JP4776453B2 - Solid electrolytic capacitor element and manufacturing method thereof - Google Patents

Solid electrolytic capacitor element and manufacturing method thereof Download PDF

Info

Publication number
JP4776453B2
JP4776453B2 JP2006174707A JP2006174707A JP4776453B2 JP 4776453 B2 JP4776453 B2 JP 4776453B2 JP 2006174707 A JP2006174707 A JP 2006174707A JP 2006174707 A JP2006174707 A JP 2006174707A JP 4776453 B2 JP4776453 B2 JP 4776453B2
Authority
JP
Japan
Prior art keywords
metal powder
solid electrolytic
valve metal
layer
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006174707A
Other languages
Japanese (ja)
Other versions
JP2008004854A (en
Inventor
成友 大原
政幸 若月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Capacitor Ltd
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP2006174707A priority Critical patent/JP4776453B2/en
Publication of JP2008004854A publication Critical patent/JP2008004854A/en
Application granted granted Critical
Publication of JP4776453B2 publication Critical patent/JP4776453B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は、タンタル、ニオブ等弁作用金属粉末を使用した固体電解コンデンサ用素子とその製造方法に関するものである。   The present invention relates to an element for a solid electrolytic capacitor using a valve action metal powder such as tantalum or niobium and a method for producing the same.

従来、弁作用金属粉末、例えばタンタル粉末を用いた固体電解コンデンサの製造方法としては、バインダーを混合したタンタル粉末にタンタルワイヤーを埋め込み加圧成形し、成形体を作製する。
この成形体を焼結することで、タンタルワイヤーとタンタル粉末が接合される。その後、陽極酸化して、酸化皮膜層を形成し、硝酸マンガン水溶液への含浸、熱分解を複数回繰り返す熱分解法による二酸化マンガンやモノマー溶液への含浸、重合による導電性高分子からなる固体電解質層を形成した後、カーボン層、銀層からなる陰極引出層を順次形成する。
続いて、タンタルワイヤーと陽極リードフレームとを溶接し、陰極引出層と陰極リードフレームとを導電性接着剤を介して接続した後、トランスファーモールドにより樹脂外装する。この際、前記焼結によるタンタルワイヤーとタンタル粉末との接合が十分でないと、熱的、物理的ストレスにより、ショート不良率の増加、または漏れ電流特性の悪化が起きる問題があった。
Conventionally, as a method for producing a solid electrolytic capacitor using valve action metal powder, for example, tantalum powder, a tantalum wire is embedded in a tantalum powder mixed with a binder and pressure-molded to produce a molded body.
By sintering this molded body, the tantalum wire and the tantalum powder are joined. Then, anodized to form an oxide film layer, impregnation into manganese nitrate aqueous solution, impregnation into manganese dioxide or monomer solution by pyrolysis method that repeats thermal decomposition multiple times, solid electrolyte consisting of conductive polymer by polymerization After forming the layers, a cathode lead layer composed of a carbon layer and a silver layer is sequentially formed.
Subsequently, the tantalum wire and the anode lead frame are welded, the cathode lead layer and the cathode lead frame are connected to each other through a conductive adhesive, and then resin-coated with a transfer mold. At this time, if the joining of the tantalum wire and the tantalum powder by the sintering is not sufficient, there is a problem that the short-circuit defect rate increases or the leakage current characteristic deteriorates due to thermal and physical stress.

この焼結によるタンタルワイヤーとタンタル粉末との接合強度を上げる方法として、バインダーを混合したタンタル粉末を加圧して成形体を形成し、その後、焼結して得られた焼結体にタンタルワイヤーを溶接する方法がある(例えば、特許文献1参照)。
特開昭53−99456号広報
As a method of increasing the bonding strength between the tantalum wire and the tantalum powder by this sintering, a tantalum powder mixed with a binder is pressed to form a molded body, and then the tantalum wire is applied to the sintered body obtained by sintering. There is a welding method (see, for example, Patent Document 1).
JP-A-53-99456

上記特許文献1記載の方法では、成形体の成形密度が低いと、それに伴い焼結体の密度も低くなり、焼結体とタンタルワイヤーとの接合が悪化するため、その後の工程で加わる熱的、物理的ストレスにより、漏れ電流特性の悪化が起きる問題があった。   In the method described in Patent Document 1, if the molding density of the molded body is low, the density of the sintered body also decreases, and the bonding between the sintered body and the tantalum wire deteriorates. There is a problem in that the leakage current characteristic is deteriorated due to physical stress.

一方、上記方法で成形密度を高くし、焼結体の密度を高くすることで、焼結体とタンタルワイヤーとの接合は改善されるが、焼結体細孔の入口が狭くなるため、固体電解質層を形成する際、例えば硝酸マンガン水溶液やモノマー溶液の含浸性が悪くなり、容量出現率、ESR特性が低下するという問題があった。なお、容量出現率の算出式は以下のとおりである。   On the other hand, by increasing the molding density by the above method and increasing the density of the sintered body, the bonding between the sintered body and the tantalum wire is improved. When the electrolyte layer is formed, for example, the impregnation property of a manganese nitrate aqueous solution or a monomer solution is deteriorated, and there is a problem that the capacity appearance rate and the ESR characteristic are lowered. The formula for calculating the capacity appearance rate is as follows.

Figure 0004776453
Figure 0004776453

前記課題を解決するため、本発明の固体電解コンデンサ用素子は、
弁作用金属粉末を加圧して成形体を形成し、該成形体を焼結して得られた多孔質焼結体に弁作用金属ワイヤーを溶接する固体電解コンデンサ用素子において、
前記成形体が、複数の密度の異なる成形層と、前記成形層間に形成された接合用弁作用金属粉末層とを有し、該接合用弁作用金属粉末層の弁作用金属粉末のCV値が、成形層に用いられる弁作用金属粉末のCV値以上であり、
前記弁作用金属ワイヤーと溶接される部分の成形層の密度が、他の成形層より高いことを特徴とする固体電解コンデンサ用素子である。
In order to solve the above problems, the element for a solid electrolytic capacitor of the present invention is:
In an element for a solid electrolytic capacitor in which a valve action metal powder is pressurized to form a molded body, and a valve action metal wire is welded to a porous sintered body obtained by sintering the molded body.
The molded body has a plurality of molded layers having different densities and a valve metal powder layer for bonding formed between the molding layers, and the CV value of the valve metal powder for the valve metal powder layer for bonding is state, and are more CV values of valve metal powder used in the molding layer,
The element for a solid electrolytic capacitor is characterized in that a density of a molding layer in a portion welded to the valve action metal wire is higher than that of another molding layer .

さらに、前記接合用弁作用金属粉末の最大粒子径が、前記成形層に用いられる弁作用金属粉末の平均粒子径以下であることを特徴とする固体電解コンデンサ用素子である。   Furthermore, the element for a solid electrolytic capacitor is characterized in that the maximum particle size of the valve metal powder for bonding is equal to or less than the average particle size of the valve metal powder used for the molding layer.

そして、弁作用金属粉末を加圧して成形体を形成し、該成形体を焼結して得られた多孔質焼結体に弁作用金属ワイヤーを溶接する固体電解コンデンサ用素子の製造方法において、
前記成形体が、複数の密度の異なる成形層と、前記成形層間に形成された接合用弁作用金属粉末層とを有し、該接合用弁作用金属粉末層の弁作用金属粉末のCV値が、前記成形層に用いられる弁作用金属粉末のCV値以上であり、
前記弁作用金属ワイヤーと溶接される部分の成形層の密度が、他の成形層より高く、
前記接合用弁作用金属粉末層は、弁作用金属粉末を有機溶媒にて懸濁し、前記成形体間に保持した後、乾燥し形成されることを特徴とする固体電解コンデンサ用素子の製造方法である。
And in the manufacturing method of the element for solid electrolytic capacitors which pressurizes the valve action metal powder, forms a compact, and welds the valve action metal wire to the porous sintered body obtained by sintering the compact,
The molded body has a plurality of molded layers having different densities and a valve metal powder layer for bonding formed between the molding layers, and the CV value of the valve metal powder for the valve metal powder layer for bonding is not less than the CV value of valve metal powder used in the forming layer,
The density of the molding layer of the portion welded with the valve metal wire is higher than other molding layers,
The joining valve action metal powder layer is formed by suspending the valve action metal powder in an organic solvent, holding between the molded bodies, and drying to form a solid electrolytic capacitor element. is there.

さらに、前記成形層よりCV値の高い弁作用金属粉末の最大粒子径が、前記成形層に用いられる弁作用金属粉末の平均粒子径以下であることを特徴とする固体電解コンデンサ用素子の製造方法である。   Furthermore, the maximum particle diameter of the valve action metal powder having a CV value higher than that of the molding layer is equal to or less than the average particle diameter of the valve action metal powder used in the molding layer. It is.

このように、弁作用金属ワイヤーと溶接する部分の成形層のみ密度を高くすることで、焼結体と弁作用金属ワイヤーとの接合が良く、焼結体全体で十分な細孔を保有することができ、さらに、密度の異なる成形層間を前記成形層の弁作用金属粉末のCV値以上のCV値である接合用弁作用金属で接合することで、漏れ電流特性、容量出現率およびESR特性の優れた固体電解コンデンサ用素子が得られる。   In this way, by increasing the density of only the forming layer of the portion to be welded with the valve metal wire, the sintered body and the valve metal wire can be joined well, and the entire sintered body has sufficient pores. Furthermore, by joining the molding layers having different densities with a joint valve metal having a CV value equal to or higher than the CV value of the valve metal powder of the molding layer, leakage current characteristics, capacity appearance rate, and ESR characteristics can be reduced. An excellent element for a solid electrolytic capacitor can be obtained.

[実施例1]
以下、本発明の実施例1について説明する。
実施例1の固体電解コンデンサ用素子の外観図を図1に示す。まず、CV値100kCVのタンタル粉末にバインダーを混合し、平均粒子径100μmとし、3.5mm×4.5mm×1.0mm、成形密度5.00g/ccの成形体と3.5mm×4.5mm×2.0mm、成形密度6.00g/ccの成形体を加圧成形し、作製した。
[Example 1]
Embodiment 1 of the present invention will be described below.
The external view of the element for solid electrolytic capacitors of Example 1 is shown in FIG. First, a tantalum powder having a CV value of 100 kCV is mixed with a binder to obtain an average particle diameter of 100 μm, a molded body of 3.5 mm × 4.5 mm × 1.0 mm, a molding density of 5.00 g / cc, and 3.5 mm × 4.5 mm. A compact having a size of × 2.0 mm and a molding density of 6.00 g / cc was formed by pressure molding.

続いて、接合用弁作用金属粉末が、最大粒子径が10μmで、CV値が150kCVであるタンタル粉末と、アクリル樹脂、有機溶剤を混合した分散液を作製した。   Subsequently, a dispersion liquid was prepared by mixing a tantalum powder having a maximum particle size of 10 μm and a CV value of 150 kCV, an acrylic resin, and an organic solvent, as the bonding valve action metal powder.

上記2種の成形体の間に、分散液をスプレーにより塗布した後、成形体を重ね合わせ、400℃で分散液中のアクリル樹脂、有機溶剤を蒸発させた後、1300℃で焼結した。さらに、成形密度6.00g/ccの成形体の焼結体部分にタンタルワイヤーを溶接し、1300℃で追加焼結した。   After the dispersion was applied by spraying between the two types of molded bodies, the molded bodies were overlaid, and the acrylic resin and organic solvent in the dispersion were evaporated at 400 ° C., followed by sintering at 1300 ° C. Furthermore, a tantalum wire was welded to a sintered body portion of a molded body having a molding density of 6.00 g / cc, and additional sintering was performed at 1300 ° C.

その後、前記焼結体を陽極酸化して、酸化皮膜層を形成し、硝酸マンガン水溶液への含浸、熱分解を複数回繰り返して二酸化マンガンからなる固体電解質層を形成した後、カーボン層、銀層からなる陰極引出層を順次形成した。
続いて、タンタルワイヤーと陽極リードフレームとを溶接し、陰極引出層と陰極リードフレームとを導電性接着剤を介して接続した後、トランスファーモールドにより樹脂外装し、定格16V−220μFの固体電解コンデンサを100個作製した。
Thereafter, the sintered body is anodized to form an oxide film layer, and after impregnation into a manganese nitrate aqueous solution and thermal decomposition are repeated a plurality of times to form a solid electrolyte layer made of manganese dioxide, a carbon layer, a silver layer A cathode lead layer was sequentially formed.
Subsequently, the tantalum wire and the anode lead frame are welded, the cathode lead layer and the cathode lead frame are connected via a conductive adhesive, and then resin-coated with a transfer mold, and a solid electrolytic capacitor having a rating of 16V-220 μF is obtained. 100 were produced.

[実施例2]
接合用弁作用金属粉末を最大粒子径が100μmのタンタル粉末とした以外は、実施例1と同様の方法で固体電解コンデンサを100個作製した。
[Example 2]
100 solid electrolytic capacitors were produced in the same manner as in Example 1 except that the valving metal powder for bonding was tantalum powder having a maximum particle size of 100 μm.

(比較例1)
接合用弁作用金属粉末を最大粒子径が150μmのタンタル粉末とした以外は、実施例1と同様の方法で固体電解コンデンサを100個作製した。
(Comparative Example 1)
100 solid electrolytic capacitors were produced in the same manner as in Example 1 except that the valving metal powder for bonding was tantalum powder having a maximum particle size of 150 μm.

[実施例3]
接合用弁作用金属粉末をCV値が100kCVのタンタル粉末とした以外は、実施例1と同様の方法で固体電解コンデンサを100個作製した。
[Example 3]
100 solid electrolytic capacitors were produced in the same manner as in Example 1 except that the valving metal powder for bonding was tantalum powder having a CV value of 100 kCV.

(比較例2)
接合用弁作用金属粉末をCV値が70kCVのタンタル粉末とした以外は、実施例1と同様の方法で固体電解コンデンサを100個作製した。
(Comparative Example 2)
100 solid electrolytic capacitors were produced in the same manner as in Example 1 except that the valving metal powder for bonding was tantalum powder having a CV value of 70 kCV.

(比較例3)
成形密度5.00g/ccの成形体と6.00g/ccの成形体とを分散液を介して、重ね合わせた後、焼結し、成形密度5.00g/ccの成形体の焼結体部分にタンタルワイヤーを溶接した以外は、実施例1と同様の方法で固体電解コンデンサを100個作製した。
(Comparative Example 3)
A molded body having a molding density of 5.00 g / cc and a molded body having a molding density of 5.00 g / cc are overlapped with each other through a dispersion and then sintered to form a sintered body of a molded body having a molding density of 5.00 g / cc. 100 solid electrolytic capacitors were produced in the same manner as in Example 1 except that tantalum wire was welded to the part.

[実施例4]
実施例4の固体電解コンデンサ用素子の外観図を図2に示す。まず、平均粒子径100μmのタンタル粉末を用いて、3.5mm×4.5mm×1.0mm、成形密度5.00g/ccの成形体を2個作製し、3.5mm×4.5mm×1.0mm、成形密度6.00g/ccの成形体を1個加圧成形し、作製した。
[Example 4]
The external view of the element for solid electrolytic capacitors of Example 4 is shown in FIG. First, using a tantalum powder having an average particle diameter of 100 μm, two molded bodies having a size of 3.5 mm × 4.5 mm × 1.0 mm and a molding density of 5.00 g / cc were prepared, and 3.5 mm × 4.5 mm × 1. One molded body having a thickness of 0.0 mm and a molding density of 6.00 g / cc was pressure-molded to produce.

その後、図2に示すように6.00g/ccの成形体の両側に、分散液を保持して5.00g/ccの成形体を重ね合わせた以外は、実施例1と同様の方法で固体電解コンデンサを100個作製した。   Thereafter, as shown in FIG. 2, a solid was prepared in the same manner as in Example 1 except that the dispersion was held on both sides of the 6.00 g / cc molded body and the 5.00 g / cc molded body was superposed. 100 electrolytic capacitors were produced.

(比較例4)
5.00g/ccの成形体の両側に、分散液を保持して6.00g/ccの成形体を重ね合わせた以外は、実施例1と同様の方法で固体電解コンデンサを100個作製した。
(Comparative Example 4)
100 solid electrolytic capacitors were produced in the same manner as in Example 1, except that the dispersion was held on both sides of the 5.00 g / cc compact and the 6.00 g / cc compact was superposed.

[実施例5]
実施例5の固体電解コンデンサ用素子の外観図を図3に示す。平均粒子径100μmのタンタル粉末を用いて、3.5mm×3.0mm×3.0mm、成形密度5.00g/ccの成形体と3.5mm×1.5mm×3.0mm、成形密度6.00g/ccの成形体を加圧成形により作製し、分散液を保持して重ね合わせ、成形密度6.00g/ccの成形体にタンタルワイヤーを溶接した以外は、実施例1と同様の方法で固体電解コンデンサを100個作製した。
[Example 5]
The external view of the element for solid electrolytic capacitors of Example 5 is shown in FIG. Using a tantalum powder having an average particle diameter of 100 μm, a molded body of 3.5 mm × 3.0 mm × 3.0 mm and a molding density of 5.00 g / cc, 3.5 mm × 1.5 mm × 3.0 mm, a molding density of 6. A molded body of 00 g / cc was produced by pressure molding, the dispersion was held and overlapped, and the same method as in Example 1 was applied except that a tantalum wire was welded to the molded body having a molding density of 6.00 g / cc. 100 solid electrolytic capacitors were produced.

(比較例5)
比較例5の固体電解コンデンサ用素子の外観図を図3に示す。平均粒子径100μmのタンタル粉末を用いて、3.5mm×1.5mm×3.0mm、成形密度5.00g/ccの成形体と、3.5mm×3.0mm×3.0mm、成形密度6.00g/ccの成形体を加圧成形により作製し、分散液を保持して重ね合わせ、成形密度5.00g/ccの成形体の焼結体部分にタンタルワイヤーを溶接した以外は、実施例1と同様の方法で固体電解コンデンサを100個作製した。
(Comparative Example 5)
The external view of the element for solid electrolytic capacitors of the comparative example 5 is shown in FIG. Using a tantalum powder having an average particle diameter of 100 μm, a molded body of 3.5 mm × 1.5 mm × 3.0 mm and a molding density of 5.00 g / cc, 3.5 mm × 3.0 mm × 3.0 mm, a molding density of 6 A 0.000 g / cc molded body was prepared by pressure molding, the dispersion was held and overlapped, and the tantalum wire was welded to the sintered body portion of the molded body having a molding density of 5.00 g / cc. 100 solid electrolytic capacitors were produced in the same manner as in Example 1.

(従来例1)
従来例1の固体電解コンデンサ用素子の外観図を図4に示す。平均粒子径100μmのタンタル粉末を用いて、3.5mm×4.5mm×3.0mm、成形密度6.00g/ccの成形体を加圧成形し、作製した。
(Conventional example 1)
The external view of the element for solid electrolytic capacitors of the prior art example 1 is shown in FIG. Using a tantalum powder having an average particle diameter of 100 μm, a molded body having a size of 3.5 mm × 4.5 mm × 3.0 mm and a molding density of 6.00 g / cc was formed by pressure molding.

その後、成形体を1300℃で焼結し、焼結体を得た。その後、該焼結体にタンタルワイヤーを溶接し、1300℃で追加焼結した以外は、実施例1と同様の方法で固体電解コンデンサを100個作製した。   Thereafter, the molded body was sintered at 1300 ° C. to obtain a sintered body. Thereafter, 100 solid electrolytic capacitors were produced in the same manner as in Example 1 except that a tantalum wire was welded to the sintered body and additionally sintered at 1300 ° C.

(従来例2)
従来例2の固体電解コンデンサ用素子の外観図を図4に示す。平均粒子径100μmのタンタル粉末を用いて、3.5mm×4.5mm×3.0mm、成形密度5.00g/ccの成形体にタンタルワイヤーを埋設させて加圧成形し、1300℃で焼結した。
(Conventional example 2)
The external view of the element for solid electrolytic capacitors of the prior art example 2 is shown in FIG. Using tantalum powder with an average particle diameter of 100 μm, tantalum wire is embedded in a molded body of 3.5 mm × 4.5 mm × 3.0 mm and a molding density of 5.00 g / cc, pressure-molded, and sintered at 1300 ° C. did.

その後、前記焼結体を用い、実施例1と同様の方法で固体電解コンデンサを100個作製した。   Thereafter, 100 solid electrolytic capacitors were produced in the same manner as in Example 1 using the sintered body.

(従来例3)
従来例3の固体電解コンデンサ用素子の外観図を図4に示す。平均粒子径100μmのタンタル粉末を用いて、3.5mm×4.5mm×3.0mm、成形密度6.00g/ccの成形体にタンタルワイヤーを埋設させて加圧成形し、1300℃で焼結した。
その後、前記成形体を用い、実施例1と同様の方法で固体電解コンデンサを100個作製した。
(Conventional example 3)
The external view of the element for solid electrolytic capacitors of the prior art example 3 is shown in FIG. Using tantalum powder with an average particle diameter of 100 μm, tantalum wire is embedded in a molded body of 3.5 mm × 4.5 mm × 3.0 mm and a molding density of 6.00 g / cc, and pressure-molded, and sintered at 1300 ° C. did.
Thereafter, 100 solid electrolytic capacitors were produced in the same manner as in Example 1 using the molded body.

こうして得られた各々の固体電解コンデンサの漏れ電流値(16V、1分値)、容量出現率(120Hz)、ESR値(100kHz)を測定した平均値を表1に示す。   Table 1 shows an average value of the measured leakage current value (16 V, 1 minute value), capacity appearance rate (120 Hz), and ESR value (100 kHz) of each solid electrolytic capacitor thus obtained.

Figure 0004776453
Figure 0004776453

表1の結果から明らかなように、実施例1〜5は、従来例2、3と比較し、漏れ電流値が低く優れている。これは、タンタルワイヤーと焼結体の接合状態が良いためである。
また、従来例1に比べ、容量出現率が高く、ESR値が低減し、優れている。これは、焼結体全体で十分な細孔を保有することができたためと考えられる。よって、本発明により漏れ電流値、容量出現率、ESR値の優れた固体電解コンデンサ用素子を製造できることが分かる。
As is clear from the results in Table 1, Examples 1 to 5 are excellent in low leakage current values as compared with Conventional Examples 2 and 3. This is because the bonded state between the tantalum wire and the sintered body is good.
Moreover, compared with the prior art example 1, the capacity appearance rate is high and the ESR value is reduced, which is excellent. This is presumably because sufficient pores could be retained in the entire sintered body. Therefore, it turns out that the element for solid electrolytic capacitors excellent in leakage current value, capacity appearance rate, and ESR value can be manufactured by the present invention.

また、実施例1、2と比較例1とを比較すると、比較例1は漏れ電流値が高い。これは、重ね合わせた成形体同士の接合状態が悪いためであると考えられる。よって、接合用弁作用金属粉末の最大粒子径を成形体に用いられる弁作用金属粉末の平均粒子径以下とすることで本発明の効果が得られることが分かる。   Further, when Examples 1 and 2 are compared with Comparative Example 1, Comparative Example 1 has a high leakage current value. This is presumably because the joined state between the stacked molded bodies is poor. Therefore, it turns out that the effect of this invention is acquired by making the maximum particle diameter of the valve action metal powder for joining into below the average particle diameter of the valve action metal powder used for a molded object.

さらに、実施例1、4と比較例2とを比較すると比較例2は漏れ電流値が高い。これは、重ね合わせた成形体の接合状態が悪いためであると考えられる。よって、分散液中の弁作用金属粉末のCV値を前記成形体に用いられる弁作用金属粉末のCV値以上とすることで本発明の効果が得られることが分かる。   Furthermore, when Examples 1 and 4 are compared with Comparative Example 2, Comparative Example 2 has a high leakage current value. This is considered to be because the joined state of the stacked molded bodies is poor. Therefore, it turns out that the effect of this invention is acquired by making CV value of the valve action metal powder in a dispersion liquid into the CV value or more of the valve action metal powder used for the said molded object.

また、比較例3と実施例1を比較すると比較例3は、漏れ電流値が高い。これはタンタルワイヤーと焼結体の接合が悪いためであると考えられる。よって、タンタルワイヤーと溶接する部分の成形体の密度が高い時、溶接部が強固になり、本発明の効果が得られることが分かる。   Moreover, when the comparative example 3 and Example 1 are compared, the comparative example 3 has a high leakage current value. This is thought to be due to poor bonding between the tantalum wire and the sintered body. Therefore, when the density of the molded object of the part welded with a tantalum wire is high, a weld part becomes firm and it turns out that the effect of this invention is acquired.

今回の実施例では,成形体に平均粒子径100μm、CV値100kCVのタンタル粉末を用いたが、これに限るものではない。   In this example, tantalum powder having an average particle diameter of 100 μm and a CV value of 100 kCV was used for the molded body, but this is not restrictive.

今回の実施例では、成形密度が5.00g/ccと6.00g/ccの成形体を作製し重ね合わせたが、これに限るものではない。   In this example, molded bodies having molding densities of 5.00 g / cc and 6.00 g / cc were produced and superimposed, but the present invention is not limited to this.

今回の実施例では、分散液としてアクリル系樹脂、有機溶剤を用いたが、これに限るものではない。   In this example, acrylic resin and organic solvent were used as the dispersion, but the present invention is not limited to this.

今回の実施例では、分散液として最大粒子径10〜100μm、CV値100〜150kCVのタンタル粉末を用いたが、これに限るものではない。   In this example, tantalum powder having a maximum particle size of 10 to 100 μm and a CV value of 100 to 150 kCV was used as the dispersion, but this is not a limitation.

今回の実施例では、図1〜3に示す形状で重ね合わせを行ったが、形状はこれに限るものではない。   In this embodiment, the superposition is performed in the shape shown in FIGS. 1 to 3, but the shape is not limited to this.

実施例1により作製した固体電解コンデンサ用素子の略図を示す。1 shows a schematic diagram of a solid electrolytic capacitor element produced according to Example 1. FIG. 実施例2により作製した固体電解コンデンサ用素子の略図を示す。The schematic of the element for solid electrolytic capacitors produced by Example 2 is shown. 実施例3により作製した固体電解コンデンサ用素子の略図を示す。1 shows a schematic diagram of a solid electrolytic capacitor element produced in Example 3. FIG. 従来例により作製した固体電解コンデンサ用素子の略図を示す。The schematic of the element for solid electrolytic capacitors produced by the prior art example is shown.

符号の説明Explanation of symbols

1 タンタルワイヤー
2 弁作用金属の成形密度が高い焼結体
3 弁作用金属の成形密度が低い焼結体
4 分散液を使用した弁作用金属粉末の焼結体
5 1種類の弁作用金属粉末による焼結体
DESCRIPTION OF SYMBOLS 1 Tantalum wire 2 Sintered body with high molding density of valve action metal 3 Sintered body with low molding density of valve action metal 4 Sintered body of valve action metal powder using dispersion liquid 5 By one type of valve action metal powder Sintered body

Claims (4)

弁作用金属粉末を加圧して成形体を形成し、該成形体を焼結して得られた多孔質焼結体に弁作用金属ワイヤーを溶接する固体電解コンデンサ用素子において、
前記成形体が、複数の密度の異なる成形層と、前記成形層間に形成された接合用弁作用金属粉末層とを有し、該接合用弁作用金属粉末層の弁作用金属粉末のCV値が、成形層に用いられる弁作用金属粉末のCV値以上であり、
前記弁作用金属ワイヤーと溶接される部分の成形層の密度が、他の成形層より高いことを特徴とする固体電解コンデンサ用素子。
In an element for a solid electrolytic capacitor in which a valve action metal powder is pressurized to form a molded body, and a valve action metal wire is welded to a porous sintered body obtained by sintering the molded body.
The molded body has a plurality of molded layers having different densities and a valve metal powder layer for bonding formed between the molding layers, and the CV value of the valve metal powder for the valve metal powder layer for bonding is state, and are more CV values of valve metal powder used in the molding layer,
The element for solid electrolytic capacitors , wherein a density of a molding layer in a portion welded to the valve metal wire is higher than that of other molding layers .
請求項1記載の接合用弁作用金属粉末の最大粒子径が、前記成形層に用いられる弁作用金属粉末の平均粒子径以下であることを特徴とする固体電解コンデンサ用素子。 The element for a solid electrolytic capacitor , wherein the maximum particle diameter of the valve metal powder for bonding according to claim 1 is equal to or less than the average particle diameter of the valve metal powder used for the molding layer . 弁作用金属粉末を加圧して成形体を形成し、該成形体を焼結して得られた多孔質焼結体に弁作用金属ワイヤーを溶接する固体電解コンデンサ用素子の製造方法において、
前記成形体が、複数の密度の異なる成形層と、前記成形層間に形成された接合用弁作用金属粉末層とを有し、該接合用弁作用金属粉末層の弁作用金属粉末のCV値が、前記成形層に用いられる弁作用金属粉末のCV値以上であり、
前記弁作用金属ワイヤーと溶接される部分の成形層の密度が、他の成形層より高く、
前記接合用弁作用金属粉末層は、弁作用金属粉末を有機溶媒にて懸濁し、前記成形体間に保持した後、乾燥し形成されることを特徴とする固体電解コンデンサ用素子の製造方法
In the method for producing a solid electrolytic capacitor element, in which a valve action metal powder is pressurized to form a molded body, and the valve action metal wire is welded to a porous sintered body obtained by sintering the molded body.
The molded body has a plurality of molded layers having different densities and a valve metal powder layer for bonding formed between the molding layers, and the CV value of the valve metal powder for the valve metal powder layer for bonding is , Or more than the CV value of the valve metal powder used in the molding layer,
The density of the molding layer of the portion welded with the valve metal wire is higher than other molding layers,
The joining valve metal powder layer, by suspending the valve metal powder in an organic solvent, after holding between the compact, dry method for producing a device for a solid electrolytic capacitor being formed.
請求項3記載の成形層よりCV値の高い弁作用金属粉末の最大粒子径が、前記成形層に用いられる弁作用金属粉末の平均粒子径以下であることを特徴とする固体電解コンデンサ用素子の製造方法。 The element for a solid electrolytic capacitor , wherein the maximum particle diameter of the valve metal powder having a CV value higher than that of the molded layer according to claim 3 is equal to or less than the average particle diameter of the valve metal powder used in the molded layer . Production method.
JP2006174707A 2006-06-26 2006-06-26 Solid electrolytic capacitor element and manufacturing method thereof Expired - Fee Related JP4776453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006174707A JP4776453B2 (en) 2006-06-26 2006-06-26 Solid electrolytic capacitor element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006174707A JP4776453B2 (en) 2006-06-26 2006-06-26 Solid electrolytic capacitor element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008004854A JP2008004854A (en) 2008-01-10
JP4776453B2 true JP4776453B2 (en) 2011-09-21

Family

ID=39008977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006174707A Expired - Fee Related JP4776453B2 (en) 2006-06-26 2006-06-26 Solid electrolytic capacitor element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4776453B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522162U (en) * 1978-07-28 1980-02-13
US4520430A (en) * 1983-01-28 1985-05-28 Union Carbide Corporation Lead attachment for tantalum anode bodies
JP2527689B2 (en) * 1993-11-01 1996-08-28 ハイメカ株式会社 Method for manufacturing tantalum anode body

Also Published As

Publication number Publication date
JP2008004854A (en) 2008-01-10

Similar Documents

Publication Publication Date Title
JP4836738B2 (en) Manufacturing method of solid electrolytic capacitor
US20110149476A1 (en) Solid electrolytic capacitor and method for producing solid electrolytic capacitor
JP2010153625A (en) Chip-shaped solid electrolytic capacitor and production method thereof
JP3763307B2 (en) Capacitor and its manufacturing method
JP6186584B2 (en) Solid electrolytic capacitor and manufacturing method thereof
US20130083455A1 (en) Solid electrolytic capacitor and method for producing the same
JP5861049B2 (en) Solid electrolytic capacitor and solid electrolytic capacitor manufacturing method
JP5623214B2 (en) Solid electrolytic capacitor
JP4776453B2 (en) Solid electrolytic capacitor element and manufacturing method thereof
WO2005086193A1 (en) Solid electrolytic capacitor, anode used for solid electrolytic capacitor, and method of manufacturing the anode
CN102420053B (en) The manufacture method of solid electrolytic capacitor and solid electrolytic capacitor
JP2010003772A (en) Solid electrolytic capacitor
JP4748726B2 (en) Solid electrolytic capacitor
KR20160074216A (en) Solid Electrolyte Capacitor And Manufacturing Methode Of The Same
JP2011176232A (en) Solid electrolytic capacitor and method for manufacturing the same
JP4430440B2 (en) Manufacturing method of anode body for solid electrolytic capacitor
JP4624017B2 (en) Manufacturing method of solid electrolytic capacitor
JP5763932B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2006080266A (en) Solid electrolytic capacitor element and its manufacturing method
JP4653643B2 (en) Element for solid electrolytic capacitor, solid electrolytic capacitor and method for producing the same
JP2004343096A (en) Positive electrode for solid electrolytic capacitor and its manufacturing method
WO2022091854A1 (en) Electrolytic capacitor
JP5419794B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5358422B2 (en) Solid electrolytic capacitor
JP4574544B2 (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees