these product pots, the wave height value 1oo()
Table 2 shows the number of defects that occurred when the sawtooth impact was applied 20 times.

〔発明の効果〕〔Effect of the invention〕

以上、本発明法による陽極体を用いた電解コンデンサは
機械的・熱的ストレスにより損傷を受けやすい陽極リー
ド付け根部分の密度が高く、弁作用金属同志の結合が強
いので、(1)!R品化後に受ける機械的・熱的ストレ
スに対して非常に強固である。(11)従って漏れ電流
特性の劣化や、短絡故障の発生がない、極めて信頼性の
高い電解コンデンサを提供できるものであり、その工業
的価値は大なるものである。
As mentioned above, the electrolytic capacitor using the anode body according to the present invention has a high density at the base of the anode lead, which is easily damaged by mechanical and thermal stress, and the bond between the valve metals is strong, so (1)! It is extremely resistant to mechanical and thermal stress after being made into an R product. (11) Therefore, it is possible to provide an extremely reliable electrolytic capacitor that does not suffer from deterioration of leakage current characteristics or short-circuit failure, and has great industrial value.

なお、本実施例においては引出しリード線陽極体として
引出し線の一端が成型体内部に埋設されているものを示
したが他の実施例として第3図に示す如く、引出し線2
1の中央部が成型体内部22に埋設され、両端が成型体
外部に露出したものによっても、効果が達成されること
はもちろんのことである。
In this example, one end of the lead wire is buried inside the molded body as the lead wire anode body, but as another example, as shown in FIG.
Of course, the effect can also be achieved by having the center part of the molded body 22 buried inside the molded body and both ends exposed to the outside of the molded body.

第   2   表 これらの結果から本発明による陽極体を用いたものにお
いては従来例によるものに比べ、熱ストレスに対しても
、機械的ストレスに対しても強固で6D安定しているこ
とが明らかであるが、これは従来例によるものの不良品
の不良箇所を詳細に解析した結果いずれの不良品もが陽
極体の頂面引出しリード付根31部分に誘電体酸化皮膜
の損傷が認められることから、本発明による引出しり一
ド付根部分の高密度化の効果によることが明らかである
Table 2 From these results, it is clear that the anode body according to the present invention is stronger and 6D stable against thermal stress and mechanical stress compared to the conventional anode body. However, this is because a detailed analysis of the defective parts of conventional defective products revealed that all defective products had damage to the dielectric oxide film at the base 31 of the top drawer lead of the anode body. It is clear that this is due to the effect of increasing the density of the root portion of the drawer door according to the invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明の実施例に用いる陽極リード用陽
極体の斜視図、第1図(b)、 (C)は本発明の実施
例によシ得られる1@極体の斜視図および断面図、第2
図は本発明の実施例に用いる成型装置の主要部を示す断
面図、第3図(a)は本発明の他の実施例に用いる陽極
リード用陽極体の斜視図、第3図(b)は本発明の他の
実施例によシ得られる陽極体の断面図、第4図(a)、
 (b)は従来の陽極体の斜視図および断面図、第5図
は従来の成製装置の主要部分を主す断面図。 1、 15.21.32.44  ・・・・・−陽極リ
ード、2,13゜22・・・・・・陽極リード用陽極体
、3.14.23.33゜43・・・・・・弁作用金属
粉末、11.41・・・・・・ダイス、12.42−・
・・・・パンチ、31・・・・・・陽極リードの付け根
部。 −≠D3 第2図 (I)) 第3図
FIG. 1(a) is a perspective view of an anode body for an anode lead used in an embodiment of the present invention, and FIGS. 1(b) and 1(C) are perspective views of 1@pole body obtained by an embodiment of the present invention. Diagrams and cross sections, 2nd
The figure is a sectional view showing the main parts of a molding device used in an embodiment of the present invention, FIG. 3(a) is a perspective view of an anode body for an anode lead used in another embodiment of the present invention, and FIG. 3(b) FIG. 4(a) is a sectional view of an anode body obtained according to another embodiment of the present invention;
(b) is a perspective view and a cross-sectional view of a conventional anode body, and FIG. 5 is a cross-sectional view mainly showing main parts of a conventional manufacturing apparatus. 1, 15.21.32.44...-Anode lead, 2,13゜22...Anode body for anode lead, 3.14.23.33゜43... Valve metal powder, 11.41...Dice, 12.42-...
...Punch, 31...The base of the anode lead. −≠D3 Figure 2 (I)) Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)陽極リードの一部を埋設した弁作用金属粉末を加
圧成型し焼結して成る電解コンデンサ用陽極体の、陽極
リードの付け根部分が他の部分に比較して、階段状に高
い密度分布を有することを特徴とする電解コンデンサ用
陽極体。
(1) In an anode body for an electrolytic capacitor, which is made by press-molding and sintering valve action metal powder with a part of the anode lead embedded, the base of the anode lead is higher than the other parts in a stepped manner. An anode body for an electrolytic capacitor characterized by having a density distribution.
(2)陽極リードの一端の周面に、弁作用金属の高密度
の小加圧成型体を付着・形成し焼結して小焼結陽極体を
得る工程と、前記小焼結陽極体を、同種弁作用金属粉末
の成型体内に陽極リードを突出させて加圧成型し、真空
焼結する工程とから成ることを特徴とする陽極体の製造
方法。
(2) A step of attaching and forming a small high-density press-molded body of valve metal on the peripheral surface of one end of the anode lead and sintering it to obtain a small sintered anode body; A method for manufacturing an anode body, comprising the steps of: protruding an anode lead into a molded body of the same type of valve-acting metal powder, molding under pressure, and vacuum sintering.
JP60243205A 1985-10-29 1985-10-29 Anode unit for electrolytic capacitor and manufacture of thesame Pending JPS62102515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60243205A JPS62102515A (en) 1985-10-29 1985-10-29 Anode unit for electrolytic capacitor and manufacture of thesame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60243205A JPS62102515A (en) 1985-10-29 1985-10-29 Anode unit for electrolytic capacitor and manufacture of thesame

Publications (1)

Publication Number Publication Date
JPS62102515A true JPS62102515A (en) 1987-05-13

Family

ID=17100391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60243205A Pending JPS62102515A (en) 1985-10-29 1985-10-29 Anode unit for electrolytic capacitor and manufacture of thesame

Country Status (1)

Country Link
JP (1) JPS62102515A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03173413A (en) * 1989-11-30 1991-07-26 Avx Corp Improved tantalum capacitor and its manufacture
JP2007142323A (en) * 2005-11-22 2007-06-07 Nichicon Corp Solid electrolytic capacitor element, solid electrolytic capacitor and method for manufacturing the same
CN103875048A (en) * 2011-10-17 2014-06-18 埃文斯电容公司 Sintered article and method of making sintered article
WO2018051522A1 (en) * 2016-09-16 2018-03-22 日本蓄電器工業株式会社 Three-dimensional structure

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03173413A (en) * 1989-11-30 1991-07-26 Avx Corp Improved tantalum capacitor and its manufacture
JP2007142323A (en) * 2005-11-22 2007-06-07 Nichicon Corp Solid electrolytic capacitor element, solid electrolytic capacitor and method for manufacturing the same
JP4653643B2 (en) * 2005-11-22 2011-03-16 ニチコン株式会社 Element for solid electrolytic capacitor, solid electrolytic capacitor and method for producing the same
CN103875048A (en) * 2011-10-17 2014-06-18 埃文斯电容公司 Sintered article and method of making sintered article
EP2769394A4 (en) * 2011-10-17 2015-08-05 Evans Capacitor Company Sintered article and method of making sintered article
CN103875048B (en) * 2011-10-17 2016-10-26 埃文斯电容公司 Sintered article and the method preparing sintered article
WO2018051522A1 (en) * 2016-09-16 2018-03-22 日本蓄電器工業株式会社 Three-dimensional structure
US20180277308A1 (en) * 2016-09-16 2018-09-27 Japan Capacitor Industrial Co., Ltd. Stereostructure
CN109716467A (en) * 2016-09-16 2019-05-03 日本蓄电器工业株式会社 Stereoisomer
KR20190049823A (en) * 2016-09-16 2019-05-09 니혼 치쿠덴키 고교 가부시키가이샤 Stereostructure
JPWO2018051522A1 (en) * 2016-09-16 2019-07-18 日本蓄電器工業株式会社 Three-dimensional structure
EP3489976A4 (en) * 2016-09-16 2019-09-25 Japan Capacitor Industrial Co., Ltd. Three-dimensional structure
US10529497B2 (en) 2016-09-16 2020-01-07 Japan Capacitor Industrial Co., Ltd. Stereostructure

Similar Documents

Publication Publication Date Title
EP2769394B1 (en) Sintered article and method of making sintered article
JPH0697010A (en) Solid tantalum capacitor and its manufacture
JPS62102515A (en) Anode unit for electrolytic capacitor and manufacture of thesame
JP4776522B2 (en) Solid electrolytic capacitor
JP2004014667A (en) Solid electrolytic capacitor
JPS62277715A (en) Anode unit for electrolytic capacitor and manufacture of thesame
JP2006080266A (en) Solid electrolytic capacitor element and its manufacturing method
JP5926485B2 (en) Method for manufacturing solid electrolytic capacitor element
JP2004247410A (en) Solid electrolytic chip capacitor and its manufacturing method
JP3881481B2 (en) Manufacturing method for solid electrolytic capacitors
US11984270B2 (en) Mold, manufacturing device, and manufacturing method for manufacturing molded body
JPH04279020A (en) Manufacture of solid electrolytic capacitor
JP2001118750A (en) Solid electrolytic capacitor
JPS61128510A (en) Manufacture of anode body for electrolytic capacitor
JP2005150128A (en) Solid electrolytic capacitor and its manufacturing method
US20240258040A1 (en) Mold, manufacturing device, and manufacturing method for manufacturing molded body
JPH03215923A (en) Anode body for solid electrolytic capacitor and manufacture thereof
JPH09120935A (en) Tantalum solid-state electrolytic capacitor
JPH0269923A (en) Manufacture of anode for solid electrolytic capacitor
JP3055466B2 (en) Manufacturing method of chip type solid electrolytic capacitor
JP4247974B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH0260049B2 (en)
JPS6048089B2 (en) Manufacturing method of electrolytic capacitor
JPH03227006A (en) Solid electrolytic capacitor
CN116493594A (en) Die, capacitor manufacturing method and capacitor