JPH0269923A - Manufacture of anode for solid electrolytic capacitor - Google Patents

Manufacture of anode for solid electrolytic capacitor

Info

Publication number
JPH0269923A
JPH0269923A JP22174588A JP22174588A JPH0269923A JP H0269923 A JPH0269923 A JP H0269923A JP 22174588 A JP22174588 A JP 22174588A JP 22174588 A JP22174588 A JP 22174588A JP H0269923 A JPH0269923 A JP H0269923A
Authority
JP
Japan
Prior art keywords
die
friction
oxide film
diameter
metal powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22174588A
Other languages
Japanese (ja)
Inventor
Iku Watanabe
郁 渡辺
Yoshiki Hashimoto
芳樹 橋本
Sachiko Kitazono
北園 祥子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP22174588A priority Critical patent/JPH0269923A/en
Publication of JPH0269923A publication Critical patent/JPH0269923A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To improve the coverage rate of a dielectric oxide film by filling metal powder in a die in which the diameter of the top of a pressure molding section is increased larger than that of the bottom, inserting an anode lead from the top, pressure molding it to shape a molding form, and vacuum baking it. CONSTITUTION:In a die 13 in which the diameter of the upper punch 5 of a pressure molding section is increased larger than that of a lower punch 4, metal powder is molded to largely reduce a friction between the die 13 and the molded form 11. The damage of the surface of the form 11 due to the die 13 is reduced to decrease defects in a dielectric oxide film due to the strain of the powder, thereby reducing a leakage current. Further, in order to remove the form 11 from the die 13, the coupling of the form 11 to the leads 2 is weaker than the friction between the die 13 and the form 11, and the friction of removing the leads 2 from the form 11 is reduced to decrease the malfunction, for example, to approx. 1/10.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、素子の加圧成形方法を改良した固体電解コン
デンサ用陽極体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing an anode body for a solid electrolytic capacitor, which is an improved method of pressure molding an element.

従来の技術 一般に固体電解コンデンサの陽極体としては。Conventional technology Generally used as the anode body of solid electrolytic capacitors.

タンタル、ニオブの様な金属粉末を加圧成形して得られ
た成形体を高温真空中で焼結して得られる多孔質焼結体
が用いられ、この焼結体の表面を電気化学的に酸化して
誘電体酸化皮膜を形成させ、半導体母液に含浸熱分解す
る事によって酸化皮膜上に半導体層を形成し、さらにそ
の外側に陰極層を設けてコンデンサを形成している。
A porous sintered body is used, which is obtained by pressure-molding metal powder such as tantalum or niobium and sintering the compact in a high-temperature vacuum.The surface of this sintered body is electrochemically treated. A dielectric oxide film is formed by oxidation, and a semiconductor layer is formed on the oxide film by impregnation in semiconductor mother liquor and thermal decomposition, and a cathode layer is provided on the outside to form a capacitor.

従来、この種の陽極体は、−役に円柱状もしくは直方体
の外形形状で、その中心部にリード線の一部を埋設した
構造の成形体を真空焼結することにより製造している。
Conventionally, this type of anode body has been manufactured by vacuum sintering a molded body having a cylindrical or rectangular external shape with a part of a lead wire embedded in the center thereof.

すなわち、この成形体1の製造は、第2図a〜Cに示す
如く、所望する一定形状の円筒部又は角状の筒部を有す
るダイス3に金属粉末を充てんすると共に、金・萬の陽
極リード2の先端部を金属粉末中に埋め込んだ状態で、
上パンチ5.下パンチ4により上下から加圧して成形体
1を形成し、上パンチ5を上げて所定の長さのり一部2
を確保し上、下パンチ4,5を上げて成形体1をダイス
3より取り出し、これを高温真空中で焼結して、陽極体
を得ている。
That is, as shown in FIGS. 2a to 2C, the molded body 1 is manufactured by filling a die 3 having a cylindrical portion or an angular cylindrical portion with a desired constant shape with metal powder, and adding a gold anode. With the tip of lead 2 embedded in the metal powder,
Upper punch 5. Pressure is applied from above and below using the lower punch 4 to form the molded body 1, and the upper punch 5 is raised to form a part 2 of glue to a predetermined length.
The molded body 1 is taken out from the die 3 by raising the upper and lower punches 4 and 5, and is sintered in a high-temperature vacuum to obtain an anode body.

発明が解決しようとする課題 しかしながら従来の方法では、成形体をダイス内で押し
上げる際に、成形体とダイヌ間の摩擦が3・\−7 強く、成形体側面にダイスによる傷がつき、金属粉末中
に歪みを生ずるため、高温真空中で焼結を行ない、(陽
極酸化した際にこのダイスによる傷に沿って欠陥部を生
じ、漏れ電流が増大するという問題があった。また、成
形体とダイス間の摩擦によって、金属粉末がつぶれて空
孔をふさぎ外表面の空孔度が低下し、半導体母液の含浸
が不完全になるために、誘電体酸化皮膜の電気容量が陰
甑層形成後に十分に引き出せないという問題を有してい
た。
Problems to be Solved by the Invention However, in the conventional method, when the compact is pushed up inside the die, the friction between the compact and the die is 3. Sintering is performed in a high-temperature vacuum to cause distortion in the molded body (when anodized, defects are created along the scratches caused by the die, which increases leakage current. Due to the friction between the dies, the metal powder is crushed and closes the pores, reducing the porosity of the outer surface and incomplete impregnation with the semiconductor mother solution, which causes the capacitance of the dielectric oxide film to decrease after the formation of the negative layer. The problem was that it could not be drawn out sufficiently.

本発明は、上記従来の問題点を解決するもので。The present invention solves the above-mentioned conventional problems.

ダイスと成形体の摩擦を小さくする事によって、漏れ電
流が小さく、半導体層による誘電体酸化皮膜の被覆率の
高い固体電解コンデンサの製造方法を提供することを目
的とする。
It is an object of the present invention to provide a method for manufacturing a solid electrolytic capacitor with low leakage current and high coverage of a dielectric oxide film with a semiconductor layer by reducing friction between a die and a molded body.

課題を解決するための手段 以上の問題点を解決するために本発明は、加圧成形を行
なう部分の上部の径を下部の径より大きくしだダイスに
金属粉末を充てんすると共に、陽極リードを上部から挿
入し、加圧成形して成形体を形成する工程と、その成形
体を真空焼結する工程とで構成したものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention makes the diameter of the upper part of the part to be pressure formed larger than the diameter of the lower part, fills the die with metal powder, and attaches an anode lead. This consists of a process of inserting the molded body from the top and forming it under pressure to form a molded body, and a process of vacuum sintering the molded body.

作用 この構成により、ダイスと成形体との摩擦を小さくし成
形体表面の傷や、空孔度の低下を抑える事ができ、誘電
体酸化皮膜の形成時の欠陥を減らすと同時に半導体層に
よる誘電体酸化皮膜の被覆率を向上させる事ができる。
Function: This structure reduces the friction between the die and the molded body, suppresses scratches on the surface of the molded body and decreases in porosity, reduces defects during the formation of the dielectric oxide film, and at the same time reduces the dielectric strength caused by the semiconductor layer. The coverage of body oxide film can be improved.

実施例 以下、本発明の一実施例について、第1図の図面を用い
て説明する。なお、第1図において、第2図と同一部分
については同一番号を付している。
EXAMPLE Hereinafter, an example of the present invention will be described using the drawing of FIG. In FIG. 1, the same parts as in FIG. 2 are given the same numbers.

第1図において、11は加圧成形部分の上部の径を下部
の径よシ大きくしだダイス13によって成形したタンタ
ル粉末の円柱状成形体である。ダイス13の径は、上部
がφ2.Q mだ、下部がφ1.8間である。成形体1
1の寸法は上部は径がφ2 、OMMで長さが0.5 
mm 、径が徐々に細くなる中央部は長さが2.(IJ
下部は径がφ1.8馴で長さがatsmmで、4oTL
、!9のタンタル粉末を加圧成形したもの5へ−7 である。これをI Xl 0  ’ torrの真空中
で。
In FIG. 1, reference numeral 11 denotes a cylindrical molded body of tantalum powder, which is molded by a press die 13 whose upper diameter is larger than that of its lower part. The diameter of the die 13 is φ2. Qm, the lower part is between φ1.8. Molded body 1
The dimensions of 1 are φ2 diameter at the top and 0.5 length at OMM.
mm, and the length of the central part where the diameter gradually tapers is 2. (I.J.
The lower part has a diameter of φ1.8 and a length of atsmm, 4oTL.
,! 5-7 is obtained by pressure molding the tantalum powder of No. 9. This is done in a vacuum of I Xl 0' torr.

1000°C,20分間焼結した。そしてo、s vo
/ %リン酸水溶液中で12ov/Hrで昇圧し、12
0Vで2時間保持して陽極酸化し、誘電体酸化皮膜を形
成した。その後、10volπリン酸水溶液中で84v
を印加して3分間充電した後、漏れ電流特性を測定し、
誘電体酸化皮膜を電子顕微鏡にて観察し、誘電体酸化皮
膜中の欠陥点数を数えた。次にこれを25に硫酸水溶液
中にひだして、容量を測定した後、硝酸マンガンへの含
浸及び250″Cでの熱分解を数回くり返し、陰極層を
形成して容量を測定し、二酸化マンガンによる誘電体酸
化皮膜の被覆率を算出した。結果を表1に示す。
Sintering was performed at 1000°C for 20 minutes. and o, s vo
/ % phosphoric acid aqueous solution at 12ov/Hr,
Anodic oxidation was performed by holding at 0 V for 2 hours to form a dielectric oxide film. Then, 84v in 10volπ phosphoric acid aqueous solution
After applying and charging for 3 minutes, measure the leakage current characteristics,
The dielectric oxide film was observed using an electron microscope, and the number of defects in the dielectric oxide film was counted. Next, this was soaked in a sulfuric acid aqueous solution to measure the capacity, and the impregnation with manganese nitrate and thermal decomposition at 250''C were repeated several times to form a cathode layer and the capacity was measured. The coverage rate of the dielectric oxide film with manganese was calculated.The results are shown in Table 1.

6ベー7 以上の様に、本実施例によれば、加圧成形を行なう部分
の上部の径を下部の径より大きくしたダイスで、金属粉
末を成形する事によって、ダイスと成形体の間の摩擦を
大幅に減らす事が可能になり、成形体表面のダイスによ
る傷を少々くする事によって、金属粉末の歪みに起因す
る誘電体酸化皮膜中の欠陥を減少させる事ができ、漏れ
電流を低くする事ができる。又、成形体表面の空孔度の
低下を防止することにより、硝酸マンガンの含浸性が良
くなり MnO2による誘電体酸化皮膜の被覆率を向上
させる事ができる。
6.7 As described above, according to this embodiment, by molding metal powder with a die in which the diameter of the upper part of the part to be pressure-formed is larger than that of the lower part, the gap between the die and the compact is reduced. It is now possible to significantly reduce friction, and by reducing scratches caused by the die on the surface of the compact, defects in the dielectric oxide film caused by distortion of the metal powder can be reduced, resulting in lower leakage current. I can do that. In addition, by preventing a decrease in the porosity of the surface of the molded body, impregnation with manganese nitrate is improved, and coverage of the dielectric oxide film by MnO2 can be improved.

さらには、成形体をダイスから取シ出すだめに上下パン
チを上げる際に成形体とリード線の結合がダイスと成形
体の摩擦よシ弱く、リード線が成形体から抜ける事によ
る不良についてもその摩擦を小さくする事によって約1
/1oに減少した。
Furthermore, when raising the upper and lower punches to take out the molded body from the die, the connection between the molded body and the lead wire is weak due to the friction between the die and the molded body, and defects caused by the lead wire coming off from the molded body are also avoided. By reducing friction, approximately 1
/1o.

なお1本実施例では1円柱状の成形体を使用したが、こ
れは角柱状のものでも良い。また、本実施例では成形体
の中央部を徐々に細くするダイスを用いたが単純にダイ
スの径を段階的に細くしても良い。
In this embodiment, a cylindrical molded body was used, but it may also be a prismatic molded body. Further, in this embodiment, a die was used that gradually narrowed the central portion of the molded body, but the diameter of the die may simply be tapered stepwise.

発明の効果 以上のように本発明は、加圧成形する部分のダイスの径
を上部より下部において小さくして、金属粉末を加圧成
形し、真空焼結して、固体電解コンデンサ用の陽極体を
製造する事によって、ダイスとの摩擦による成形体表面
の傷や空孔度の低下を防ぎ、誘電体酸化皮膜中の欠陥数
の減少により漏れ電流が小さく、そして半導体母液の含
浸性が良く、半導体層による誘電体液化皮膜の複覆率の
高い固体電解コンデンサ用・陽極体を得ることができる
Effects of the Invention As described above, the present invention provides an anode body for a solid electrolytic capacitor by making the die diameter of the part to be pressure-formed smaller in the lower part than in the upper part, press-molding metal powder, and sintering it in a vacuum. This prevents scratches on the surface of the compact due to friction with the die and a decrease in porosity, reduces the number of defects in the dielectric oxide film, reduces leakage current, and improves impregnation of the semiconductor mother liquor. It is possible to obtain an anode body for a solid electrolytic capacitor having a high duplication rate of a dielectric liquefied film formed by a semiconductor layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a Ncは本発明の一実施例による製造方法にお
ける金属粉末成形時の工程を示す断面図。 第2図aNCは従来の製造方法における金属粉末成形時
の工程を示す断面図である。 2・・・・リード線、4・・・・・下パンチ、5・・・
・・・上パンチ、11・・・・・・成形体、13・・・
・・ダイス。
FIG. 1a Nc is a cross-sectional view showing a step during metal powder molding in a manufacturing method according to an embodiment of the present invention. FIG. 2 aNC is a cross-sectional view showing a process during metal powder molding in a conventional manufacturing method. 2... Lead wire, 4... Bottom punch, 5...
...Upper punch, 11...Molded object, 13...
··dice.

Claims (1)

【特許請求の範囲】[Claims] 加圧成形する部分の上部の径を下部の径に比べて大きく
したダイスに金属粉末を充填すると共に陽極リードを上
部から挿入し加圧成形して成形体を形成する工程と、そ
の成形体を真空焼結する工程とからなることを特徴とす
る電解コンデンサ用陽極体の製造方法。
The process of filling metal powder into a die whose upper diameter is larger than the lower diameter of the part to be pressure-formed, inserting an anode lead from the top and press-forming to form a compact, and the process of forming the compact. 1. A method for manufacturing an anode body for an electrolytic capacitor, the method comprising the step of vacuum sintering.
JP22174588A 1988-09-05 1988-09-05 Manufacture of anode for solid electrolytic capacitor Pending JPH0269923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22174588A JPH0269923A (en) 1988-09-05 1988-09-05 Manufacture of anode for solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22174588A JPH0269923A (en) 1988-09-05 1988-09-05 Manufacture of anode for solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH0269923A true JPH0269923A (en) 1990-03-08

Family

ID=16771560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22174588A Pending JPH0269923A (en) 1988-09-05 1988-09-05 Manufacture of anode for solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0269923A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774062A (en) * 1993-07-09 1995-03-17 Rohm Co Ltd Structure of capacitor element in solid electrolytic capacitor, its compaction method, and its compaction device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774062A (en) * 1993-07-09 1995-03-17 Rohm Co Ltd Structure of capacitor element in solid electrolytic capacitor, its compaction method, and its compaction device
US5461538A (en) * 1993-07-09 1995-10-24 Rohm Co., Ltd. Capacitor element for solid electrolytic capacitor
US5608601A (en) * 1993-07-09 1997-03-04 Rohm Co., Ltd. Capacitor element for solid electrolytic capacitor
DE4414101B4 (en) * 1993-07-09 2006-04-27 Rohm Co. Ltd. Capacitor element for a solid electrolytic capacitor and pressing device, and method of manufacturing the capacitor

Similar Documents

Publication Publication Date Title
US5949639A (en) Capacitor element for solid electrolytic capacitor, device and process for making the same
JP2008153589A (en) Solid electrolytic capacitor
JPH0269923A (en) Manufacture of anode for solid electrolytic capacitor
JP2004014667A (en) Solid electrolytic capacitor
JP3199096B2 (en) Solid electrolytic capacitors
JPH04167512A (en) Manufacture of solid electrolytic capacitor
JP2734825B2 (en) Method for manufacturing solid electrolytic capacitor
JP2001196274A (en) Method of manufacturing anode for solid electrolytic capacitor
US4214293A (en) Electrolytic capacitors
JP2885101B2 (en) Manufacturing method of electrolytic capacitor
JP3503971B2 (en) Manufacturing method of capacitor element
JPS6053454B2 (en) Manufacturing method of sintered capacitor element
JP2772154B2 (en) Method for manufacturing solid electrolytic capacitor
JPS63124511A (en) Aluminum solid electrolytic capacitor
JPS62102515A (en) Anode unit for electrolytic capacitor and manufacture of thesame
JP2908830B2 (en) Manufacturing method of electrolytic capacitor
JPH04279020A (en) Manufacture of solid electrolytic capacitor
JPH03215923A (en) Anode body for solid electrolytic capacitor and manufacture thereof
JPH0353511A (en) Manufacture of solid electrolytic capacitor
JP2008205190A (en) Solid electrolytic capacitor and its manufacturing method
JP3123083B2 (en) Method for manufacturing solid electrolytic capacitor
JPS62277715A (en) Anode unit for electrolytic capacitor and manufacture of thesame
JPH05182869A (en) Solid electrolytic capacitor and manufacture thereof
JPS6048089B2 (en) Manufacturing method of electrolytic capacitor
JP3401447B2 (en) Solid electrolytic capacitor and method of manufacturing the same