JPH04167512A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPH04167512A
JPH04167512A JP29613290A JP29613290A JPH04167512A JP H04167512 A JPH04167512 A JP H04167512A JP 29613290 A JP29613290 A JP 29613290A JP 29613290 A JP29613290 A JP 29613290A JP H04167512 A JPH04167512 A JP H04167512A
Authority
JP
Japan
Prior art keywords
molded
metal powder
density
molding
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29613290A
Other languages
Japanese (ja)
Inventor
Kenichi Saito
健一 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Toppan Circuit Solutions Toyama Inc
Original Assignee
NEC Toppan Circuit Solutions Toyama Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Toppan Circuit Solutions Toyama Inc filed Critical NEC Toppan Circuit Solutions Toyama Inc
Priority to JP29613290A priority Critical patent/JPH04167512A/en
Publication of JPH04167512A publication Critical patent/JPH04167512A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decreace the internal resistance value of a solid electrolytic capacitor element itself by a method wherein, when value-action metal powder is pressure-molded in an anode member element manufacturing process, the value- action metal powder is introduced plural times, and the powder is molded by changing compression ratio. CONSTITUTION:A high density molded part 1 is formed by conducting a high density press-molding operation of the value-action metal powder of tantalum and the like, and then a low density molded part 2 is formed by introducing tantalum powder and press-molded it at low density. By introducing the metal powder material divided in a plurality of times and also by molding the metal powder by changing the ratio of compression, an anode member element having a lead-planted part of high green density and high molded body strength, and also having a part where a low green density semiconductor layer is easily formed, are manufactured. As a result, the internal resistance value, possessed by a capacitor element itself as the electric characteristics of a solid electrolyte capacitor, can be decreased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は固体電解コンデンサの製造方法に関し、特に陽
極体素子製造工程における加圧成形方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a solid electrolytic capacitor, and particularly to a pressure molding method in the manufacturing process of an anode body element.

〔従来の技術〕[Conventional technology]

従来固体電解コンデンサの陽極体素子製造工程において
は、弁作用金属粉末に陽極リード線を植立しながら一定
の加圧条件で1回の加圧成形で製造していた。
Conventionally, in the manufacturing process of the anode body element of a solid electrolytic capacitor, the anode body element was manufactured by one-time pressure molding under constant pressure conditions while an anode lead wire was planted in the valve metal powder.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の陽極体素子製造方法では、1回の加圧で
成形してしまうので、成形体強度を保つためある程度圧
縮比を大きくし成形密度を高くする必要がある。しかし
、成形密度が高いと後の陰極半導体層形成工程において
、成形体内部まで十分な半導体層を形成できない欠点を
もつ。また圧縮比を小さくし成形密度を低くすると成形
体強度が弱くなり、組み立て工程における陽極リード線
を外部陽極端子等に溶接する際の機械的ストレスや外装
樹脂の硬化・熱収縮等における機械的ストレスによりも
れ電流値が増大する。とくに陽極リード線植立部周辺が
陽極リード線が受ける応力を直接受けるためもれ電流値
劣化のポイントになるという欠点を有している。
In the conventional anode body element manufacturing method described above, molding is carried out by one pressurization, so in order to maintain the strength of the molded product, it is necessary to increase the compression ratio to some extent and increase the molding density. However, if the molding density is high, a sufficient semiconductor layer cannot be formed inside the molded body in the subsequent step of forming the cathode semiconductor layer. In addition, if the compression ratio is lowered and the molding density is lowered, the strength of the molded product will be weakened, and the mechanical stress caused by welding the anode lead wire to the external anode terminal, etc. during the assembly process, and the mechanical stress caused by curing and heat shrinkage of the exterior resin, etc. This increases the leakage current value. In particular, the area around the anode lead wire planting part directly receives the stress applied to the anode lead wire, which has the disadvantage that it becomes a point where the leakage current value deteriorates.

本発明の目的は、成形体強度を高く保ちながら半導体層
形成における成形体内部への浸透性を向上させることが
でき、固体電解コンデンサ素子自身がもつ内部抵抗値を
低下させることができ、さらに製造工程中の外部ストレ
スや製品化後の外部からの熱ストレスに強く、もれ電流
値を劣化させにくい固体電解コンデンサの製造方法を提
供することにある。
The purpose of the present invention is to improve the permeability into the inside of the molded body during the formation of a semiconductor layer while maintaining the strength of the molded body high, to reduce the internal resistance value of the solid electrolytic capacitor element itself, and to further improve the manufacturing of the solid electrolytic capacitor element. It is an object of the present invention to provide a method for manufacturing a solid electrolytic capacitor that is resistant to external stress during the process and external heat stress after commercialization, and that does not easily deteriorate the leakage current value.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の固体電解コンデンサの製造方法は、陽極体素子
製造工程において、弁作用金属粉末を加圧成形する際に
、多数回に分割して、弁作用金属粉末を投入し圧縮比率
を変えて成形する工程を有することを特徴として構成さ
れる。
In the manufacturing method of a solid electrolytic capacitor of the present invention, in the anode body element manufacturing process, when the valve metal powder is pressure-molded, the valve metal powder is introduced in multiple steps and the compression ratio is changed. The method is characterized by having a step of:

本発明は上述のように、多数回に分けて材料の金属粉末
を投入し、圧縮比率を変えて成形することにより成形密
度の高い成形体強度を保つリード植立部分と、成形密度
の低い半導体層を形成しやすい部分を持つ陽極体素子を
製造することができる。
As mentioned above, the present invention has a lead planting part that maintains the strength of the molded product with high molding density by charging the metal powder material in multiple times and molding by changing the compression ratio, and a semiconductor with low molding density. It is possible to manufacture an anode element having a portion where layers can be easily formed.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の縦断面図である。FIG. 1 is a longitudinal sectional view of an embodiment of the present invention.

タンタル、アルミニウム、ニオブ等の弁作用金属粉末を
、タンタルの場合約6.0〜10.0 g/cc。
Valve metal powder such as tantalum, aluminum, niobium, etc., in the case of tantalum, about 6.0 to 10.0 g/cc.

高密度でプレス成形して高密度成形部1を形成し、つづ
いてタンタル粉末を投入して約20〜6.0g/ cc
の低密度でプレス成形して低密度成形部2を形成した。
High-density press molding is performed to form a high-density molded part 1, and then tantalum powder is added to form approximately 20 to 6.0 g/cc.
A low density molded part 2 was formed by press molding at a low density of .

つぎに、第2図により成形方法について説明する。まず
、第2図(a)に示すように陽極リード線導入孔7を通
して陽極リード線3を導入しである成形用下パンチ5を
ダイス6内に配置し、タンタル等の弁作用金属粉末をダ
イス6内に投入し、成形用上バンチ4を約8Of)kg
/at!の加圧力で第1段加圧成形し高密度成形部lを
形成する。つづいて、成形用上パンチ4を一担ダイス6
よりとり出し、弁作用金属粉末を高密度成形部1の上に
投入し、再び成形用上パンチ4で約600kg/cni
の加圧力で第2段加圧成形し、低密度成形部2を得た。
Next, the molding method will be explained with reference to FIG. First, as shown in FIG. 2(a), the anode lead wire 3 is introduced through the anode lead wire introduction hole 7, and the lower molding punch 5 is placed in the die 6, and a valve metal powder such as tantalum is inserted into the die. 6 and put the upper bunch 4 for molding into approximately 8Of) kg.
/at! The first stage pressure molding is carried out at a pressure of 1 to form a high-density molded part l. Next, insert the upper punch 4 into the die 6.
Then, the valve metal powder was put on the high-density molding part 1, and the upper molding punch 4 was used again to give about 600 kg/cni.
A second-stage pressure molding was performed at a pressure of 100 mL to obtain a low-density molded part 2.

陽極リード線3切断後ダイス6より成形体を取り比し直
径約4.5 m/m高さ約6m/m(高密度部約2m/
n低密度部約4ω/m)の円筒形の成形体を得た。
After cutting the anode lead wire 3, the molded body is removed from the die 6 and has a diameter of approximately 4.5 m/m and a height of approximately 6 m/m (high density part approximately 2 m/m).
A cylindrical molded body with a low density part of about 4 ω/m) was obtained.

以降は、公知の技術により、高温真空焼結し、陽極酸イ
虐極層形成1組み立て、樹脂外装等の工程をへて、定格
電圧10V%’[容量100μFの自立型樹脂外装固体
電解コンデンサを得た。
Thereafter, using known techniques, a self-supporting resin-clad solid electrolytic capacitor with a rated voltage of 10V%' [capacity of 100μF] is manufactured by performing high-temperature vacuum sintering, forming an anodic acid electrode layer 1, assembling, and resin-cladding. Obtained.

比較のため1回成形による従来方法により直径約4.5
m/m高さ約5.5m/mの成形密度のやや低いものと
、直径約4.5m/m高さ約5.2m/mの成形密度の
やや高いものとを作成した。本発明の実施例による製品
と従来方法による製品とのもれ電流値不良率を比較した
ところ以下の通りの改善がみられた。
For comparison, the diameter was approximately 4.5 mm using the conventional method of one-time molding.
One with a slightly lower molding density and a height of about 5.5 m/m, and the other with a slightly higher molding density with a diameter of about 4.5 m/m and a height of about 5.2 m/m. A comparison of the leakage current value defective rate between the product according to the embodiment of the present invention and the product manufactured using the conventional method revealed the following improvements.

なお、半導体形成工程での成形体内部までの形成状況の
1つの指標となる電気的特性値tanδは第3図(a)
、 (b)、 (c)のヒストグラムに示す通り、改善
が見ら九た。
The electrical characteristic value tan δ, which is an index of the formation status up to the inside of the molded body in the semiconductor formation process, is shown in Figure 3 (a).
As shown in the histograms of , (b) and (c), no improvement was observed.

以上により本発明の方法は、従来工法の利点を生かし欠
点を補うものである。陽極リード線を下側の成形用下パ
ンチ5より供給することにより陽極リート線植立部周辺
を高密度成形化することを可能とした。
As described above, the method of the present invention takes advantage of the advantages of the conventional method and compensates for its disadvantages. By supplying the anode lead wire from the lower molding punch 5 on the lower side, it is possible to mold the area around the anode lead wire planting part with high density.

次に、本発明による実施例2につ(・てタンタル固体電
解コンデンサで説明する。
Next, a second embodiment of the present invention will be explained using a tantalum solid electrolytic capacitor.

タンタル金属粉末はその製造方法により粒形や表面積の
異なるものが作り分けられている。本発明においては、
加圧成形を多数回に分割し、各々供給する粉末の種類を
変えて成形することができる。
Tantalum metal powder is made into different grain shapes and surface areas depending on the manufacturing method. In the present invention,
Pressure molding can be divided into multiple stages, and the type of powder supplied can be changed for each stage.

例えば、第1の実施例で上げた第1段加圧成形時には粒
形でおよそ10〜40μm1表面積でおよそ3,0OO
CV程度のものを使用し、約100g/ ccの高密度
で成形し、第2段加圧成形時には、粒形でおよそ2〜8
μm2表面積でおよそ23.0000v程度のものを使
用し、約3、Og / ccの低密度で成形し、直径約
4.5φ、高さ6.5mm(高密度部約2g低密度部約
4.5mm)の円筒形の成形体を得た。以降公知の技術
により高温真空焼結し、陽極酸化、陰極層形成2組み立
て、樹脂外装等の工程をへて定格電圧10V静電容量1
00μFの自立型樹脂外装固体電解コンデンサを得た。
For example, during the first stage pressure molding mentioned in the first example, the particle shape is approximately 10 to 40 μm, and the surface area is approximately 3,000 μm.
A material with a CV level is used and molded at a high density of approximately 100 g/cc, and during the second stage pressure molding, the grain size is approximately 2 to 8 g/cc.
A material with a surface area of about 23.0000 V in μm2 is used, and is molded at a low density of about 3.0 g/cc, with a diameter of about 4.5 φ and a height of 6.5 mm (high density part about 2 g, low density part about 4.0 g/cc). A cylindrical molded body with a diameter of 5 mm) was obtained. Thereafter, high-temperature vacuum sintering is performed using known techniques, and processes such as anodization, cathode layer formation 2 assembly, and resin exterior are performed to obtain a rated voltage of 10V and a capacitance of 1.
A self-supporting resin-clad solid electrolytic capacitor of 00 μF was obtained.

第1の実施例による試作品ともれ電流値不良率を比較し
たところ以下の通りの改善がみられた。
When the leakage current value defect rate was compared with that of the prototype according to the first example, the following improvements were observed.

なお、半導体形成工程での成形体内部までの形成状況の
1つの指標となる電気的特性値tanδのヒストグラム
を第3図(d)に示す通り、低下しており改善効果が見
られた。
In addition, as shown in FIG. 3(d), the histogram of the electrical characteristic value tan δ, which is one indicator of the state of formation up to the inside of the molded body in the semiconductor forming process, decreased, indicating an improvement effect.

以上によりタンタル粉末の特性を生かした、本発明の成
形体製造方法によれば、陽極リード植立部にあたる第1
段加圧成形時に、高密度に成形しやすい成形体強度の高
い粉末を使用し、第2段加圧成形時には陰極層形成工程
で内部への浸透性を確保するために低密度で成形を行う
ことにより第1の実施例の効果をさらに改善することが
できる。
As described above, according to the molded body manufacturing method of the present invention that takes advantage of the characteristics of tantalum powder, the first
During stage pressure molding, a powder with high compaction strength is used that is easy to mold into high density, and during second stage pressure molding, molding is performed at low density to ensure internal permeability in the cathode layer forming process. Thereby, the effects of the first embodiment can be further improved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、弁作用金属粉末を加圧成
形する際に多数回に分けて、弁作用金属粉末を投入し圧
縮比率を変えて成形することにより、成形体強度を高く
保ちながら半導体層形成における成形体内部への浸透性
を向上させることができ、固体電解コンデンサの電気的
特性としてコンデンサ素子自身がもつ内部抵抗値を低下
させる効果がある。
As explained above, the present invention is capable of maintaining the strength of the compact by dividing the valve action metal powder into multiple batches and changing the compression ratio during pressure molding. It is possible to improve the permeability into the inside of the molded body in the formation of a semiconductor layer, and it has the effect of reducing the internal resistance value of the capacitor element itself as an electrical characteristic of the solid electrolytic capacitor.

また、さらに成形体の陽極リード植立部周辺の成形体強
度が高いため固体電解コンデンサの製造工程中の外的ス
トレスつまり外部端子との溶接工程や外装樹脂等の内部
応力等、また製品化後の外部からの熱ストレス(はんだ
付は等)に強く、もれ電流値を劣化させにくい効果があ
る。
In addition, the strength of the molded product around the anode lead planting part is high, so external stress during the manufacturing process of solid electrolytic capacitors, such as the welding process with external terminals, internal stress of the exterior resin, etc., and after commercialization. It is resistant to external heat stress (soldering, etc.) and has the effect of preventing the leakage current value from deteriorating.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例により製造された陽極体素子
の縦断面図、第2図(a)、 (b)は本発明の一実施
例の成形方法を説明するための概略図、第3図(a)〜
(d)は本発明の実施例による試作品及び従来例による
製品とのtanδ値の分布のヒストグラムであり、第3
図(a)は従来品(1)(低密度)、第3図(b)は従
来品(■)(高密度)、第3図(c)は本発明実施例1
、第3図(d)は本発明実施例2のヒストグラムである
。 1・・・・・・高密度成形部、2・・・・・・低密度成
形部、3・・・・・・陽極リード線、4・・・・・・成
形用上パンチ、5・・・・・・成形用下パンチ、6・・
・・・・ダイス、7・・・・・・陽極リード線導入孔。 代理人 弁理士  内 原   音 千1図 tt−J [1(i 1kHz )(%)taJfMr
d tkJ4zX’l)(α)           
   (b)−(oillHz )(%)      
  し値(atmh)(% )(’C)    −一←
  (d)   −一一一一一一第3図
FIG. 1 is a longitudinal cross-sectional view of an anode body element manufactured according to an embodiment of the present invention, and FIGS. 2(a) and 2(b) are schematic diagrams for explaining a molding method according to an embodiment of the present invention. Figure 3(a)~
(d) is a histogram of the distribution of tan δ values between the prototype according to the embodiment of the present invention and the product according to the conventional example;
Figure (a) is the conventional product (1) (low density), Figure 3 (b) is the conventional product (■) (high density), and Figure 3 (c) is the example 1 of the present invention.
, FIG. 3(d) is a histogram of Example 2 of the present invention. DESCRIPTION OF SYMBOLS 1... High-density molded part, 2... Low-density molded part, 3... Anode lead wire, 4... Upper punch for molding, 5... ...lower punch for forming, 6...
...Dice, 7...Anode lead wire introduction hole. Agent Patent Attorney Uchihara Otosen 1 tt-J [1 (i 1kHz) (%) taJfMr
d tkJ4zX'l) (α)
(b) - (oilHz) (%)
Value (atmh) (%) ('C) -1←
(d) -111111 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 弁作用金属を加圧成形して陽極体とする固体電解コンデ
ンサの陽極体素子製造工程において、弁作用金属粉末を
加圧成形する際に弁作用金属粉末の投入,成型を多数回
に分割し圧縮比率を変えて成形することを特徴とする固
体電解コンデンサの製造方法。
In the manufacturing process of the anode body element of solid electrolytic capacitors, in which the valve metal powder is pressure-formed to form the anode body, the injection and molding of the valve metal powder are divided into multiple steps and compressed. A method for manufacturing a solid electrolytic capacitor, which is characterized by molding with varying ratios.
JP29613290A 1990-10-31 1990-10-31 Manufacture of solid electrolytic capacitor Pending JPH04167512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29613290A JPH04167512A (en) 1990-10-31 1990-10-31 Manufacture of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29613290A JPH04167512A (en) 1990-10-31 1990-10-31 Manufacture of solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH04167512A true JPH04167512A (en) 1992-06-15

Family

ID=17829561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29613290A Pending JPH04167512A (en) 1990-10-31 1990-10-31 Manufacture of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH04167512A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08162373A (en) * 1994-11-30 1996-06-21 Seiken:Kk Tantalum capacitor element with lead wire-buried part high in bulk density
US5667536A (en) * 1992-12-08 1997-09-16 Rohm Co., Ltd. Process for making a tantalum capacitor chip
US6139593A (en) * 1997-11-06 2000-10-31 Nec Corporation Manufacturing method of anode body of solid electrolytic capacitor
JP2006080266A (en) * 2004-09-09 2006-03-23 Nichicon Corp Solid electrolytic capacitor element and its manufacturing method
JP2008094716A (en) * 1998-05-06 2008-04-24 Hc Starck Inc Metal powder produced by reduction of oxide using gaseous magnesium
JP2013081965A (en) * 2011-10-06 2013-05-09 Oppc Co Ltd Powder molding method for electronic components and powder molding device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5667536A (en) * 1992-12-08 1997-09-16 Rohm Co., Ltd. Process for making a tantalum capacitor chip
JPH08162373A (en) * 1994-11-30 1996-06-21 Seiken:Kk Tantalum capacitor element with lead wire-buried part high in bulk density
US6139593A (en) * 1997-11-06 2000-10-31 Nec Corporation Manufacturing method of anode body of solid electrolytic capacitor
JP2008094716A (en) * 1998-05-06 2008-04-24 Hc Starck Inc Metal powder produced by reduction of oxide using gaseous magnesium
JP2008106364A (en) * 1998-05-06 2008-05-08 Hc Starck Inc Metal powder produced by reduction of oxide with gaseous magnesium
JP2006080266A (en) * 2004-09-09 2006-03-23 Nichicon Corp Solid electrolytic capacitor element and its manufacturing method
JP2013081965A (en) * 2011-10-06 2013-05-09 Oppc Co Ltd Powder molding method for electronic components and powder molding device

Similar Documents

Publication Publication Date Title
US6775127B2 (en) Anode member for a solid electrolytic capacitor, method of producing the same and solid electrolytic capacitor using the same
JP5259603B2 (en) Method for producing improved electrolytic capacitor anode
GB2240216A (en) Manufacture of a tantalum capacitor.
JP3516167B2 (en) Manufacturing method of tantalum capacitor chip
US6985353B2 (en) Anode body for solid electrolytic capacitor and solid electrolytic capacitor using the same
JPH04167512A (en) Manufacture of solid electrolytic capacitor
JP2008153589A (en) Solid electrolytic capacitor
JP2004014667A (en) Solid electrolytic capacitor
JPH04279020A (en) Manufacture of solid electrolytic capacitor
US8673025B1 (en) Wet electrolytic capacitor and method for fabricating of improved electrolytic capacitor cathode
JP2006080266A (en) Solid electrolytic capacitor element and its manufacturing method
JP4430440B2 (en) Manufacturing method of anode body for solid electrolytic capacitor
JP2792480B2 (en) Method for manufacturing tantalum anode body
US6930877B2 (en) Anode member for a solid electrolytic capacitor, solid electrolytic capacitor using the anode member, and method of producing the anode member
JPH0353511A (en) Manufacture of solid electrolytic capacitor
JPH1050564A (en) Manufacture of tantalum capacitor element
JPH08162372A (en) Manufacture of electrolytic capacitor
JPH09120935A (en) Tantalum solid-state electrolytic capacitor
JP2730512B2 (en) Method for manufacturing anode body of solid electrolytic capacitor
JPS6053454B2 (en) Manufacturing method of sintered capacitor element
JPS6048089B2 (en) Manufacturing method of electrolytic capacitor
JP3401447B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH03215923A (en) Anode body for solid electrolytic capacitor and manufacture thereof
JP2734825B2 (en) Method for manufacturing solid electrolytic capacitor
JPS6352765B2 (en)