JPS62277715A - Anode unit for electrolytic capacitor and manufacture of thesame - Google Patents

Anode unit for electrolytic capacitor and manufacture of thesame

Info

Publication number
JPS62277715A
JPS62277715A JP12265286A JP12265286A JPS62277715A JP S62277715 A JPS62277715 A JP S62277715A JP 12265286 A JP12265286 A JP 12265286A JP 12265286 A JP12265286 A JP 12265286A JP S62277715 A JPS62277715 A JP S62277715A
Authority
JP
Japan
Prior art keywords
anode
electrolytic capacitor
anode body
lead
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12265286A
Other languages
Japanese (ja)
Inventor
坂口 憲司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP12265286A priority Critical patent/JPS62277715A/en
Publication of JPS62277715A publication Critical patent/JPS62277715A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 不発明は電解コンデンサ用陽極体およびその製造方法に
関し、特に焼結型の陽極体構造およびその製造方法に関
する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an anode body for an electrolytic capacitor and a manufacturing method thereof, and particularly relates to a sintered anode body structure and a manufacturing method thereof.

〔従来の技術〕[Conventional technology]

一般に[解コンデンサの陽極体としてはタンタル、チタ
ン、ニオブのようないわゆる弁作用金属の微粉末を一定
の形状に加圧成型して得られる成形体を、高温真空中で
焼結して得られる多孔質体が用いられ、この陽極体表面
を電気化学的に酸化して誘電体酸化皮iを形成させた後
、さらにその外側に陰極層を設けてコンデンサ全形成し
ている。
Generally, the anode body of a decomposing capacitor is obtained by press-molding a fine powder of a so-called valve metal such as tantalum, titanium, or niobium into a certain shape under pressure, and then sintering the compact in a high-temperature vacuum. A porous body is used, and after the surface of this anode body is electrochemically oxidized to form a dielectric oxide layer i, a cathode layer is further provided on the outside to form the entire capacitor.

従来、この種の陽極体10゛は、一般に第4図(a)。Conventionally, this type of anode body 10'' is generally shown in FIG. 4(a).

°(b)に示す如く、例えば円柱状の外形形状で、その
中心部に弁作用金属の陽極リード2の一部を埋設した構
造の成形体1を真空焼結して製造されている。
As shown in (b), it is manufactured by vacuum sintering a molded body 1 having, for example, a cylindrical external shape with a part of an anode lead 2 of a valve metal embedded in the center thereof.

すなわち、この陽極体10の製造は第5図に示す如く、
所望する一定形状の内筒部を有するダイス21に弁作用
金属の粉末3全充填するとともに、弁作用金属の陽極リ
ード2の先端部を、粉末3中に埋め込んだ状態で上パン
チ22a1下パンチ22bによ如上下から  だして成
形体lを形成し、その後この成形体1全高温真空中で焼
結して陽極体10を得ている。
That is, the manufacturing of this anode body 10 is as shown in FIG.
The die 21 having an inner cylinder part of a desired constant shape is completely filled with the valve metal powder 3, and the tip of the valve metal anode lead 2 is embedded in the powder 3 with the upper punch 22a1 and the lower punch 22b. A molded body 1 is formed by taking out the molded body 1 from above and below, and then the entire molded body 1 is sintered in a high temperature vacuum to obtain an anode body 10.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の陽極体10の艮造方法においては、陽極
リード2を粉末3中へ導入するため上パンチ22aの中
心部に〜e極リードのガイド孔が開けられておシ、この
ガイド孔の円径と陽極リード2の外径との間には、陽極
リード2および上パンチ22aの機械的な動きを円滑な
らしめるため、若干の隙間をもたせる必要がある。その
ため、成型の際に上パンチ22aの先端部のガイド孔近
傍の粉末3が陽極リード2をガイド孔の隙間に逃げた状
態で加圧成型されるので、蕗4図に示す陽極リードの付
け根2a近傍の成形体1の密度が他の部分と比べて低く
なってしまう。
In the conventional method for manufacturing the anode body 10 described above, in order to introduce the anode lead 2 into the powder 3, a guide hole for the ~e electrode lead is punched in the center of the upper punch 22a, and this guide hole is It is necessary to provide a slight gap between the circular diameter and the outer diameter of the anode lead 2 in order to smooth the mechanical movement of the anode lead 2 and the upper punch 22a. Therefore, during molding, the powder 3 near the guide hole at the tip of the upper punch 22a is pressed and molded with the anode lead 2 escaping into the gap between the guide holes, so the base 2a of the anode lead shown in Fig. The density of the molded body 1 in the vicinity becomes lower than that of other parts.

この陽極リードの付け根2a近傍は、そのため、粉末3
同志の結合が弱く、かかる成形体1を焼結した陽極体を
用いて製品化した場合に、振動、衝撃等の外部からの機
械的なストレスや、温度変化による膨張、収縮により陽
極体粒子同志の結合に損傷を受け、それに伴って損傷箇
所の陽極体粒子上に形成された誘電体酸化皮膜も損傷を
受けるので、漏れ電流の増大や短絡などの、コンデンサ
機能を低下もしくは消失させてしまう欠点があった。
Therefore, the powder 3 is near the base 2a of the anode lead.
Bonds between particles are weak, and when such a molded body 1 is manufactured using a sintered anode body, the particles of the anode body may bond together due to mechanical stress from the outside such as vibration or impact, or expansion or contraction due to temperature changes. As a result, the dielectric oxide film formed on the anode particles in the damaged area is also damaged, resulting in increased leakage current and short circuits, which reduce or eliminate capacitor function. was there.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の目的はかかる従来欠点を除去し、機械的ストレ
ス、熱的ストレスに対し、安定な電解コンデンサ用陽極
体およびその製造方法を提供することにある。
An object of the present invention is to eliminate such conventional drawbacks and to provide an anode body for an electrolytic capacitor that is stable against mechanical stress and thermal stress, and a method for manufacturing the same.

不発明によれば、陽極リードの一部を埋設した弁作用金
属陽極体の陽極リード付け根部分の密度が、他の陽極体
部分に比較して高密度分布を有することを特徴とする電
解コンデンサ用陽極体が得られ、さらに、陽極リード付
け根部分と接する外周に、陽極リードの植立面から突出
する弁作用金属粉末の突設部を有する弁作用金属粉末の
成形体を形成する工程と、上記突設部を成形体内に押込
み加圧成形した後、真空焼結する工程とから成ることを
特徴とする電解コンデンサ用陽極体の製造方法が得られ
る。
According to the invention, there is provided an electrolytic capacitor characterized in that the density at the base of the anode lead of a valve metal anode body in which a part of the anode lead is buried has a higher density distribution than that at other anode body parts. An anode body is obtained, and further a step of forming a molded body of valve metal powder having a protruding portion of valve metal powder protruding from the planting surface of the anode lead on the outer periphery in contact with the root portion of the anode lead; A method for manufacturing an anode body for an electrolytic capacitor is obtained, which comprises the steps of pressing the protrusion into a molded body, press-forming it, and then sintering it in a vacuum.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照し従来例と比較して
説明する。
Embodiments of the present invention will be described below with reference to the drawings and compared with conventional examples.

先ず従来例として第5図に示す構造のダイス21、上パ
ンチ22a及び下パンチ22bft有する成型装置を用
い重f0.646!i のタンタル粉末を第4図(al
の如く円柱状に成型する。このとき陽極リード2として
0.5φのタン強ル線を0.52φの孔径を有する上パ
ンチ22aのリードガイドを用いてタンタル粉末3中に
埋め込み直径4 tm X長さ6.5翼鳳、見掛は密度
811/cd、陽極リード3線の埋め込み長さ5 m 
、陽極リード2の成型体1外部への露出長さ6龍の成形
体1を形成した。
First, as a conventional example, a molding device having a die 21, an upper punch 22a, and a lower punch 22bft having the structure shown in FIG. The tantalum powder of i is shown in Figure 4 (al
Mold into a cylindrical shape as shown. At this time, as the anode lead 2, a tantalum wire of 0.5φ was embedded in the tantalum powder 3 using the lead guide of the upper punch 22a having a hole diameter of 0.52φ, and the wire had a diameter of 4 tm and a length of 6.5 mm. The density is 811/cd, and the embedded length of 3 anode leads is 5 m.
A molded body 1 having an exposed length of six lengths of the anode lead 2 to the outside of the molded body 1 was formed.

次いで、この成形体1を温度1800℃の真空焼結炉中
に入れ30分間真空焼結して陽極体10を得た。
Next, this molded body 1 was placed in a vacuum sintering furnace at a temperature of 1800° C. and vacuum sintered for 30 minutes to obtain an anode body 10.

次いで、この陽極体10′t−電解コンデンサ製造の公
知手段によシ、その表面に誘電体酸化皮膜および陰極層
を設けて、コンデンサ素子を形成し、更に公知の手段に
よる樹脂外装を行って製品化した。
Next, a dielectric oxide film and a cathode layer are provided on the surface of this anode body 10't by a known method for manufacturing electrolytic capacitors to form a capacitor element, and a resin exterior is further applied by a known method to produce a product. It became.

一方、不発明の実施例においては、第3図に示すように
円筒状のダイス11同心円状に二重構造に構成した外部
上パンチ12a、小径の内部上パンチ12b及び下パン
チ12cとを有する成型装置を用いて成型を行う。まず
第1の工程として重ii0.67111のタンタル粉末
をダイス11の内筒部に充填し、第3図(a)に示す如
く外側上パンチ12a及び内部上パンチ12b1下バン
チ12cにより上下から加圧して、第1図に示す円柱状
の成形体1を形成する。この成形体は突設部1aを除い
た円柱状部分の寸法は従来例と同じく直径411jlx
長さ5.5 mxであり、その上面の陽悼リード2の付
け根に直径2 xs X昼さ1絽の突設部を付設する構
造になる。このとき、陽極リード2として従来例と同じ
に0.5φのタンタル線を0.52φの孔径を有する内
部上パンチ12bのリードガイドを通じてメンタル粉末
3中に埋込み、埋込み長さ6n1露出長さ5真禽に調整
した。この成形体1の見掛は密度は従来例と同じ8f/
/crdである。
On the other hand, in the uninvented embodiment, as shown in FIG. 3, a molding having a cylindrical die 11, an outer upper punch 12a concentrically configured in a double structure, an inner upper punch 12b of small diameter, and a lower punch 12c is used. Molding is performed using a device. First, in the first step, tantalum powder with a weight of ii 0.67111 is filled into the inner cylindrical part of the die 11, and as shown in FIG. Thus, a cylindrical molded body 1 shown in FIG. 1 is formed. In this molded body, the dimensions of the cylindrical part excluding the protrusion 1a are the same as the conventional example, with a diameter of 411jlx.
It has a length of 5.5 mx, and has a structure in which a protruding part with a diameter of 2 x s and a length of 1 rug is attached to the base of the memorial reed 2 on its upper surface. At this time, as in the conventional example, a tantalum wire of 0.5φ was embedded as the anode lead 2 in the mental powder 3 through the lead guide of the internal upper punch 12b having a hole diameter of 0.52φ, and the embedded length was 6n1 and the exposed length was 5 mm. Adjusted to poultry. The apparent density of this molded body 1 is 8f/
/crd.

次いで第2の工程として、第3図(b) K示す如く、
内部上パンチ12bによシ加圧し、突出部1’ a f
、その上面が成形体の肩面位置A −A’の位置まで押
込む加圧成形をして突出部1aを成形体1内に埋設し陽
極リードの付け根2aの周辺に成形体の高密度部1bを
形成する。
Next, as the second step, as shown in FIG. 3(b) K,
Pressure is applied by the internal upper punch 12b, and the protruding portion 1' a f
, the protrusion 1a is buried in the molded body 1 by pressure molding until its upper surface is at the shoulder surface position A-A' of the molded body, and a high-density part of the molded body is placed around the base 2a of the anode lead. 1b is formed.

このようにして形成した成形体を従来例と同じ温度18
00’Cの真空焼結炉中で30分間焼結して第2図に示
す円柱状の陽極体10を得た。この陽極体10を研磨し
、各部の密et測定した結果、陽極体の高密度部10a
の密度は平均10.3.!i’z名l。
The molded body thus formed was heated to 18°C, the same temperature as the conventional example.
The cylindrical anode body 10 shown in FIG. 2 was obtained by sintering for 30 minutes in a vacuum sintering furnace at 00'C. As a result of polishing this anode body 10 and measuring the density of each part, the high density part 10a of the anode body
The average density is 10.3. ! i'z name l.

その他の陽極体10部分は従来例の陽極体と同一の8.
7II/iの密度を有していることが明らかとなった。
The other parts of the anode body 10 are the same as those of the conventional anode body.
It became clear that it had a density of 7II/i.

次いで、この陽極体10を従来例と全く同一の公知手段
を用いて電解コンデンサとして製品化した。
Next, this anode body 10 was commercialized as an electrolytic capacitor using the same known means as in the conventional example.

このようにして得られた従来方法による陽極体を用いた
製品100個と不発明方法による陽極体を用いた製品1
00とを低温側−55°C30分、高温側+85℃30
分の温度サイクルを50サイクル実施したときの不良発
生数を第1表に示す。
100 products using the anode bodies obtained by the conventional method and 1 product using the anode bodies produced by the uninvented method.
00 on the low temperature side -55°C for 30 minutes, and on the high temperature side +85°C for 30 minutes.
Table 1 shows the number of defects that occurred when 50 temperature cycles were performed.

第1表 また、これらの裂品各30個に対し、波高値100Gの
鋸歯状衝撃を20回加えたときの不良発生数を第2表に
示す。
Table 1 Also, Table 2 shows the number of defects when 30 pieces of each of these torn pieces were subjected to sawtooth impact with a wave height of 100 G 20 times.

第2表 これらの結果から本発明例による陽極体を用いたものに
おいては、従来例によるものに比べ、熱ストレスに対し
ても、機械的ストレスに対しても強固であり安定してい
ることが明らかであるが、これは従来例によるものの不
良品の不良箇所を詳細に解析した結果、いずれの不良品
もが陽極体IJ−ドの付け根28部分の陽極体の頂面に
誘電体酸化皮膜の損傷が認められることから、本発明に
よる陽極リードの付け根2a部分の為密度化の効果によ
ることが明らかである。
Table 2 These results show that the anode body according to the present invention is stronger and more stable against thermal stress and mechanical stress than the conventional example. It is obvious that this is due to a detailed analysis of the defective parts of conventional defective products, and it was found that all of the defective products had a dielectric oxide film on the top surface of the anode body at the base 28 of the anode body IJ-de. Since the damage is observed, it is clear that this is due to the effect of densification at the base 2a of the anode lead according to the present invention.

〔発明の効果〕〔Effect of the invention〕

以上、本発明法による陽極体を用いた電解コンデンサf
1機械的、熱的ストレスにより損傷を受けやすい陽極リ
ード付け根の部分の密度が高<゛、弁作用金属同志の結
合が強くなるので(1)製品化後に受ける機械的、熱的
ストレスに対して非常に強固である。(11)従って漏
れ電流特性の劣化や、短結故障の発生がない、極めて信
頼性の高い電解コンデンサを提供することができ、その
工業的価値は犬なるものである。
As described above, an electrolytic capacitor f using an anode body according to the method of the present invention
1. The density of the anode lead base, which is easily damaged by mechanical and thermal stress, is high, and the bond between the valve metals becomes strong. Very strong. (11) Therefore, it is possible to provide an extremely reliable electrolytic capacitor that does not cause deterioration in leakage current characteristics or short-circuit failure, and its industrial value is significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b)は本発明の実施例の第1の王
様により得られる成形体の斜視図及び断面図。紀2図(
a) 、 (b)は不発明の実施例により得られる陽極
体の斜視図及び断面図。第3図(al 、 (b)は本
発明の実施例  成型装置の主要部を示す断面図。第4
図(a)。 (blVi従来の陽極体の斜視図及び断面図。第5図は
従来の成型装置の主吸部を示す断面図。 1・・・・・・成形体、1a・・・・・・(成形体の)
突設部、lb 、10a・−・・・・高密度部、2a・
・・・・・陽極リードの付け根、2・−・・・・陽極リ
ード、10・・・・・・陽極体、11.21・・・・・
・ダイス、12a・・・・・・外部上パンチ、12b・
・・・・・内部上パンチ、22a・・・・・・上バンチ
、12c、22b・−・・・・下パンチ。 代理人 弁理士  内 原   音 オ1図    芽2図 (L)             (b )峯3w 第ダ 図 $SmI
FIGS. 1(a) and 1(b) are a perspective view and a sectional view of a molded body obtained by the first embodiment of the present invention. Ki 2 (
a) and (b) are a perspective view and a sectional view of an anode body obtained according to an embodiment of the invention. 3(a) and 3(b) are cross-sectional views showing the main parts of the molding apparatus according to the embodiment of the present invention.
Figure (a). (blVi A perspective view and a cross-sectional view of a conventional anode body. Fig. 5 is a cross-sectional view showing the main suction part of a conventional molding device. 1... Molded object, 1a... (Molded object of)
Projection part, lb, 10a...High density part, 2a.
...Base of anode lead, 2...Anode lead, 10...Anode body, 11.21...
・Dice, 12a...External upper punch, 12b・
...Internal upper punch, 22a...Upper bunch, 12c, 22b...Lower punch. Agent Patent Attorney Uchihara Oto 1 Figure Bud 2 Figure (L) (b) Mine 3w 3rd Figure $SmI

Claims (2)

【特許請求の範囲】[Claims] (1)陽極リードの一部を埋設した弁作用金属粉末陽極
体の、陽極リード付け根部分の陽極体密度が、他の陽極
体部分に比較して高密度分布を有することを特徴とする
電解コンデンサ用陽極体。
(1) An electrolytic capacitor characterized in that, in a valve-action metal powder anode body in which a part of the anode lead is buried, the anode body density at the base of the anode lead has a higher density distribution compared to other anode body parts. anode body.
(2)陽極リードの付け根部分と接する外周に、陽極リ
ードの植立面から突出する弁作用金属粉末の突設部を有
する弁作用金属粉末の成形体を形成する工程と、前記突
設部を加圧し、成形体内に押込み加圧成形した後、真空
焼結する工程とから成ることを特徴とする電解コンデン
サ用陽極体の製造方法。
(2) forming a molded body of valve metal powder having a protrusion of valve metal powder protruding from the planting surface of the anode lead on the outer periphery in contact with the base of the anode lead; 1. A method for manufacturing an anode body for an electrolytic capacitor, comprising the steps of pressurizing, pressing into a molded body, press-forming, and vacuum sintering.
JP12265286A 1986-05-27 1986-05-27 Anode unit for electrolytic capacitor and manufacture of thesame Pending JPS62277715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12265286A JPS62277715A (en) 1986-05-27 1986-05-27 Anode unit for electrolytic capacitor and manufacture of thesame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12265286A JPS62277715A (en) 1986-05-27 1986-05-27 Anode unit for electrolytic capacitor and manufacture of thesame

Publications (1)

Publication Number Publication Date
JPS62277715A true JPS62277715A (en) 1987-12-02

Family

ID=14841276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12265286A Pending JPS62277715A (en) 1986-05-27 1986-05-27 Anode unit for electrolytic capacitor and manufacture of thesame

Country Status (1)

Country Link
JP (1) JPS62277715A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03173413A (en) * 1989-11-30 1991-07-26 Avx Corp Improved tantalum capacitor and its manufacture
JPH08162373A (en) * 1994-11-30 1996-06-21 Seiken:Kk Tantalum capacitor element with lead wire-buried part high in bulk density
US12100561B2 (en) 2020-09-23 2024-09-24 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a deoxidized anode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03173413A (en) * 1989-11-30 1991-07-26 Avx Corp Improved tantalum capacitor and its manufacture
JPH08162373A (en) * 1994-11-30 1996-06-21 Seiken:Kk Tantalum capacitor element with lead wire-buried part high in bulk density
US12100561B2 (en) 2020-09-23 2024-09-24 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a deoxidized anode

Similar Documents

Publication Publication Date Title
US4945452A (en) Tantalum capacitor and method of making same
JPH0697010A (en) Solid tantalum capacitor and its manufacture
JP3516167B2 (en) Manufacturing method of tantalum capacitor chip
JP3535014B2 (en) Electrode for electrolytic capacitor
JPS62277715A (en) Anode unit for electrolytic capacitor and manufacture of thesame
JP2008153589A (en) Solid electrolytic capacitor
JPS62102515A (en) Anode unit for electrolytic capacitor and manufacture of thesame
JP2004014667A (en) Solid electrolytic capacitor
JPH04167512A (en) Manufacture of solid electrolytic capacitor
JPS61128510A (en) Manufacture of anode body for electrolytic capacitor
JP3881481B2 (en) Manufacturing method for solid electrolytic capacitors
JP2006080266A (en) Solid electrolytic capacitor element and its manufacturing method
JPH09120935A (en) Tantalum solid-state electrolytic capacitor
JPH04279020A (en) Manufacture of solid electrolytic capacitor
JP2792480B2 (en) Method for manufacturing tantalum anode body
JPH0269923A (en) Manufacture of anode for solid electrolytic capacitor
JPS6051254B2 (en) Manufacturing method of solid electrolytic capacitor
JPH03215923A (en) Anode body for solid electrolytic capacitor and manufacture thereof
JPH10163074A (en) Method and apparatus for compact molding porous chip body for capacitor element in solid electrolytic capacitor
JPH05166684A (en) Manufacture of solid electrolytic capacitor element, and solid electrolytic capacitor element manufactured by this method, and capacitor device having this solid electrolytic capacitor element
JP2001118750A (en) Solid electrolytic capacitor
CN116190110A (en) Preparation method of chip solid electrolytic capacitor
JP3067900B2 (en) Chip type tantalum solid electrolytic capacitor
JP3055466B2 (en) Manufacturing method of chip type solid electrolytic capacitor
JPS6149812B2 (en)