JP2006080266A - Solid electrolytic capacitor element and its manufacturing method - Google Patents

Solid electrolytic capacitor element and its manufacturing method Download PDF

Info

Publication number
JP2006080266A
JP2006080266A JP2004262059A JP2004262059A JP2006080266A JP 2006080266 A JP2006080266 A JP 2006080266A JP 2004262059 A JP2004262059 A JP 2004262059A JP 2004262059 A JP2004262059 A JP 2004262059A JP 2006080266 A JP2006080266 A JP 2006080266A
Authority
JP
Japan
Prior art keywords
density
layer
molding
molded body
body element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004262059A
Other languages
Japanese (ja)
Inventor
Naoki Kotani
直己 小谷
Keiichi Ogata
慶一 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2004262059A priority Critical patent/JP2006080266A/en
Publication of JP2006080266A publication Critical patent/JP2006080266A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid electrolytic capacitor which has excellent leakage current characteristics, a high electrostatic capacity, and merits possessed by both a high-density molded element and a low-density molded element in capacitor elements which are formed by compacting and molding valve-action metal powder. <P>SOLUTION: The molded element of multilayered structure is formed by the method wherein valve-action powder is supplied by in multistages, laterally compacted and molded three times or more. A joint (internal layer) between the molded element and an anode lead wire, and the peripheral part (external layer) of the molded element are set higher in density than an intermediate layer, so that a dielectric film can be protected against damage caused by an external force applied in capacitor manufacturing processes, and the capacitor having excellent leakage current characteristics can be obtained. The intermediate layer of low density is formed between the internal layer and the external layer, so that the sintered element can be increased in surface area, and the solid electrolytic capacitor having a high electrostatic capacity can be provided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固体電解コンデンサに用いる素子およびその製造方法に関するものである。   The present invention relates to an element used for a solid electrolytic capacitor and a method for manufacturing the same.

従来の固体電解コンデンサに用いる成形体素子は、弁作用金属の加圧成形時、成形体素子内での成形密度ができるだけ均一になるようにしていた(例えば、特許文献1参照)。   The molded body element used in the conventional solid electrolytic capacitor has been designed so that the molding density in the molded body element is as uniform as possible during pressure molding of the valve action metal (for example, see Patent Document 1).

また、上下プレスで多段階に縦方向から成形することで、焼結後の焼結体素子と陽極リードワイヤーとの結合力を向上させつつ、成形体素子内の成形密度が均一になるようにしていた(例えば、特許文献2参照)。
特開平1−181509号公報 特開平6−176985号公報
In addition, by forming from the vertical direction in multiple stages using an upper and lower press, the bonding density between the sintered body element after sintering and the anode lead wire is improved, and the molding density in the molded body element is made uniform. (For example, refer to Patent Document 2).
JP-A-1-181509 JP-A-6-176985

コンデンサ組立工程で加わる外力により、誘電体皮膜が損傷してコンデンサの電気特性が劣化するのを防ぐためには、成形密度を高くして焼結体素子と陽極リードワイヤーとの結合力、および焼結体素子強度を向上させた方がよいが、焼結体素子の表面積が減少し、静電容量が低下するという問題があった。   In order to prevent the dielectric film from being damaged and the electrical characteristics of the capacitor from being deteriorated due to external force applied during the capacitor assembly process, the bonding density between the sintered body element and the anode lead wire and the sintering are increased by increasing the molding density. Although it is better to improve the body element strength, there is a problem that the surface area of the sintered body element is reduced and the capacitance is lowered.

しかし、成形密度を低くして、焼結体素子の表面積が減少するのを防ぐことで、所定の静電容量を得ようとすると、焼結体素子と陽極リードワイヤーとの結合力、および焼結体素子強度が低下するため、コンデンサ製造工程で加わる外力に対し、弱くなるという問題があった。   However, when the predetermined density is obtained by lowering the molding density and preventing the surface area of the sintered body element from decreasing, the bonding strength between the sintered body element and the anode lead wire and the firing Since the strength of the bonded element is lowered, there is a problem that it becomes weak against the external force applied in the capacitor manufacturing process.

また、焼結体素子と陽極リードワイヤーとの結合力を向上させ、かつ焼結体素子の表面積を増加させる成形を行うため、上下パンチで多段階に縦方向から行う方法は、成形体素子の体積を多段階に大きくするため、段階的に成形する度に成形機や成形金型を変える必要があり、工数がかかるという問題があった。   In addition, in order to improve the bonding force between the sintered body element and the anode lead wire and increase the surface area of the sintered body element, the method of performing the vertical direction in multiple stages with the upper and lower punches, In order to increase the volume in multiple stages, it is necessary to change the molding machine and the molding die each time the molding is performed step by step, resulting in a problem that man-hours are required.

上記のような問題があったため、焼結体素子と陽極リードワイヤーとの結合力および焼結体素子強度が高く、かつ静電容量が低下せず、工数のかからない固体電解コンデンサ素子およびその製造方法が求められていた。   Due to the above-described problems, the solid electrolytic capacitor element having a high bonding force between the sintered body element and the anode lead wire and the strength of the sintered body element, no reduction in capacitance, and less man-hours, and a method for manufacturing the same Was demanded.

本発明は上記課題を解決するもので、弁作用金属粉末を加圧成形してなる固体電解コンデンサ素子およびその製造方法において、
弁作用金属粉末を横方向から3回以上加圧成形し、少なくとも2以上の異なる密度の成形体素子とすることを特徴とする固体電解コンデンサ素子およびその製造方法である。
The present invention solves the above problems, and in a solid electrolytic capacitor element formed by pressure-molding a valve metal powder and a method for producing the same,
A solid electrolytic capacitor element and a method for manufacturing the same, characterized in that a valve-acting metal powder is pressure-molded three or more times from the lateral direction to form a molded body element having at least two different densities.

また、上記の成形体素子と陽極リードワイヤーとを接合する成形体層の成形密度が、該成形体層の外層の成形密度と同一か、または高いことを特徴とする固体電解コンデンサ素子およびその製造方法である。
さらに、上記の成形体素子が、内層、中間層、外層の3層構造であり、中間層の密度が、内層と外層より低いことを特徴とする固体電解コンデンサ素子およびその製造方法である。
A solid electrolytic capacitor element characterized in that the molding density of the molded body layer for joining the molded body element and the anode lead wire is the same as or higher than the molding density of the outer layer of the molded body layer, and its production Is the method.
Furthermore, the molded body element has a three-layer structure of an inner layer, an intermediate layer, and an outer layer, and the density of the intermediate layer is lower than that of the inner layer and the outer layer, and a manufacturing method thereof.

成形体素子と陽極リードワイヤーとの接合部(内層)の成形密度を高くすることで、両者の結合力が高まり、コンデンサ製造工程で加わる外力による接合部(内層)の誘電体皮膜損傷を防ぐことができるため、漏れ電流の増加を防ぐことができる。   By increasing the molding density of the joint (inner layer) between the molded body element and the anode lead wire, the bonding force between the two is increased and the dielectric film damage of the joint (inner layer) due to external force applied in the capacitor manufacturing process is prevented. Therefore, increase in leakage current can be prevented.

また、成形体素子外周部(外層)の密度を中間層より高くすることで、焼結体素子強度が向上し、コンデンサ製造時の外力による誘電体皮膜の損傷を防ぐことができるため、良好な漏れ電流特性を得ることができる。   Moreover, since the density of the outer periphery (outer layer) of the molded body element is higher than that of the intermediate layer, the strength of the sintered body element is improved, and damage to the dielectric film due to external force during capacitor production can be prevented. Leakage current characteristics can be obtained.

さらに、成形体素子と陽極リードワイヤーとの接合部(内層)と成形体素子の外周部(外層)との間の中間層の密度を内層と外層より低くすることで、焼結体素子の表面積が増加するため、高い静電容量を得ることができる。   Furthermore, the surface area of the sintered body element is reduced by making the density of the intermediate layer between the joint (inner layer) of the molded body element and the anode lead wire and the outer peripheral portion (outer layer) of the molded body element lower than the inner layer and the outer layer. Therefore, a high capacitance can be obtained.

また、同一成形機の左右パンチで横方向から成形を行うため、段階的に成形する度に成形機や成形金型を変える必要がなく、縦方向の成形と比較し、工数を削減できる。   Further, since the molding is performed from the horizontal direction with the left and right punches of the same molding machine, it is not necessary to change the molding machine and the molding die each time the molding is performed step by step, and the man-hours can be reduced as compared with the molding in the vertical direction.

次に、本発明による固体電解コンデンサ素子の製造方法について説明する。
成形時に金型に対して多段階に弁作用金属粉末を供給し、横方向から3回加圧成形を行うことで、成形体素子を多層構造とする。
まず、内層として成形体素子と陽極リードワイヤーの接合部を高密度で成形する。
次に、中間層として、内層よりも成形密度の低い層を形成する。
最後に、外層として、高密度の成形層を形成する。
Next, a method for manufacturing a solid electrolytic capacitor element according to the present invention will be described.
The metal element powder is supplied in multiple stages to the mold at the time of molding, and the molded body element has a multilayer structure by performing pressure molding three times from the lateral direction.
First, as the inner layer, the joint between the molded body element and the anode lead wire is molded at a high density.
Next, a layer having a molding density lower than that of the inner layer is formed as the intermediate layer.
Finally, a high-density molded layer is formed as the outer layer.

[実施例]
図1、2のように左右パンチで区切られた溝幅4.0mm、深さ5.0mmの凹断面金型をニオブ粉末28mgで満たし、図3のように上金型とともに陽極リードワイヤーを供給し、横方向から加圧して、図4のような4.0mm×5.0mm×0.4mmの内層成形密度3.57g/cmの内層を形成し、成形体素子1とした。
次に、図5のようにニオブ粉末76mgを追加供給し、図6のように横方向から加圧して中間層成形密度2.71g/cmの中間層を形成し、4.0mm×5.0mm×1.8mmの成形体素子2とした。
さらに、図7のようにニオブ粉末14mgを追加供給し、図8のように横方向から加圧して外層成形密度3.50g/cmの外層を形成し、図9のような3層構造の4.0mm×5.0mm×2.0mmの成形体素子3とした。
該成形体素子3を1.33×10−3Paの真空中において1300℃で20分間熱処理し、焼結体素子とした。この焼結体素子を0.1%リン酸中にて30Vで2時間保持して陽極酸化を行い、誘電体酸化皮膜を形成した。
[Example]
As shown in FIGS. 1 and 2, a concave cross-section mold having a groove width of 4.0 mm and a depth of 5.0 mm separated by left and right punches is filled with 28 mg of niobium powder, and an anode lead wire is supplied together with the upper mold as shown in FIG. Then, an inner layer having an inner layer molding density of 3.57 g / cm 3 of 4.0 mm × 5.0 mm × 0.4 mm as shown in FIG.
Next, 76 mg of niobium powder is additionally supplied as shown in FIG. 5, and an intermediate layer having an intermediate layer molding density of 2.71 g / cm 3 is formed by pressing from the lateral direction as shown in FIG. A molded body element 2 of 0 mm × 1.8 mm was obtained.
Further, 14 mg of niobium powder is additionally supplied as shown in FIG. 7, and an outer layer having an outer layer molding density of 3.50 g / cm 3 is formed by pressing from the lateral direction as shown in FIG. The molded body element 3 was 4.0 mm × 5.0 mm × 2.0 mm.
The molded body element 3 was heat-treated at 1300 ° C. for 20 minutes in a vacuum of 1.33 × 10 −3 Pa to obtain a sintered body element. This sintered body element was anodized while being held in 0.1% phosphoric acid at 30 V for 2 hours to form a dielectric oxide film.

(比較例1)
図1、2のように、凹断面金型をニオブ粉末108mgで満たし、図3のように上金型とともに陽極リードワイヤーを供給し、横方向から加圧して、図10のような4.0mm×5.0mm×2.0mmの全体を成形密度2.71g/cmの低密度にした成形体素子を形成した。なお、その他の作製条件は、実施例と同様とした。
(Comparative Example 1)
As shown in FIGS. 1 and 2, the concave cross-section mold is filled with 108 mg of niobium powder, and the anode lead wire is supplied together with the upper mold as shown in FIG. A molded body element in which the entire size of × 5.0 mm × 2.0 mm was reduced to a molding density of 2.71 g / cm 3 was formed. The other production conditions were the same as in the example.

(比較例2)
図1、2のように凹断面金型内へのニオブ粉末の供給量を140mgとし、図3のように上金型とともに陽極リードワイヤーを供給し、横方向から加圧して、図11のような4.0mm×5.0mm×2.0mmの、全体を成形密度3.51g/cmの高密度に成形した成形体素子を形成した。なお、その他の作製条件は、実施例と同様とした。
(Comparative Example 2)
As shown in FIGS. 1 and 2, the supply amount of niobium powder into the concave cross-section mold is 140 mg, and the anode lead wire is supplied together with the upper mold as shown in FIG. A compact element of 4.0 mm × 5.0 mm × 2.0 mm, which was molded as a whole with a molding density of 3.51 g / cm 3 , was formed. The other production conditions were the same as in the example.

(比較例3)
図1、2のように、左右パンチで区切られた溝幅4.0mm、深さ5.0mmの凹断面金型をニオブ粉末28mgで満たし、図3のように上金型とともに陽極リードワイヤーを供給し、図4のように横方向から加圧して、4.0mm×5.0mm×0.4mmの成形密度3.57g/cmの高密度の内層を形成した。
次に、図5のようにニオブ粉末86mgを追加供給し、図6のように横方向から加圧して、成形密度2.69g/cmの低密度の外層を形成し、図12のような2層構造の4.0mm×5.0mm×2.0mmの成形体素子を形成した。なお、その他の作製条件は、実施例と同様とした。
(Comparative Example 3)
As shown in FIGS. 1 and 2, a concave cross-sectional mold having a groove width of 4.0 mm and a depth of 5.0 mm separated by left and right punches is filled with 28 mg of niobium powder, and the anode lead wire is used together with the upper mold as shown in FIG. As shown in FIG. 4, pressure was applied from the lateral direction to form a high-density inner layer having a molding density of 3.57 g / cm 3 of 4.0 mm × 5.0 mm × 0.4 mm.
Next, 86 mg of niobium powder is additionally supplied as shown in FIG. 5 and pressed from the lateral direction as shown in FIG. 6 to form a low-density outer layer with a molding density of 2.69 g / cm 3 , as shown in FIG. A molded element of 4.0 mm × 5.0 mm × 2.0 mm having a two-layer structure was formed. The other production conditions were the same as in the example.

実施例、比較例1〜3の焼結体素子についてそれぞれ陽極ワイヤーとの接合強度、焼結体素子の破断強度を測定し、ワイヤー引張強度および素子強度とした。   About the sintered compact element of an Example and Comparative Examples 1-3, the joining strength with an anode wire and the breaking strength of a sintered compact element were measured, respectively, and it was set as wire tensile strength and element strength.

次に、焼結体素子に誘電体酸化皮膜を形成後、10%リン酸水溶液中、21Vの電圧を印加して2分間充電した後、漏れ電流を測定し、液中LCとした。なお、LCは1μF・V当りの値に換算した。その測定結果を表1に示す。   Next, after forming a dielectric oxide film on the sintered body, a voltage of 21 V was applied in a 10% phosphoric acid aqueous solution and charged for 2 minutes, and then the leakage current was measured to obtain LC in liquid. LC was converted to a value per 1 μF · V. The measurement results are shown in Table 1.

さらに、上記誘電体酸化皮膜形成後の素子に、固体電解質層として二酸化マンガンを形成し、その上にグラファイト層、陰極銀層を形成した。陽極リードワイヤーを陽極フレームに溶接し、陰極を接着銀により陰極フレームに接合した後、樹脂により外装し、ニオブコンデンサを作製した。6.3Vの電圧を印加して1分間充電した後の漏れ電流と、バイアス電圧1.5Vにおける静電容量とを測定し、それぞれ組立後のLCおよびCapとした。なお、LCは1μF・V当り、Capは1g当りの値に換算した。その測定結果を表2に示す。   Further, manganese dioxide was formed as a solid electrolyte layer on the element after the dielectric oxide film was formed, and a graphite layer and a cathode silver layer were formed thereon. An anode lead wire was welded to the anode frame, and the cathode was bonded to the cathode frame with adhesive silver, and then packaged with a resin to produce a niobium capacitor. The leakage current after charging for 1 minute by applying a voltage of 6.3 V and the electrostatic capacity at a bias voltage of 1.5 V were measured, and LC and Cap were respectively assembled. LC was converted to a value per 1 μF · V, and Cap was converted to a value per 1 g. The measurement results are shown in Table 2.

Figure 2006080266
Figure 2006080266

Figure 2006080266
Figure 2006080266

表1から明らかなように、実施例は、以下のような効果が得られた。まず、内層を高密度とすることで、ワイヤー引張強度、素子強度が向上し、共に、比較例2の全体を高密度で成形した焼結体素子と同等の強度が得られた。   As is clear from Table 1, the following effects were obtained in the examples. First, by making the inner layer high in density, wire tensile strength and element strength were improved, and the same strength as that of a sintered body element obtained by molding the entire Comparative Example 2 at high density was obtained.

また、漏れ電流特性に関しては、陽極酸化後の液中LCは、実施例および比較例1〜3で差がなかったのに対して、表2から明らかなように、コンデンサ組立後のLCは、実施例が最も良好という結果が得られた。   In addition, regarding the leakage current characteristics, the LC in the liquid after the anodic oxidation was not different between the example and the comparative examples 1 to 3, whereas as apparent from Table 2, the LC after the capacitor assembly was The result that the example was the best was obtained.

さらに、静電容量に関しては、実施例は、比較例1の全体を低密度で成形した焼結体素子に近い、高いCapを得ることができた。   Furthermore, regarding the capacitance, the Example was able to obtain a high Cap that is close to a sintered body element obtained by molding the entire Comparative Example 1 at a low density.

また、実施例は、横方向から成形を行うため、段階的に成形する度に、成形機や金型を変える必要がある縦方向の成形と比較し、工数を削減することができた。   In addition, since the examples are formed from the horizontal direction, the number of man-hours can be reduced as compared with the vertical direction in which the molding machine and the mold need to be changed every time the molding is performed in stages.

ここで、実施例の3層構造成形体素子において、内層と外層はどちらか一方がより高密度であっても良いし、両方が同一密度であっても良い。
そして、上記実施例では弁作用金属としてニオブを用いたが、タンタルを用いても、同様の効果を得ることができる。
Here, in the three-layer structure molded body element of the example, either the inner layer or the outer layer may have a higher density, or both may have the same density.
In the above embodiment, niobium is used as the valve metal, but the same effect can be obtained by using tantalum.

本発明の実施例による成形体素子成形時の粉末供給第1段階の状態図である。FIG. 3 is a state diagram of a first stage of powder supply when forming a molded body element according to an embodiment of the present invention. 図1に示した成形体素子の成形段階の斜視図である。FIG. 2 is a perspective view of a molding stage of the molded body element shown in FIG. 1. 図2に示した成形体素子の陽極リードワイヤー埋設段階の斜視図である。FIG. 3 is a perspective view of an anode lead wire embedding stage of the molded body element shown in FIG. 2. 図1に示した成形体素子の加圧第1段階後の状態図である。FIG. 2 is a state diagram after a first pressurization step of the molded body element shown in FIG. 1. 図4に示した成形体素子成形後の粉末供給第2段階の状態図である。FIG. 5 is a state diagram of a second stage of powder supply after molding the molded body element shown in FIG. 4. 図5に示した成形体素子の加圧第2段階後の状態図である。FIG. 6 is a state diagram after a second pressure stage of the molded body element shown in FIG. 5. 図6に示した成形体素子成形後の粉末供給第3段階の状態図である。FIG. 7 is a state diagram of a third stage of powder supply after molding the molded body element shown in FIG. 6. 図7に示した成形体素子の加圧第3段階後の状態図である。FIG. 8 is a state diagram after a third stage of pressurization of the molded body element shown in FIG. 7. 本発明の実施例により形成された3層構造の成形体素子の断面斜視図である。It is a cross-sectional perspective view of the molded body element of the three-layer structure formed by the Example of this invention. 比較例1の素子全体を成形密度2.71g/cmで低密度成形した成形体素子の断面斜視図である。It is a cross-sectional perspective view of a molded body element obtained by low-density molding of the entire element of Comparative Example 1 at a molding density of 2.71 g / cm 3 . 比較例2の素子全体を成形密度3.51g/cmで高密度成形した成形体素子の断面斜視図である。FIG. 5 is a cross-sectional perspective view of a molded body element obtained by high-density molding of the entire element of Comparative Example 2 at a molding density of 3.51 g / cm 3 . 比較例3の内層を成形密度3.57g/cmの高密度、外層を成形密度2.69g/cmの低密度で成形した2層構造の成形体素子の断面斜視図である。FIG. 5 is a cross-sectional perspective view of a molded body element having a two-layer structure in which the inner layer of Comparative Example 3 is molded at a high density of a molding density of 3.57 g / cm 3 and the outer layer is molded at a low density of a molding density of 2.69 g / cm 3 . 特開平6−176985の、縦方向から成形した3層構造の成形体素子の断面斜視図である。It is a cross-sectional perspective view of the molded body element of the 3 layer structure shape | molded from the vertical direction of Unexamined-Japanese-Patent No. 6-176985.

符号の説明Explanation of symbols

1 凹断面金型
2 粉末供給機1
3 横パンチ
4 弁作用金属粉末
5 上金型
6 陽極リードワイヤー
7 高密度成形層1
8 粉末供給機2
9 低密度成形層
10 高密度成形層2
11 高密度成形層3
1 Concave section mold 2 Powder feeder 1
3 Horizontal punch 4 Valve action metal powder 5 Upper die 6 Anode lead wire 7 High density molding layer 1
8 Powder feeder 2
9 Low density molding layer 10 High density molding layer 2
11 High density molded layer 3

Claims (3)

弁作用金属粉末を加圧成形してなる固体電解コンデンサ素子およびその製造方法において、
弁作用金属粉末を横方向から3回以上加圧成形し、少なくとも2以上の異なる密度の成形体素子とすることを特徴とする固体電解コンデンサ素子およびその製造方法。
In a solid electrolytic capacitor element formed by pressure molding a valve action metal powder and a manufacturing method thereof,
A solid electrolytic capacitor element and a method for producing the same, characterized in that a valve-acting metal powder is pressure-molded three or more times from the lateral direction to form a molded body element having at least two different densities.
請求項1記載の成形体素子と陽極リードワイヤーとを接合する成形体層の成形密度が、該成形体層の外層の成形密度と同一か、または高いことを特徴とする固体電解コンデンサ素子およびその製造方法。   A solid electrolytic capacitor element characterized by having a molding density of a molded body layer for joining the molded body element according to claim 1 and an anode lead wire equal to or higher than a molding density of an outer layer of the molded body layer, and Production method. 請求項1記載の成形体素子が、内層、中間層、外層の3層構造であり、中間層の密度が、内層と外層より低いことを特徴とする固体電解コンデンサ素子およびその製造方法。   2. The solid electrolytic capacitor element according to claim 1, wherein the molded body element has a three-layer structure of an inner layer, an intermediate layer, and an outer layer, and the density of the intermediate layer is lower than that of the inner layer and the outer layer.
JP2004262059A 2004-09-09 2004-09-09 Solid electrolytic capacitor element and its manufacturing method Pending JP2006080266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004262059A JP2006080266A (en) 2004-09-09 2004-09-09 Solid electrolytic capacitor element and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004262059A JP2006080266A (en) 2004-09-09 2004-09-09 Solid electrolytic capacitor element and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006080266A true JP2006080266A (en) 2006-03-23

Family

ID=36159486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004262059A Pending JP2006080266A (en) 2004-09-09 2004-09-09 Solid electrolytic capacitor element and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006080266A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015118901A1 (en) * 2014-02-07 2017-03-23 株式会社村田製作所 Capacitor
JP2018164060A (en) * 2017-03-27 2018-10-18 パナソニックIpマネジメント株式会社 Solid electrolytic capacitor, and mold and method for manufacturing porous sintered product to be used for solid electrolytic capacitor
US10347431B2 (en) * 2015-02-27 2019-07-09 Panasonic Intellectual Property Management Co., Ltd. Solid electrolytic capacitor with porous sintered body as an anode body and manufacturing thereof
JP2019145669A (en) * 2018-02-21 2019-08-29 株式会社トーキン Solid electrolytic capacitor and manufacturing method thereof
WO2022064734A1 (en) * 2020-09-25 2022-03-31 パナソニックIpマネジメント株式会社 Electrolytic capacitor and method for producing same
JP7122642B2 (en) 2018-02-19 2022-08-22 パナソニックIpマネジメント株式会社 Electrolytic capacitor and mold and method for manufacturing porous molded body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113328U (en) * 1988-01-26 1989-07-31
JPH04167512A (en) * 1990-10-31 1992-06-15 Nec Toyama Ltd Manufacture of solid electrolytic capacitor
JPH10233347A (en) * 1997-02-19 1998-09-02 Nec Corp Manufacture of electrolytic capacitor element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113328U (en) * 1988-01-26 1989-07-31
JPH04167512A (en) * 1990-10-31 1992-06-15 Nec Toyama Ltd Manufacture of solid electrolytic capacitor
JPH10233347A (en) * 1997-02-19 1998-09-02 Nec Corp Manufacture of electrolytic capacitor element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015118901A1 (en) * 2014-02-07 2017-03-23 株式会社村田製作所 Capacitor
US10347431B2 (en) * 2015-02-27 2019-07-09 Panasonic Intellectual Property Management Co., Ltd. Solid electrolytic capacitor with porous sintered body as an anode body and manufacturing thereof
CN110246695A (en) * 2015-02-27 2019-09-17 松下知识产权经营株式会社 Solid electrolytic capacitor
JP2018164060A (en) * 2017-03-27 2018-10-18 パナソニックIpマネジメント株式会社 Solid electrolytic capacitor, and mold and method for manufacturing porous sintered product to be used for solid electrolytic capacitor
JP7122642B2 (en) 2018-02-19 2022-08-22 パナソニックIpマネジメント株式会社 Electrolytic capacitor and mold and method for manufacturing porous molded body
JP2019145669A (en) * 2018-02-21 2019-08-29 株式会社トーキン Solid electrolytic capacitor and manufacturing method thereof
WO2022064734A1 (en) * 2020-09-25 2022-03-31 パナソニックIpマネジメント株式会社 Electrolytic capacitor and method for producing same

Similar Documents

Publication Publication Date Title
US6775127B2 (en) Anode member for a solid electrolytic capacitor, method of producing the same and solid electrolytic capacitor using the same
JP2009505405A (en) Improved grooved anode having minimum density gradient and capacitor having the same
JP2008091784A (en) Solid electrolytic capacitor, and its manufacturing method
CA2851777A1 (en) Sintered article and method of making sintered article
JP2006295075A (en) Capacitor element of solid electrolytic capacitor and its manufacturing method
JP2006080266A (en) Solid electrolytic capacitor element and its manufacturing method
JP4776522B2 (en) Solid electrolytic capacitor
JP5340092B2 (en) Solid electrolytic capacitor
JP4999673B2 (en) Solid electrolytic capacitor element and manufacturing method thereof
JP2007311531A (en) Solid electrolytic capacitor
JP2004014667A (en) Solid electrolytic capacitor
JP4398794B2 (en) Manufacturing method of solid electrolytic capacitor
JPH04167512A (en) Manufacture of solid electrolytic capacitor
JP5763932B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2004247410A (en) Solid electrolytic chip capacitor and its manufacturing method
JP4653643B2 (en) Element for solid electrolytic capacitor, solid electrolytic capacitor and method for producing the same
JP2004343096A (en) Positive electrode for solid electrolytic capacitor and its manufacturing method
JP2008034429A (en) Solid electrolytic capacitor
JP4247974B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH04279020A (en) Manufacture of solid electrolytic capacitor
JP2015088656A (en) Solid electrolytic capacitor and manufacturing method thereof
JP5898927B2 (en) Chip type solid electrolytic capacitor
JP3826153B1 (en) Multilayer solid electrolytic capacitor and method for forming cathode lead layer in multilayer solid electrolytic capacitor
JP2792480B2 (en) Method for manufacturing tantalum anode body
JP2003243263A (en) Solid electrolytic capacitor and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406