JPH02256224A - Manufacture of electrolytic capacitor - Google Patents

Manufacture of electrolytic capacitor

Info

Publication number
JPH02256224A
JPH02256224A JP7894589A JP7894589A JPH02256224A JP H02256224 A JPH02256224 A JP H02256224A JP 7894589 A JP7894589 A JP 7894589A JP 7894589 A JP7894589 A JP 7894589A JP H02256224 A JPH02256224 A JP H02256224A
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
concentration
phosphorus
oxide film
contained
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7894589A
Other languages
Japanese (ja)
Inventor
Junichi Muroi
室井 純一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP7894589A priority Critical patent/JPH02256224A/en
Publication of JPH02256224A publication Critical patent/JPH02256224A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To acquire an electrolytic capacitor of high quality having a small leak current by restricting a phosphorus concentration which is contained by valve action metal powders not exceeding 40ppm. CONSTITUTION:Valve action metal powders containing phosphorus whose concentration is restricted not exceeding 40ppm is used. Since an effect of the concentration of contained phosphorus upon a tantalum solid state electrolytic capacitor is very great, cracks of an oxide film caused by an external stress after oxide film formation can be prevented by reducing the concentration of contained phosphorus. Increase of a leak current and deterioration of breakdown strength can be according prevented, thereby improving reliability of an electrolytic capacitor.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、タンタルの弁作用金属粉末成形体を使用した
電解コンデンサの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing an electrolytic capacitor using a tantalum valve metal powder compact.

[従来の技術] 一般に、電解コンデンサは、弁作用金属粉末の成形体を
真空焼結した焼結体の表面上に、酸化皮膜の誘電体層を
設け、この誘電体層に密着するように、順次、二酸化マ
ンガン層、グラファイト層、銀ペースト層などを被着し
て陰極とするコンデンサである。
[Prior Art] In general, electrolytic capacitors include a dielectric layer of an oxide film provided on the surface of a sintered body obtained by vacuum sintering a molded body of valve metal powder, and a dielectric layer of an oxide film so as to be in close contact with the dielectric layer. It is a capacitor in which a manganese dioxide layer, a graphite layer, a silver paste layer, etc. are sequentially deposited to form a cathode.

この様な電解コンデンサの構成を以下に詳述する。即ち
、平均粒子径が数μmの弁作用金属粉に、陽極のリード
線を構成する弁作用金属粉末と同種の金属線を植立しな
がら、同粉末を所定の形状、寸法に加圧、成形した後、
IXlo−4mmHg以下の真空度で、1600〜18
00°Cで、15〜30分間焼結して焼結体を形成する
The structure of such an electrolytic capacitor will be described in detail below. In other words, a metal wire of the same type as the valve metal powder constituting the lead wire of the anode is planted on a valve metal powder with an average particle diameter of several μm, and the powder is pressed and molded into a predetermined shape and size. After that,
IXlo-1600-18 at vacuum level below 4mmHg
Sinter at 00°C for 15-30 minutes to form a sintered body.

次に、焼結体表面に誘電体層となる酸化皮膜を、リン酸
水溶液などの電解質中で、陽極化成によって形成する。
Next, an oxide film that will become a dielectric layer is formed on the surface of the sintered body by anodization in an electrolyte such as an aqueous phosphoric acid solution.

次いで、二酸化マンガン層を、素子に含浸させた硝酸マ
ンガン液を熱分解すると同時に、前記陽極化成素子の表
面上に焼付は形成する。
Next, a manganese dioxide layer is formed on the surface of the anodized element at the same time as the manganese nitrate solution with which the element is impregnated is thermally decomposed.

その後、順次、グラファイト層、銀ペースト層を形成し
、陰極リード線となる適当な金属を半田もしくは導電性
接着剤などを用いて接続し、樹脂などで補強してコンデ
ンサを完成する。
After that, a graphite layer and a silver paste layer are sequentially formed, and a suitable metal that will become the cathode lead wire is connected using solder or conductive adhesive, and reinforced with resin or the like to complete the capacitor.

[発明が解決しようとする課題] しかしながら、上述した様な従来の電解コンテンサにお
いては、以下に述べる様な問題点があった。
[Problems to be Solved by the Invention] However, the conventional electrolytic capacitor as described above has the following problems.

即ち、上述した様な電解コンデンサは、破壊電圧が高く
、漏れ電流が小さいことが望まれ、この目的を達成する
ために、特に弁作用金属以外の元素(不純物と称し、金
属、非金属、酸素、水素を総称する)の含有量を少なく
することが重要である。なぜならば、弁作用金属以外の
元素は、陽極酸化されにくいため、これらの不純物によ
って酸化皮膜が形成されにくくなり、漏れ電流が増大す
るといった欠点があるためである。
In other words, electrolytic capacitors such as those described above are desired to have high breakdown voltage and low leakage current. It is important to reduce the content of hydrogen (generic term for hydrogen). This is because elements other than the valve metal are difficult to be anodized, so these impurities make it difficult to form an oxide film, resulting in an increase in leakage current.

本発明は、以上の様な問題点を解消するために提案され
たもので、その目的は、漏れ電流の小さい、高品質の電
解コンデンサを得ることのできる電解コンデンサの製造
方法を提供することにある。
The present invention was proposed to solve the above-mentioned problems, and its purpose is to provide a method for manufacturing an electrolytic capacitor that can produce a high-quality electrolytic capacitor with low leakage current. be.

[課題を解決するための手段] 本発明の電解コンデンサの製造方法は、弁作用金属粉末
として、その中に含有される燐濃度を40PPM以下に
抑えたものを用いたことを特徴とするものである。
[Means for Solving the Problems] The method for manufacturing an electrolytic capacitor of the present invention is characterized in that a valve metal powder containing phosphorus concentration of 40 PPM or less is used. be.

[作用] 本発明の電解コンデンサの製造方法によれば、弁作用金
属粉末中に含有される燐濃度を40PPM以下に抑える
ことにより、酸化皮膜の欠陥部を減少させ、酸化皮膜に
亀裂が生じることを防止できる。
[Function] According to the method for manufacturing an electrolytic capacitor of the present invention, by suppressing the phosphorus concentration contained in the valve metal powder to 40 PPM or less, defects in the oxide film are reduced and cracks are not generated in the oxide film. can be prevented.

[実施例] 以下、本発明の一実施例を第1図乃至第4図に基づいて
具体的に説明する。
[Example] Hereinafter, an example of the present invention will be specifically described based on FIGS. 1 to 4.

本実施例の構成* 本実施例の電解コンデンサにおいては、弁作用金属粉末
として、その中に含まれる燐濃度を40PPM以下に抑
えたものを使用する。
Structure of this embodiment* In the electrolytic capacitor of this embodiment, a valve metal powder containing phosphorus concentration of 40 PPM or less is used.

本実施例の作用* この様な構成を有する本実施例の電解コンデンサの効果
を調べるために、以下に述べる様な実験を行った。即ち
、化成皮膜形成後の漏れ電流特性を調べるために、燐濃
度を変えたタンタル粉末を、厚さ1.5mm、高さ3.
5mm、幅2.0mmに成形し、その中に0,3φのタ
ンタル線を植立させ、成形素子としたタンタルペレット
を、1×1O−6Torrの真空度で、1550°C1
30分焼結を行った。この様にして得られたタンタルペ
レットを、40°C260°C190°Cのリン酸電解
質中で、化成電圧100V、化成時間3時間で酸化皮膜
を形成し、その後、常温のリン酸水溶液中において、4
11定電圧70Vを印加、2分後の漏れ電流を測定した
Effects of this Example* In order to investigate the effects of the electrolytic capacitor of this example having such a configuration, the following experiment was conducted. That is, in order to investigate the leakage current characteristics after the formation of a chemical conversion film, tantalum powder with different phosphorus concentrations was placed in a 1.5 mm thick and 3.5 mm high layer.
The tantalum pellets were molded into a size of 5 mm and a width of 2.0 mm, into which a 0.3φ tantalum wire was planted, and used as a molded element.
Sintering was performed for 30 minutes. The tantalum pellets obtained in this way were formed into an oxide film in a phosphoric acid electrolyte at 40°C, 260°C, and 190°C at a formation voltage of 100V and a formation time of 3 hours, and then placed in a phosphoric acid aqueous solution at room temperature. 4
11 A constant voltage of 70 V was applied, and the leakage current was measured after 2 minutes.

その結果を第1図及び第2図に示した。即ち、第1図に
示した様に、燐濃度が70PPM付近に変曲点があるこ
とが判明し、また、燐濃度が50PPM以下においては
、漏れ電流に大きな影響を与えないという結果が得られ
た。また、第2図に示した様に、燐濃度が70PPM以
下のものにおいては、化成液の温度に左右されることは
少なく、特に、43PPM以下のものにおいては、漏れ
電流に大きな影響を与えないという結果が得られた。
The results are shown in FIGS. 1 and 2. In other words, as shown in Figure 1, it was found that there was an inflection point near the phosphorus concentration of 70 PPM, and the results showed that the leakage current was not significantly affected when the phosphorus concentration was 50 PPM or less. Ta. In addition, as shown in Figure 2, when the phosphorus concentration is 70 PPM or less, it is not affected by the temperature of the chemical solution, and in particular, when the phosphorus concentration is 43 PPM or less, it does not have a large effect on the leakage current. The result was obtained.

次に、化成後陰極層を形成し、製品化した固体電解コン
デンサについて説明する。
Next, a solid electrolytic capacitor manufactured by forming a cathode layer after chemical formation will be described.

即ち、コンデンサ用タンタル粉末のC■積が、1200
0CV/gのタンタル粉末において、燐濃度が40PP
M及び70PPMの2種類について比較を行った。この
場合の固体電解コンデンサの製造条件は、まず、厚さ1
.5mm、高さ3゜5mm、幅2.0mm、タンタルリ
ード線0.3φで、タンクルペレットを角型の形状に成
形し、これをlX1O−6Torrの真空度で、155
0℃、30分の真空焼結を行った。この焼結体を、60
℃のリン酸水溶液中で化成電圧70V、化成時間3時間
で化成処理し、酸化皮膜を形成し、その後、二酸化マン
ガン層、グラファイト層、銀ペースト層などを形成し、
陰極リードとして、洋白リードフレーム上に陽極はスポ
ット溶接、陰極部は導電性接着剤によって接続、その後
、トランスファモールドによりエポキシ樹脂にて外装を
施し、固体電解コンデンサを製造した。
That is, the C product of tantalum powder for capacitors is 1200
In tantalum powder of 0CV/g, phosphorus concentration is 40PP
Two types, M and 70PPM, were compared. In this case, the manufacturing conditions for the solid electrolytic capacitor are as follows:
.. 5mm, height 3°5mm, width 2.0mm, and tantalum lead wire 0.3φ, a tankle pellet was formed into a square shape, and this was heated under a vacuum of 1×1 O-6 Torr to 155
Vacuum sintering was performed at 0°C for 30 minutes. This sintered body was
A chemical conversion treatment is performed in a phosphoric acid aqueous solution at a temperature of 70 V for a formation time of 3 hours to form an oxide film, and then a manganese dioxide layer, a graphite layer, a silver paste layer, etc. are formed.
As a cathode lead, the anode was spot welded onto a nickel silver lead frame, the cathode was connected with conductive adhesive, and then covered with epoxy resin by transfer molding to produce a solid electrolytic capacitor.

この様な電解コンデンサについて、以下の処理を施した
各試料について、120Hz容量における容量変化率(
%)、IKHz損失における損失角の正装(%)、漏れ
電流(μA)の測定を行い、特性の変化を調べた。
Regarding such electrolytic capacitors, the capacitance change rate at 120Hz capacity (
%), formal loss angle (%) at IKHz loss, and leakage current (μA) were measured to examine changes in characteristics.

なお、測定に用いた各試料の処理条件は、以下に示す通
りである。
Note that the processing conditions for each sample used in the measurement are as shown below.

(従来のタンタル粉末) 含有燐濃度ニア0PPM 試料定格: 16V−6,8μF 試験条件:270°C−10s半田浸漬試料数:n=1
7 [試料番号コ    し処理方法] 1        未処理 2        熱処理 3         PCT2 4         PCT4 5         PCT6 6         PCTI 0時間 0時間 0時間 00時間 *熱処理;270℃の半田に10s浸漬*PCT :1
21℃、2気圧、湿度95〜100%の高温、高圧、高
湿中に放置する。
(Conventional tantalum powder) Phosphorus concentration near 0 PPM Sample rating: 16V-6,8μF Test conditions: 270°C - 10s solder immersion number of samples: n=1
7 [Sample number processing method] 1 Untreated 2 Heat treated 3 PCT2 4 PCT4 5 PCT6 6 PCTI 0 hours 0 hours 0 hours 00 hours *Heat treatment; Immersed in solder at 270°C for 10 seconds *PCT: 1
Leave it in a high temperature, high pressure, and high humidity environment of 21°C, 2 atm, and 95 to 100% humidity.

(改良後のタンタル粉末) 含有燐濃度:4QPPM 試料定格: 16V−6,8μF 試、験条件:270°C−10s半田浸漬試料数: n
=16 [試料番号] [処理方法] 未処理 熱処理 PCT20CT 20時間0時間 PCT60CT 60時間00時間 *熱処理:270℃の半田に10s浸漬*PCT:12
1℃、2気圧、湿度95〜100%の高温、高圧、高湿
中に放置する。
(Tantalum powder after improvement) Concentration of phosphorus: 4QPPM Sample rating: 16V-6,8μF Test, test conditions: 270°C - 10s solder immersion Number of samples: n
=16 [Sample number] [Treatment method] Untreated heat treated PCT20CT 20 hours 0 hours PCT60CT 60 hours 00 hours *Heat treatment: Immersed in solder at 270°C for 10 seconds *PCT: 12
Leave it in a high temperature, high pressure, and high humidity environment of 1°C, 2 atm, and 95 to 100% humidity.

以上の結果を第3図〜第5図 (従来例) 及び第 6図〜第8図(改良例)に示した。即ち、改良例である
含有燐濃度が40PPMのタンタル粉末においては、従
来例の70PPMのタンタル粉末を用いたものに比べて
、高温、高圧、高湿度中に長時間放置した場合において
も、漏れ電流の劣化が小さいことが判明した。
The above results are shown in FIGS. 3 to 5 (conventional example) and FIGS. 6 to 8 (improved example). In other words, the improved tantalum powder with a phosphorus concentration of 40 PPM has a lower leakage current than the conventional tantalum powder with a 70 PPM concentration even when left in high temperature, high pressure, and high humidity for a long time. It was found that the deterioration was small.

この様に含有燐濃度がタンタル固体電解コンデンサに与
える影響は非常に大きく、そのため、含有燐濃度を低減
することによって、酸化皮膜形成後の外部ストレスによ
る酸化皮膜の亀裂の発生を防ぐことができ、また、それ
に伴ない、漏れ電流の増加や耐電圧劣化を防ぐことがで
きるで、電解コンデンサの信頼性を大幅に向上できる。
As described above, the phosphorus concentration has a very large effect on tantalum solid electrolytic capacitors. Therefore, by reducing the phosphorus concentration, it is possible to prevent cracks in the oxide film caused by external stress after the oxide film is formed. Additionally, it is possible to prevent an increase in leakage current and deterioration of withstand voltage, thereby greatly improving the reliability of the electrolytic capacitor.

[発明の効果] 以上の通り、本発明によれば、弁作用金属粉末として、
その中に含有される燐濃度を40PPM以下に抑えたも
のを用いるという簡単な手段によって、漏れ電流の少な
い、高品質の電解コンデンサを提供することができる。
[Effects of the Invention] As described above, according to the present invention, as a valve metal powder,
A high-quality electrolytic capacitor with low leakage current can be provided by simply using a capacitor whose phosphorus concentration is suppressed to 40 PPM or less.

【図面の簡単な説明】[Brief explanation of drawings]

ル粉末を用いた場合のPCT条件下における特性をそれ
ぞれ示す特性図、第6図乃至第8図は本発明によるタン
タル粉末を用いた場合のPCT条件下における特性をそ
れぞれ示す特性図である。
Figures 6 to 8 are characteristic diagrams showing the characteristics under PCT conditions when tantalum powder according to the present invention is used, respectively.

Claims (1)

【特許請求の範囲】 弁作用金属粉末の成形体を、高温度・高真空中で焼結し
て得られる焼結体を陽極体とする電解コンデンサの製造
方法において、 前記弁作用金属粉末として、その中に含有される燐濃度
を40PPM以下に抑えたものを用いたことを特徴とす
る電解コンデンサの製造方法。
[Scope of Claim] A method for manufacturing an electrolytic capacitor in which an anode body is a sintered body obtained by sintering a molded body of valve metal powder in a high temperature and high vacuum, as the valve metal powder, A method for manufacturing an electrolytic capacitor, characterized in that the phosphorus concentration contained therein is suppressed to 40 PPM or less.
JP7894589A 1989-03-29 1989-03-29 Manufacture of electrolytic capacitor Pending JPH02256224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7894589A JPH02256224A (en) 1989-03-29 1989-03-29 Manufacture of electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7894589A JPH02256224A (en) 1989-03-29 1989-03-29 Manufacture of electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH02256224A true JPH02256224A (en) 1990-10-17

Family

ID=13676028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7894589A Pending JPH02256224A (en) 1989-03-29 1989-03-29 Manufacture of electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH02256224A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08162372A (en) * 1994-12-08 1996-06-21 Nec Corp Manufacture of electrolytic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08162372A (en) * 1994-12-08 1996-06-21 Nec Corp Manufacture of electrolytic capacitor

Similar Documents

Publication Publication Date Title
JP3070408B2 (en) Solid electrolytic capacitor and method of manufacturing the same
US7489498B2 (en) Capacitors and methods for manufacturing the same
EP2290664A1 (en) Solid electrolytic capacitor and method of manufacturing thereof
JP4850127B2 (en) Solid electrolytic capacitor and manufacturing method thereof
EP2892065B1 (en) Method for manufacturing solid electrolytic capacitor, and solid electrolytic capacitor
JP2009505413A (en) Solid capacitor and manufacturing method thereof
JP2010192831A (en) Solid electrolytic capacitor
JPH0239417A (en) Manufacture of electrolytic capacitor
US8257449B2 (en) Method for manufacturing niobium solid electrolytic capacitor
JP4803741B2 (en) Manufacturing method of solid electrolytic capacitor
JPH02256224A (en) Manufacture of electrolytic capacitor
CA1041620A (en) Cathode electrode for an electrical device and method
JPH0434915A (en) Manufacture of solid electrolytic capacitor
JP2000068160A (en) Ta SOLID ELECTROLYTIC CAPACITOR AND ITS MANUFACTURE
JP2908830B2 (en) Manufacturing method of electrolytic capacitor
JPH02267915A (en) Manufacture of solid-state electrolytic capacitor
JP2004018966A (en) Method for forming titanium oxide coating film and titanium electrolytic capacitor
CN112490004B (en) Method for manufacturing electrolytic capacitor
JP2001155965A (en) Manufacturing method of solid electrolytic capacitor
JP2008205190A (en) Solid electrolytic capacitor and its manufacturing method
JP2847001B2 (en) Manufacturing method of solid electrolytic capacitor
JP2004111598A (en) Anode body for capacitor and method of manufacturing the same
KR900007684B1 (en) Solid electrolytic condenser
JPH02166715A (en) Solid electrolytic capacitor
JP2005311014A (en) Niobium solid electrolytic capacitor