JP2908830B2 - Manufacturing method of electrolytic capacitor - Google Patents

Manufacturing method of electrolytic capacitor

Info

Publication number
JP2908830B2
JP2908830B2 JP2085738A JP8573890A JP2908830B2 JP 2908830 B2 JP2908830 B2 JP 2908830B2 JP 2085738 A JP2085738 A JP 2085738A JP 8573890 A JP8573890 A JP 8573890A JP 2908830 B2 JP2908830 B2 JP 2908830B2
Authority
JP
Japan
Prior art keywords
concentration
electrolytic capacitor
potassium
present
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2085738A
Other languages
Japanese (ja)
Other versions
JPH03284820A (en
Inventor
純一 室井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP2085738A priority Critical patent/JP2908830B2/en
Publication of JPH03284820A publication Critical patent/JPH03284820A/en
Application granted granted Critical
Publication of JP2908830B2 publication Critical patent/JP2908830B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、タンタルの弁作用金属粉末の成形体を使用
した電解コンデンサの製造方法に関し、特に、弁作用金
属粉末の組成を改良した技術に係る。
Description: FIELD OF THE INVENTION The present invention relates to a method for manufacturing an electrolytic capacitor using a compact of a valve metal powder of tantalum, and more particularly to a technique for improving the composition of the valve metal powder. Related.

[従来の技術] 一般に、電解コンデンサは、弁作用金属粉末の成形体
を真空焼結した焼結体の表面上に酸化皮膜の誘電体層を
設け、この誘電体層に密着するように、二酸化マンガン
層、グラファイト層、銀ペースト層などを順次被覆して
陰極とした構成を有している。
[Prior Art] Generally, an electrolytic capacitor is provided with a dielectric layer of an oxide film on a surface of a sintered body obtained by vacuum sintering a molded body of a valve metal powder, and a dioxide layer is formed so as to be in close contact with the dielectric layer. It has a configuration in which a manganese layer, a graphite layer, a silver paste layer, and the like are sequentially coated to form a cathode.

このような電解コンデンサの具体的な製造方法を以下
に詳述する。
A specific method for manufacturing such an electrolytic capacitor will be described in detail below.

まず、平均粒子径が数μmの弁作用金属粉末と同種の
金属線を植立しながら、同粉末を所定の形状・寸法に加
圧、成形して成形体とした後、この成形体を、1×10-4
mmHg以下の真空中にて、1600〜1800℃で15〜30分間焼結
して、焼結体を形成する。
First, while embedding a metal wire of the same type as the valve metal powder having an average particle diameter of several μm, pressing the powder into a predetermined shape and dimensions to form a compact, and then forming the compact, 1 × 10 -4
Sintering is performed at 1600 to 1800 ° C. for 15 to 30 minutes in a vacuum of not more than mmHg to form a sintered body.

次に、この焼結体に、リン酸水溶液などの電解質中で
陽極化成を施し、焼結体表面に誘電体層となる酸化皮膜
を形成し、陽極化成素子を得る。
Next, the sintered body is anodized in an electrolyte such as an aqueous phosphoric acid solution to form an oxide film serving as a dielectric layer on the surface of the sintered body, thereby obtaining an anodized element.

続いて、この陽極化成素子に硝酸マンガン液を含浸さ
せ、この含浸させた硝酸マンガン液を熱分解すると同時
に焼付け、陽極化成素子の表面に二酸化マンガン層を形
成する。その後、グラファイト層、銀ペースト層を順次
形成し、陰極リード線となる適当な金属をはんだ若しく
は導電性接着剤などを用いて接続し、樹脂などで補強し
てコンデンサを完成する。
Subsequently, the anodized element is impregnated with a manganese nitrate solution, and the impregnated manganese nitrate solution is thermally decomposed and baked to form a manganese dioxide layer on the surface of the anodized element. Thereafter, a graphite layer and a silver paste layer are sequentially formed, and an appropriate metal serving as a cathode lead wire is connected using a solder or a conductive adhesive, and reinforced with a resin or the like to complete a capacitor.

[発明が解決しようとする課題] しかしながら、上述したような方法で製造してなる電
解コンデンサには、以下に述べるような問題点があっ
た。
[Problems to be Solved by the Invention] However, the electrolytic capacitor manufactured by the above-described method has the following problems.

すなわち、電解コンデンサには、破壊電圧が高く、漏
れ電流が小さいことが望まれるが、弁作用金属粉末に含
まれた弁作用金属以外の元素(金属や酸素、水素などの
非金属を総称して不純物と称する)が陽極酸化され難い
ために、誘電体層となる酸化皮膜を形成する際に、これ
らの不純物によって酸化皮膜が形成され難くなる。この
結果、酸化皮膜の欠陥部が増大し、酸化皮膜形成後の外
部ストレスにより酸化皮膜に亀裂が生じるなどして、漏
れ電流が増大し、耐電圧が劣化してしまう欠点があっ
た。これに対し、不純物の含有量を少なくして漏れ電流
を低減し、耐電圧劣化を防止することが要求されるが、
これらの点について格段の効果が得られる程度に不純物
全体の含有量を低減することは難しく、結局漏れ電流の
増大や耐電圧劣化を防止することはできなかった。
That is, an electrolytic capacitor is desired to have a high breakdown voltage and a small leakage current, but elements other than the valve action metal contained in the valve action metal powder (metals, oxygen, non-metals such as hydrogen, etc. are collectively referred to). (Referred to as impurities) is unlikely to be anodized, so that when forming an oxide film to be a dielectric layer, these impurities make it difficult to form an oxide film. As a result, the number of defective portions of the oxide film increases, and cracks occur in the oxide film due to external stress after the formation of the oxide film. Thus, there is a defect that the leakage current increases and the withstand voltage deteriorates. On the other hand, it is required to reduce the leakage current by reducing the content of impurities and prevent the withstand voltage from deteriorating.
In these respects, it is difficult to reduce the total content of impurities to such an extent that a remarkable effect can be obtained, and as a result, it was not possible to prevent an increase in leakage current or deterioration in withstand voltage.

本発明は、以上のような従来技術の課題を解決するた
めに提案されたものであり、その目的は、漏れ電流が小
さく、耐電圧劣化を防止した高品質の電解コンデンサを
得ることができるような、優れた電解コンデンサの製造
方法を提供することである。
The present invention has been proposed to solve the above-described problems of the related art, and an object of the present invention is to provide a high-quality electrolytic capacitor having a small leakage current and preventing withstand voltage deterioration. It is an object of the present invention to provide an excellent method for manufacturing an electrolytic capacitor.

[課題を解決するための手段] 以上のような目的に対して、本発明者は、弁作用金属
粉末に含まれる各種の不純物のうち、比較的調整の可能
なカリウムとナトリウムの濃度に着目し、これらの濃度
を適宜変更して多種類の電解コンデンサを製造した。そ
して、これら多種類の電解コンデンサの特性を比較検討
したところ、カリウムの濃度を一定の低い濃度の範囲内
とし、且つカリウムとナトリウムを一定の濃度以下とし
た場合に、酸化皮膜の欠陥部を減少させ、酸化皮膜にお
ける亀裂の発生を防止でき、これによって、漏れ電流を
格段に低減でき、耐電圧劣化を防止できることが判明し
た。本発明は、このような実験結果に基づき、提案され
たものである。
[Means for Solving the Problems] For the above-described objects, the present inventors have focused on the concentrations of potassium and sodium which can be relatively adjusted among various impurities contained in the valve metal powder. Various types of electrolytic capacitors were manufactured by appropriately changing these concentrations. When comparing the characteristics of these various types of electrolytic capacitors, when the concentration of potassium is within a certain low concentration range and the concentration of potassium and sodium is not more than a certain concentration, the defect of the oxide film is reduced. As a result, it has been found that the occurrence of cracks in the oxide film can be prevented, whereby the leakage current can be remarkably reduced and the withstand voltage deterioration can be prevented. The present invention has been proposed based on such experimental results.

すなわち、本発明による電解コンデンサの製造方法
は、弁作用金属粉末を成形して成形体とし、この成形体
を高温度、高真空中で焼結して焼結体を形成し、この焼
結体を陽極体として、その表面上に、誘電体層となる酸
化皮膜を形成して陽極化成素子を得る電解コンデンサの
製造方法において、弁作用金属粉末として、その中に含
有されるナトリウム、カリウムの濃度が、カリウムの濃
度のみで5〜10ppmであり、且つカリウムとナトリウム
を加えた総濃度が15ppm以下であるものを使用すること
を特徴としている。
That is, the method of manufacturing an electrolytic capacitor according to the present invention comprises forming a valve body metal powder into a compact, sintering the compact at high temperature and high vacuum to form a sintered body, In the method of manufacturing an electrolytic capacitor for obtaining an anodized element by forming an oxide film serving as a dielectric layer on the surface thereof as an anode body, the concentration of sodium and potassium contained therein as valve action metal powder However, it is characterized in that one having a potassium concentration of only 5 to 10 ppm and a total concentration of potassium and sodium of 15 ppm or less is used.

[作用] 以上のような構成を有する本発明の作用は次の通りで
ある。
[Operation] The operation of the present invention having the above-described configuration is as follows.

すなわち、弁作用金属粉末として、その中に含有され
るナトリウム、カリウムの濃度が、カリウムの濃度のみ
で5〜10ppmであり、これにナトリウムを加えた総濃度
が15ppm以下であるものを使用することにより、酸化皮
膜の欠陥部を減少させ、酸化皮膜形成後の外部ストレス
による酸化皮膜の亀裂の発生を防止できるため、漏れ電
流を格段に低減でき、耐電圧劣化を防止できる。
That is, as the valve metal powder, the concentration of sodium and potassium contained therein is 5 to 10 ppm only in the concentration of potassium, and the total concentration of sodium added to the powder is 15 ppm or less. Accordingly, the number of defects in the oxide film can be reduced, and the occurrence of cracks in the oxide film due to external stress after the formation of the oxide film can be prevented. Therefore, the leakage current can be significantly reduced, and the withstand voltage deterioration can be prevented.

[実施例] 本発明による電解コンデンサの製造方法の作用効果を
より具体的に明示するために、従来の4種類の不純物濃
度を有するタンタル粉末を使用して陽極化成素子(従来
品、ロットA〜D)を形成すると共に、本発明による2
種類の不純物濃度を有するタンタル粉末を使用して陽極
化成素子(本発明品、ロットE,F)を形成し、漏れ電流
試験を行った。
[Examples] In order to more specifically clarify the operation and effect of the method for manufacturing an electrolytic capacitor according to the present invention, anodized elements (conventional products, lots A to A) were manufactured using tantalum powder having four types of conventional impurity concentrations. D) and 2 according to the invention
Anodizing elements (products of the present invention, lots E and F) were formed using tantalum powders having various impurity concentrations, and a leakage current test was performed.

すなわち、まず、第1表に示すような異なる不純物
(ナトリウムNa、カリウムK)濃度をそれぞれ有する6
種類のタンタル粉末を使用し、重量1g、直径1.0mm、密
度5.0g/cm3に成形し、その中に直径0.5mmのタンタル線
を植立させて成形体とし、この成形体を、1×10-6Torr
の真空中で、1500℃または1600℃にて30分間焼結し、タ
ンタル焼結体を得た。続いて、このタンタル焼結体を、
90℃のリン酸電解質中において、化成電圧100V、化成時
間2時間で化成処理してその表面に酸化皮膜を形成し、
その後、常温のリン酸水溶液中において、測定電圧70V
を印加し、3分後の漏れ電流を測定したところ、第1表
及び第1図に示すような結果が得られた。なお、第1図
において縦軸は漏れ電流、横軸は焼結温度を示してい
る。
That is, first, each of the impurities having different impurity (sodium Na, potassium K) concentrations as shown in Table 1 is used.
Using a type of tantalum powder, a weight of 1 g, a diameter of 1.0 mm, a density of 5.0 g / cm 3 and a 0.5 mm diameter tantalum wire are planted therein to form a molded body. 10 -6 Torr
In a vacuum at 1500 ° C. or 1600 ° C. for 30 minutes to obtain a tantalum sintered body. Then, this tantalum sintered body is
In a 90 ° C phosphoric acid electrolyte, a chemical conversion treatment is performed at a chemical conversion voltage of 100 V and a chemical conversion time of 2 hours to form an oxide film on its surface.
Then, in a phosphoric acid aqueous solution at room temperature, the measurement voltage was 70 V
Was applied, and the leakage current after 3 minutes was measured. The results shown in Table 1 and FIG. 1 were obtained. In FIG. 1, the vertical axis indicates the leakage current, and the horizontal axis indicates the sintering temperature.

この第1表及び第1図から、ナトリウムとカリウムの
濃度と、漏れ電流との間に相関があることは明らかであ
り、特に、本発明に従って、カリウムの濃度のみで5〜
10ppmとし、これにナトリウムを加えた総濃度を15ppm以
下としてなる本発明品E,Fは、これらの総濃度が15ppmを
越える従来品A〜Dに対して、漏れ電流が大幅に低減し
ている。特に、低温焼結(1500℃焼結)品において、従
来品A〜Dの漏れ電流がいずれも10μA/gをはるかに越
え、極めて大きいのに対し、本発明品E,Fにおいては、
4.3〜6.1μA/gと、小さい漏れ電流しか生じていない。
これらの結果は、カリウムの濃度のみで5〜10ppmと
し、これにナトリウムを加えた総濃度を15ppm以下とし
た弁作用金属粉末を使用することによる本発明の作用効
果を実証するものである。
It is apparent from Table 1 and FIG. 1 that there is a correlation between the sodium and potassium concentrations and the leakage current, and in particular, according to the present invention, the potassium concentration alone is 5 to 5.
The products E and F of the present invention, in which the total concentration of sodium added to 10 ppm and sodium added thereto is 15 ppm or less, have significantly reduced leakage current compared to the conventional products A to D whose total concentration exceeds 15 ppm. . In particular, in the low-temperature sintering (1500 ° C. sintering) products, the leakage currents of the conventional products A to D are all much larger than 10 μA / g, while the products E and F of the present invention are extremely large.
Only a small leakage current of 4.3 to 6.1 μA / g occurs.
These results demonstrate the effect of the present invention by using a valve metal powder having a potassium concentration of 5 to 10 ppm and a total concentration of sodium added to 15 ppm or less.

また、コンデンサ用タンタル粉末の、CV積が12000CV/
gのタンタル粉末において、ナトリウム及びカリウムの
総濃度が31ppm(従来の不純物濃度)と13ppm(本発明に
よる不純物濃度)の2種類のタンタル粉末を使用し、陽
極化成素子を形成した後、陰極層を形成し、従来のタン
タル粉末を使用してなる固体電解コンデンサ(従来品)
と、本発明によるタンタル粉末を使用してなる固体電解
コンデンサ(本発明品)を、以下のように製造した。
Also, the CV product of tantalum powder for capacitors is 12000 CV /
g of tantalum powder, two kinds of tantalum powder having a total concentration of sodium and potassium of 31 ppm (conventional impurity concentration) and 13 ppm (impurity concentration according to the present invention) are used to form an anodized element, and then the cathode layer is formed. A solid electrolytic capacitor formed using conventional tantalum powder (conventional product)
And a solid electrolytic capacitor (product of the present invention) using the tantalum powder according to the present invention was manufactured as follows.

すなわち、まず、以上のような2種類のタンタル粉末
を使用し、厚さ1.5mm、高さ3.5mm、幅2.0mmの角型の形
状に成形し、この中に、直径0.3mmのタンタルリード線
を植立させて成形体とし、この成形体に、1×10-6Torr
の真空中で、1550℃、30分間の真空焼結を行った。続い
て、この焼結体を、60℃のリン酸水溶液中において、化
成電圧70V、化成時間3時間で化成処理してその表面に
酸化皮膜を形成する。その後、二酸化マンガン層、グラ
ファイト層、銀ペースト層を順次形成し、陰極リードと
して洋白リードフレームを使用し、スポット溶接によっ
て陰極部を接続すると共に、導電性接着剤によって陰極
部を接続し、最終的にトランスファ・モールドによりエ
ポキシ樹脂にて外装を施し、ナトリウム及びカリウムの
総濃度が31ppmのタンタル粉末を使用してなる固体電解
コンデンサ(従来品)と、13ppmのタンタル粉末を使用
してなる固体電解コンデンサ(本発明品)を完成した。
First, using the above two types of tantalum powder, form into a square shape with a thickness of 1.5 mm, a height of 3.5 mm, and a width of 2.0 mm. Was implanted into a molded body, and the molded body was 1 × 10 −6 Torr
Vacuum sintering was performed at 1550 ° C. for 30 minutes in the vacuum. Subsequently, the sintered body is subjected to a chemical conversion treatment in a phosphoric acid aqueous solution at 60 ° C. for a chemical conversion voltage of 70 V and a chemical formation time of 3 hours to form an oxide film on its surface. Thereafter, a manganese dioxide layer, a graphite layer, and a silver paste layer are sequentially formed, a nickel-white lead frame is used as a cathode lead, the cathode is connected by spot welding, and the cathode is connected by a conductive adhesive. A solid electrolytic capacitor (conventional product) using a tantalum powder with a total concentration of sodium and potassium of 31 ppm, and a solid electrolytic capacitor using a tantalum powder with a total concentration of 31 ppm. The capacitor (product of the present invention) was completed.

これらの固体電解コンデンサについて、熱処理とし
て、270℃、10秒のはんだ浸漬を施した後、各試料につ
いて、120Hzにおける容量変化率(%)、1kHzにおける
損失角の正接(%)、及び漏れ電流(μA)の測定試験
を行い、それぞれの特性の経時変化を調べたところ、第
2図(本発明品)及び第3図(従来品)に示すような結
果が得られた。なお、この測定試験における各試料内容
及び試験条件は、以下の第2表に示す通りである。
After subjecting these solid electrolytic capacitors to heat treatment at 270 ° C. for 10 seconds as a heat treatment, for each sample, the capacitance change rate (%) at 120 Hz, the loss tangent (%) at 1 kHz, and the leakage current ( μA), and the change over time of each characteristic was examined. As a result, the results shown in FIG. 2 (product of the present invention) and FIG. 3 (conventional product) were obtained. The contents and test conditions of each sample in this measurement test are as shown in Table 2 below.

この第2表及び第2図、第3図から、カリウムの濃度
のみで5〜10ppmとし、これにナトリウムを加えた総濃
度を15ppm以下としてなる本発明品は、これらの総濃度
が15ppmを越える従来品に対して、漏れ電流が大幅に低
減していることは明らかであり、ここでもまた、本発明
の作用効果が実証されている。
According to Table 2 and FIGS. 2 and 3, the product of the present invention in which the concentration of potassium alone is 5 to 10 ppm and the total concentration of sodium added to this is 15 ppm or less, the total concentration of these exceeds 15 ppm It is clear that the leakage current is significantly reduced as compared with the conventional product, and the effect of the present invention is also demonstrated here.

なお、図表には示していないが、本発明品の耐電圧劣
化を調べたところ、従来品に比べてほぼ問題にならない
程度のわずかな劣化しか確認されなかった。
Although not shown in the table, when the withstand voltage deterioration of the product of the present invention was examined, only a slight deterioration that was almost insignificant as compared with the conventional product was confirmed.

ところで、本発明は前記実施例に限定されるものでは
なく、ナトリウム及びカリウムの含有濃度は、請求の範
囲の記載に従って適宜変更可能であり、その場合にも同
様の効果を得られる。また、本発明を適用するコンデン
サの形状や定格も適宜選択可能である。
By the way, the present invention is not limited to the above-mentioned embodiment, and the contents of sodium and potassium can be appropriately changed according to the description in the claims, and the same effects can be obtained in that case. Further, the shape and rating of the capacitor to which the present invention is applied can be appropriately selected.

[発明の効果] 以上説明した通り、本発明の電解コンデンサの製造方
法においては、ナトリウム及びカリウムの含有濃度に着
目し、一定の濃度に調整することのみによって、容易且
つ確実に酸化皮膜の欠陥部を減少させ、酸化皮膜形成後
の外部ストレスによる酸化皮膜の亀裂の発生を防止でき
るため、従来に比べて格段に漏れ電流が小さく、耐電圧
劣化を防止し得るような高品質の電解コンデンサを提供
することができる。
[Effects of the Invention] As described above, in the method for manufacturing an electrolytic capacitor of the present invention, attention is paid to the concentration of sodium and potassium, and only by adjusting the concentration to a constant concentration, the defective portion of the oxide film can be easily and reliably formed. To provide a high quality electrolytic capacitor that can significantly reduce the leakage current and prevent the withstand voltage from deteriorating compared to the conventional type because it can reduce the occurrence of cracks in the oxide film due to external stress after the oxide film is formed. can do.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、従来のタンタル粉末を使用して形成した陽極
化成素子A〜Dと、本発明の電解コンデンサの製造方法
によるタンタル粉末を使用して形成した陽極化成素子E,
Fとにおいて、各素子A〜Fの焼結温度に対する漏れ電
流(μA/g)を示すグラフ、第2図及び第3図は、本発
明方法によるタンタル粉末を使用して製造した固体電解
コンデンサ(第2図)と従来のタンタル粉末を使用して
製造した固体電解コンデンサ(第3図)の特性の経時変
化をそれぞれ示すグラフであり、各図共、(A)は120H
zにおける容量変化率(%)、(B)は1kHzにおける損
失角の正接(%)、(C)は漏れ電流(μA)を示して
いる。
FIG. 1 shows anodizing elements A to D formed using conventional tantalum powder and anodizing elements E, E formed using tantalum powder according to the method for manufacturing an electrolytic capacitor of the present invention.
2A and 2B are graphs showing leakage current (μA / g) with respect to the sintering temperature of each of the devices A to F. FIGS. 2 and 3 show solid electrolytic capacitors (tantalum powders) manufactured using tantalum powder according to the method of the present invention. FIG. 2 is a graph showing changes over time in characteristics of a solid electrolytic capacitor (FIG. 3) manufactured by using a conventional tantalum powder. FIG.
The capacitance change rate (%) at z, (B) shows the tangent (%) of the loss angle at 1 kHz, and (C) shows the leakage current (μA).

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】弁作用金属粉末を成形して成形体とし、こ
の成形体を高温度、高真空中で焼結して焼結体を形成
し、この焼結体を陽極体として、その表面上に、誘電体
層となる酸化皮膜を形成して陽極化成素子を得る電解コ
ンデンサの製造方法において、 前記弁作用金属粉末として、その中に含有されるナトリ
ウム、カリウムの濃度が、カリウムの濃度のみで5〜10
ppmであり、且つカリウムとナトリウムを加えた総濃度
が15ppm以下であるものを使用することを特徴とする電
解コンデンサの製造方法。
1. A valve body metal powder is formed into a compact, and the compact is sintered at a high temperature and a high vacuum to form a sintered body. In the method for producing an electrolytic capacitor for obtaining an anodized element by forming an oxide film serving as a dielectric layer thereon, the concentration of sodium and potassium contained therein as the valve metal powder is only the concentration of potassium. 5-10
A method for producing an electrolytic capacitor, characterized in that the concentration is 15 ppm or less and the total concentration of potassium and sodium is 15 ppm or less.
JP2085738A 1990-03-30 1990-03-30 Manufacturing method of electrolytic capacitor Expired - Fee Related JP2908830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2085738A JP2908830B2 (en) 1990-03-30 1990-03-30 Manufacturing method of electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2085738A JP2908830B2 (en) 1990-03-30 1990-03-30 Manufacturing method of electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH03284820A JPH03284820A (en) 1991-12-16
JP2908830B2 true JP2908830B2 (en) 1999-06-21

Family

ID=13867183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2085738A Expired - Fee Related JP2908830B2 (en) 1990-03-30 1990-03-30 Manufacturing method of electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2908830B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106206018B (en) * 2016-06-27 2018-06-29 中国振华(集团)新云电子元器件有限责任公司 A kind of electrolytic capacitor is electrochemically formed device systems

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0756860B2 (en) * 1989-04-11 1995-06-14 エルナー株式会社 Tantalum solid electrolytic capacitor
JPH0756861B2 (en) * 1989-04-14 1995-06-14 エルナー株式会社 Tantalum solid electrolytic capacitor

Also Published As

Publication number Publication date
JPH03284820A (en) 1991-12-16

Similar Documents

Publication Publication Date Title
US6261434B1 (en) Differential anodization process for electrolytic capacitor anode bodies
US20040016978A1 (en) Electrolytic capacitor and a fabrication method therefor
EP2343716A1 (en) Method for manufacturing capacitor element
US6835225B2 (en) Niobium sintered body, production method therefor, and capacitor using the same
EP0166205B1 (en) Method of producing electrolytic capacitor with al-ti anode body
CN1883021B (en) Solid electrolyte capacitor
US6809919B2 (en) Capacitor
JP2908830B2 (en) Manufacturing method of electrolytic capacitor
JP4454526B2 (en) Solid electrolytic capacitor and manufacturing method thereof
EP2461337A1 (en) Manufacturing method for solid electrolytic capacitor
JPH08330191A (en) Solid electrolytic capacitor and its manufacture
JP4803741B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0239417A (en) Manufacture of electrolytic capacitor
JP2885101B2 (en) Manufacturing method of electrolytic capacitor
US3649880A (en) Solid electrolytic capacitor having a titanium-zirconium alloy electrode
JP2008205190A (en) Solid electrolytic capacitor and its manufacturing method
JP2004018966A (en) Method for forming titanium oxide coating film and titanium electrolytic capacitor
JP2000286154A (en) Manufacture of solid-state electrolytic capacitor
US3222751A (en) Preanodization of tantalum electrodes
JPH07230937A (en) Solid electrolytic capacitor
JP3503971B2 (en) Manufacturing method of capacitor element
JP2001155965A (en) Manufacturing method of solid electrolytic capacitor
JPH05182869A (en) Solid electrolytic capacitor and manufacture thereof
JPH02256224A (en) Manufacture of electrolytic capacitor
JP3454733B2 (en) Method for manufacturing solid electrolytic capacitor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees