JP2010080600A - Chip-shaped solid electrolytic capacitor - Google Patents

Chip-shaped solid electrolytic capacitor Download PDF

Info

Publication number
JP2010080600A
JP2010080600A JP2008245738A JP2008245738A JP2010080600A JP 2010080600 A JP2010080600 A JP 2010080600A JP 2008245738 A JP2008245738 A JP 2008245738A JP 2008245738 A JP2008245738 A JP 2008245738A JP 2010080600 A JP2010080600 A JP 2010080600A
Authority
JP
Japan
Prior art keywords
cathode
end surface
capacitor element
lead frame
bent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008245738A
Other languages
Japanese (ja)
Inventor
Kazuya Iizuka
和也 飯塚
Shuichi Inoue
修一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Electronics Co Ltd
Original Assignee
Hitachi Chemical Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Electronics Co Ltd filed Critical Hitachi Chemical Electronics Co Ltd
Priority to JP2008245738A priority Critical patent/JP2010080600A/en
Publication of JP2010080600A publication Critical patent/JP2010080600A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a chip-type solid electrolytic capacitor which uses a lead frame to mount a square-shaped capacitor element, and whose exterior is covered with resin by a square-shaped resin mold, and in which a lead frame is exposed from an opposed end surface, and which is capable of improving a flow performance of injected resin, alleviating a stress around a corner between a negative electrode surface of connection between a negative electrode terminal of the lead frame and a negative electrode terminal of a capacitor element, and a negative electrode side end surface, and suppressing an increase of a leakage current as a capacitor. <P>SOLUTION: The negative electrode terminal is bent along an end surface opposed to an anode lead from an end surface of a square-shaped capacitor element, and bent and elongated in a vertical direction from the end surface of the capacitor element. A leading part from around the bent part of the negative electrode side end surface of a lead frame to the elongated part in the vertical direction has a width narrower than the negative electrode terminal width, or alternatively has a vent hole at the center. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、リードフレームを用いたチップ形固体電解コンデンサに関するものである。   The present invention relates to a chip-type solid electrolytic capacitor using a lead frame.

従来、タンタルやニオブなどの固体電解コンデンサは、タンタルやニオブのような弁金属粉末を成型して焼結することにより得た焼結体の表面に陽極酸化により誘電体となる酸化皮膜を形成して陽極体とし、この陽極体上に二酸化マンガンや導電性高分子などの固体電解質層とカーボンや銀ペーストなどの集電体から成る陰極層とを積層形成するとともに、前記陽極体から導出された陽極リードを有することにより得られるコンデンサ素子を陽極端子および陰極端子を有するリードフレームに取付けていた。
一般的には、陽極側が溶接で、陰極側は導電ペーストにより接続していた。
Conventionally, solid electrolytic capacitors such as tantalum and niobium have formed an oxide film that becomes a dielectric by anodic oxidation on the surface of a sintered body obtained by molding and sintering a valve metal powder such as tantalum and niobium. The anode body was formed by laminating a solid electrolyte layer such as manganese dioxide or a conductive polymer on the anode body and a cathode layer made of a current collector such as carbon or silver paste, and was derived from the anode body. A capacitor element obtained by having an anode lead was attached to a lead frame having an anode terminal and a cathode terminal.
In general, the anode side is connected by welding, and the cathode side is connected by a conductive paste.

このタイプの固体電解コンデンサに使用されるリードフレームは、平板の金属板を打ち抜いて得られ、陰極端子側と陽極端子側とに分割するが、コンデンサ素子の陰極層と接続する陰極端子の幅は、外部端子部の幅のままの短冊状となっている。また、陽極リードは、陽極体の端面の中央から導出されるコンデンサ素子の構造のため、陽極リードと陰極部底面の距離分だけ陰極端子側を折り曲げ、陰極端子の上面にコンデンサ素子を搭載する構造をとる。そのため陰極端子は、コンデンサ素子の側面から陽極リードとは反対の端面(以下陰極側端面)に沿い折り曲げ(曲げ部A9)、今度は逆方向に、その陰極側端面から垂直方向に折り曲げられ(曲げ部B10)伸びる構造をとる(図3参照)。   The lead frame used in this type of solid electrolytic capacitor is obtained by punching a flat metal plate and divided into a cathode terminal side and an anode terminal side, but the width of the cathode terminal connected to the cathode layer of the capacitor element is The strip has the same width as the external terminal. Also, the anode lead is a capacitor element structure derived from the center of the end face of the anode body, so the cathode terminal side is bent by the distance between the anode lead and the cathode part bottom surface, and the capacitor element is mounted on the upper surface of the cathode terminal Take. Therefore, the cathode terminal is bent from the side surface of the capacitor element along the end surface opposite to the anode lead (hereinafter referred to as the cathode-side end surface) (bending portion A9), and in this case, the cathode terminal is bent in the opposite direction and vertically from the cathode-side end surface (bending). Part B10) Takes an extending structure (see FIG. 3).

そして、リードフレームに取付けられたコンデンサ素子は次に、成形金型にセットされ、成形金型内に加熱した樹脂を注入し樹脂モールドされる。
このとき、樹脂の流れ性を改善して樹脂部に発生するボイドを抑えるために、特許文献1には、図4に示すように、陰極端子の幅Wを、陰極側端面に沿い折り曲げた(曲げ部A9)周辺部分から、その陰極側端面そして、その陰極側端面から垂直方向に折り曲げられ(曲げ部B10)伸びた部分にかけて、陰極端子の外部端子部の幅より狭い幅W1する方法が記載されている。
特開平3−96214号公報
The capacitor element attached to the lead frame is then set in a molding die, and heated resin is injected into the molding die and resin molded.
At this time, in order to improve the flowability of the resin and suppress voids generated in the resin portion, in Patent Document 1, the width W of the cathode terminal is bent along the cathode side end face as shown in FIG. A method is described in which the width W1 is narrower than the width of the external terminal portion of the cathode terminal from the bent portion A9) to the cathode side end surface and from the cathode side end surface to the portion bent vertically (bend portion B10). Has been.
JP-A-3-96214

解決しようとする問題点は、陰極端子を、陰極側端面に沿い折り曲げた(曲げ部A)周辺部分から、その陰極側端面そして、その陰極側端面から垂直方向に折り曲げられ(曲げ部B)伸びた部分にかけて、陰極端子の外部端子部の幅より狭くする特許文献1等の方法は、陰極端子幅を、外部端子部と同じ幅にする従来の方法と同様に、陽極端子―陰極端子方向にストレスが発生した場合、陰極側端面に沿い折り曲げた(曲げ部A)周辺部分とから、その陰極側端面から垂直方向に折り曲げられ(曲げ部B)伸びた部分にかけて、陰極端子には均等にストレスが発生し、陰極側端面に沿い折り曲げた(曲げ部A)部分と、陰極側端面から垂直方向に折り曲げられた(曲げ部B)部分とは同じように折り曲げ角度に変化をもたらす。
ところで、この陰極側端面に沿い折り曲げた(曲げ部A)部分の折り曲げ角度が変化すると、コンデンサ素子側のこの角部周辺分、つまり、陰極端子との接続部分の陰極面と陰極側端面との角部周辺に、特にストレスが集中しやすい。
そのため、コンデンサが高温にさらされると、この角部周辺のストレス部分に、変形や部分剥離などが生じやすい。特に、コンデンサ素子の陰極層の集電体に高分子ペーストを使用し、固体電解質層に導電性高分子を使用し、リードフレームの陰極端子とコンデンサ素子の陰極層の接続に導電高分子ペーストを使用するように、高分子系の材料を使用した場合は顕著で、そのため、その内部部分の焼結体の表面の酸化皮膜の損傷や修復劣化を生じ、コンデンサとして漏れ電流が増化しやすくなる。
また、陰極端子の幅を、陰極側端面に沿い折り曲げた(曲げ部A)周辺部分から、その陰極側端面から垂直方向に折り曲げられ(曲げ部B)伸びた部分にかけて、コンデンサ素子の幅より狭くすれば狭くするほど、陰極端子の端面部分が、コンデンサ素子の陰極端子との接続部分の陰極面と陰極側端面との角部を被覆する面積が減少するために、樹脂モールド時に注入される樹脂により、コンデンサ素子のこの端面を押す力が増加することになり、陰極端子との接続部分の陰極面と陰極側端面との角部周辺部分にストレスがかかりやすい。
The problem to be solved is that the cathode terminal is bent along the cathode side end face (bend portion A), the cathode side end face, and the cathode side end face is bent vertically (bend portion B). In the method of Patent Document 1 or the like in which the width of the cathode terminal is made narrower than the width of the external terminal portion of the cathode terminal, in the same manner as the conventional method of setting the cathode terminal width to the same width as the external terminal portion, When stress occurs, stress is applied evenly to the cathode terminal from the peripheral portion bent along the cathode side end surface (bend portion A) to the portion bent vertically from the cathode side end surface (bend portion B). The bending angle changes in the same manner between the portion bent along the cathode side end face (bending portion A) and the portion bent in the vertical direction from the cathode side end surface (bending portion B).
By the way, when the bending angle of the bent portion (bending portion A) is changed along the cathode side end surface, the portion around the corner on the capacitor element side, that is, the cathode surface and the cathode side end surface of the connection portion with the cathode terminal are formed. Stress tends to concentrate especially around the corners.
Therefore, when the capacitor is exposed to a high temperature, deformation or partial peeling is likely to occur in the stress portion around the corner. In particular, a polymer paste is used for the current collector of the cathode layer of the capacitor element, a conductive polymer is used for the solid electrolyte layer, and a conductive polymer paste is used to connect the cathode terminal of the lead frame and the cathode layer of the capacitor element. As used, it is remarkable when a polymer material is used. For this reason, damage and repair deterioration of the oxide film on the surface of the sintered body in the inner part occur, and the leakage current tends to increase as a capacitor.
Further, the width of the cathode terminal is narrower than the width of the capacitor element from the peripheral portion bent along the cathode side end surface (bending portion A) to the portion bent vertically from the end surface on the cathode side (bending portion B). The narrower the area, the smaller the area of the end face portion of the cathode terminal covering the corner of the cathode face and the end face on the cathode side of the connection portion with the cathode terminal of the capacitor element. As a result, the force pushing the end face of the capacitor element increases, and stress is likely to be applied to the peripheral portion of the corner between the cathode face and the cathode end face of the connection portion with the cathode terminal.

本発明の目的は、注入される樹脂の流れ性を改善しながら、リードフレームの陰極端子とコンデンサ素子の陰極端子との接続部分の陰極面と陰極側端面との角部周辺部分のストレスを緩和し、コンデンサとして漏れ電流が増化を抑えることにある。
The object of the present invention is to relieve stress around the corner between the cathode surface and the cathode side end surface of the connection portion between the cathode terminal of the lead frame and the cathode terminal of the capacitor element while improving the flowability of the injected resin. However, the leakage current as a capacitor is to suppress the increase.

本発明は、上記課題を解決するために、方形のコンデンサ素子を実装するのにリードフレームを用い、方形の樹脂モールドにより樹脂外装し、その対向する端面からリードフレームが露出するチップ型固体電解コンデンサにあって、
前記コンデンサ素子は、弁作用金属よりなる成形体の陽極体の表面に、誘電体酸化被膜と陰極層を順次積層するとともに、前記陽極体の一方の端面から導出された陽極リードを有し、
前記陽極リードと前記リードフレームの陽極端子と、また、前記陰極層の側面部分と前記リードフレームの陰極端子とを接続し、
前記陰極端子は、方形の前記コンデンサ素子の側面から前記陽極リードとは反対側の端面に沿い折り曲げ、前記コンデンサ素子の端面から垂直方向に折り曲げられ伸びていて、前記端面の折り曲げ部周辺部分からその垂直方向に伸びた部分にかけての導出部は、前記陰極端子幅より狭いかまたは中央に抜き穴を設けることを特徴とするチップ型固体電解コンデンサを提供する。
In order to solve the above-mentioned problem, the present invention uses a lead frame to mount a square capacitor element, coats the resin with a square resin mold, and exposes the lead frame from the opposite end face thereof. There,
The capacitor element is formed by sequentially laminating a dielectric oxide film and a cathode layer on a surface of an anode body of a molded body made of a valve metal, and has an anode lead led out from one end face of the anode body,
Connecting the anode lead and the anode terminal of the lead frame, and connecting the side surface portion of the cathode layer and the cathode terminal of the lead frame;
The cathode terminal is bent from the side surface of the square capacitor element along the end surface opposite to the anode lead, and is bent and extended in the vertical direction from the end surface of the capacitor element, from the peripheral portion of the bent portion of the end surface. The lead-out portion extending to the portion extending in the vertical direction is narrower than the cathode terminal width or provided with a punched hole in the center, thereby providing a chip-type solid electrolytic capacitor.

本発明のチップ型固体電解コンデンサの陰極端子は、陽極端子―陰極端子方向にストレスが発生した場合、リードフレームの陰極側端面の折り曲げ部(曲げ部B)周辺部分からその垂直方向に伸びた部分にかけての導出部を、陰極端子幅より狭くするかまたは中央に抜き穴を設けることにより、コンデンサ素子の、陰極接続面と陰極側端面との角部周辺部分のストレスを緩和することができ、コンデンサとして漏れ電流が増化を抑えることができる。
The cathode terminal of the chip-type solid electrolytic capacitor of the present invention is a portion extending in the vertical direction from the peripheral portion of the bent portion (bend portion B) of the cathode side end face of the lead frame when stress occurs in the anode terminal-cathode terminal direction. By narrowing the lead-out part to the width of the cathode terminal or by providing a hole in the center, the stress around the corner of the capacitor element between the cathode connection surface and the cathode side end surface can be alleviated. As a result, an increase in leakage current can be suppressed.

本発明に述べる方形とは、両方に長方形の端面を有する直方体である。また、端面と端面の間には側面を有する。   The square described in the present invention is a rectangular parallelepiped having both rectangular end faces. Further, a side surface is provided between the end surfaces.

本発明に述べるコンデンサ素子は、たとえば、陽極用リードの一端を埋め込んで、タンタルやニオブまたはアルミニウム等の弁作用金属の平均粒径1μm程度の微粉末に、アクリル系樹脂やカンファー等のバインダーを混合した粉末をプレス加圧成形し、次いで真空中において焼結して形成した海綿状の陽極焼結体と、この焼結体に陽極酸化皮膜と、二酸化マンガンや導電性高分子等の固体電解質層と、カーボン層や銀層の陰極層とを順次設けたものである。   In the capacitor element described in the present invention, for example, one end of an anode lead is embedded, and a binder such as acrylic resin or camphor is mixed with fine powder having an average particle diameter of about 1 μm of a valve metal such as tantalum, niobium, or aluminum. A sponge-like anode sintered body formed by press-pressing and then sintering the powder in vacuum, an anodized film on the sintered body, and a solid electrolyte layer such as manganese dioxide or a conductive polymer And a cathode layer such as a carbon layer and a silver layer are sequentially provided.

本発明に述べるリードフレームは、陽極リードを有するコンデンサ素子を実装するもので、厚さが0.07mmから0.2mm程度の板状のものを打ち抜きなどの加工し、陽極端子側と陽極リードを接続し、陰極端子側と陰極層を接続するものである。材質が、42アロイ、銅、銅合金(銅ニッケル合金)または洋白(洋銀)等の金属板が使用でき、特に溶接性、剛性の点で42アロイ、銅合金が使用される。表面の実装面にはハンダめっき、錫めっき、特に銅、銅合金表面にはニッケルとパラジウムそして金の積層めっき等のめっき層を設ける場合もある。
リードフレームは従来と同様、陽極リードと陰極部底面の距離分だけ陰極端子側を折り曲げ、陰極端子の上面にコンデンサ素子を搭載する構造をとる。そのため陰極端子は、コンデンサ素子の側面から陽極リードとは反対の端面に沿い折り曲げ(曲げ部A)、今度は逆方向に、その陰極側端面から垂直方向に折り曲げられ(曲げ部B)伸びる構造をとる。
The lead frame described in the present invention is for mounting a capacitor element having an anode lead. A plate-like member having a thickness of about 0.07 mm to 0.2 mm is processed by punching or the like, and the anode terminal side and the anode lead are connected. The cathode terminal side and the cathode layer are connected. A metal plate such as 42 alloy, copper, copper alloy (copper nickel alloy), or white (silver silver) can be used, and 42 alloy and copper alloy are particularly used in terms of weldability and rigidity. In some cases, the surface mounting surface is provided with a plating layer such as solder plating or tin plating, and in particular, a copper, copper alloy surface such as a multilayer plating of nickel, palladium and gold.
As in the conventional case, the lead frame has a structure in which the cathode terminal side is bent by the distance between the anode lead and the bottom surface of the cathode portion, and a capacitor element is mounted on the top surface of the cathode terminal. Therefore, the cathode terminal is bent from the side surface of the capacitor element along the end surface opposite to the anode lead (bending portion A), and this time, in the opposite direction, is bent vertically from the cathode side end surface (bending portion B). Take.

本発明に述べる陽極リードは、たとえば、タンタル、ニオブまたはアルミニウム等の陽極と同様な弁作用金属などが使用でき、陽極から引き出されたリードで、直径が0.1mmから0.5mm程度の線状や厚さ0.1mmから0.5mm程度の短冊薄板状のものである。
As the anode lead described in the present invention, for example, a valve metal similar to the anode such as tantalum, niobium or aluminum can be used. The lead is drawn from the anode, and has a linear shape with a diameter of about 0.1 mm to 0.5 mm. In addition, it is a strip thin plate having a thickness of about 0.1 mm to 0.5 mm.

以下、本発明を図面に示す実施の形態に基づいて説明する。
図1は、本発明に係る例を模式的に示した斜視図である。
コンデンサ素子の端面のところにおいて、陰極端子の折り曲げ部(曲げ部B)周辺部分からその垂直方向に伸びた部分にかけての導出部に、図1(a)では、中央に抜き穴を設け、図1(b)では、陰極端子幅より狭くしている。
Hereinafter, the present invention will be described based on embodiments shown in the drawings.
FIG. 1 is a perspective view schematically showing an example according to the present invention.
At the end face of the capacitor element, in the lead-out portion from the peripheral portion of the bent portion (bend portion B) of the cathode terminal to the portion extending in the vertical direction in FIG. In (b), it is narrower than the cathode terminal width.

つまり、図1(a)では、平板の金属板を打ち抜いて、陰極端子側の部分1と陽極端子側の部分2とに分割したリードフレームの陰極端子側の部分1は、方形のコンデンサ素子3の側面4から陽極リード5とは反対側の端面6に沿い折り曲げ(曲げ部A9)、コンデンサ素子3の端面6から垂直方向に折り曲げられ(曲げ部B10)伸びていて、端面6の折り曲げ部(曲げ部B10)周辺部分からその垂直方向に伸びた部分にかけての導出部7に、中央に抜き穴8を設けている。抜き穴8を設けることにより、その部分が陰極外部端子幅Wより狭くなっている。
端面6の折り曲げ部(曲げ部B10)は、曲げ部Aと同様、実際には曲げ部分にアールを持っている方が多く、このアール部分を含め抜き穴8を設ける。
また、図1(b)でも同様に、平板の金属板を打ち抜いて、陰極端子側1の部分と陽極端子側の部分2とに分割したリードフレームの陰極端子側1の部分は、方形のコンデンサ素子3の側面4から陽極リード5とは反対側の端面6に沿い折り曲げ(曲げ部A9)、コンデンサ素子3の端面6から垂直方向に折り曲げられ(曲げ部B10)伸びていて、端面6の折り曲げ部(曲げ部B10)周辺部分からその垂直方向に伸びた部分にかけての導出部7が、陰極外部端子幅Wより狭い幅W1になっている。
That is, in FIG. 1 (a), a flat metal plate is punched out and divided into a cathode terminal side portion 1 and an anode terminal side portion 2 so that the cathode terminal side portion 1 of the lead frame is a rectangular capacitor element 3. The side surface 4 of the capacitor element 3 is bent along the end surface 6 opposite to the anode lead 5 (bending portion A9), and is bent vertically from the end surface 6 of the capacitor element 3 (bending portion B10). A bent hole 8 is provided in the center of the lead-out portion 7 from the bent portion B10) to the portion extending in the vertical direction from the peripheral portion. By providing the hole 8, the portion is narrower than the cathode external terminal width W.
The bent portion (bend portion B10) of the end face 6 is actually more likely to have a rounded portion in the bent portion, like the bent portion A, and a punched hole 8 is provided including this rounded portion.
Similarly, in FIG. 1 (b), a flat metal plate is punched out and the cathode terminal side 1 portion of the lead frame divided into the cathode terminal side 1 portion and the anode terminal side portion 2 is a rectangular capacitor. The end face 6 is bent from the side face 4 of the element 3 along the end face 6 opposite to the anode lead 5 (bending part A9), is bent vertically from the end face 6 of the capacitor element 3 (bending part B10), and the end face 6 is bent. The lead-out portion 7 extending from the peripheral portion of the portion (bending portion B10) to the portion extending in the vertical direction has a width W1 narrower than the cathode external terminal width W.

抜き穴があることによりまたは、導出部が陰極端子幅より狭くなっていることにより、成形金型にセットされ、成形金型内に加熱した樹脂を注入し樹脂モールドされるときに、樹脂の移動が容易になる。
また、抜き穴部分または導出部が陰極端子幅より狭くなっている部分は、それより幅の広いコンデンサ素子の側面から陽極リードとは反対側の端面に沿い折り曲げた部分よりも変形しやすく、陰極接続面と陰極側端面との角部周辺部分のストレスを緩和することができる。
また、中央に抜き穴を設けた場合は、陰極端子幅より狭くする場合に比べ、リードフレームの陰極端子に幅方向のねじれが生じにくく、コンデンサ素子の陰極部が寸法よく設置しやすい。
When there is a punch hole or the lead-out part is narrower than the cathode terminal width, the resin moves when it is set in the molding die and the heated resin is injected into the molding die and molded. Becomes easier.
In addition, the portion where the punched-out portion or the lead-out portion is narrower than the cathode terminal width is more easily deformed than the portion bent along the end surface opposite to the anode lead from the side surface of the capacitor element having a wider width. It is possible to relieve stress around the corner portion between the connection surface and the cathode side end surface.
In addition, when the punched hole is provided in the center, as compared with the case where the width is smaller than the width of the cathode terminal, the cathode terminal of the lead frame is less likely to be twisted in the width direction, and the cathode portion of the capacitor element is easily installed with good dimensions.

また、陰極端子の幅は、少なくとも、方形のコンデンサ素子の側面と陽極リードとは反対側の陰極側端面との角部周辺部分から上記陰極側端面部分にかけて、コンデンサ素子の幅の4分の3以上から同等程度までであることが好ましい。そうすることにより、リードフレームが、陰極接続面と陰極側端面との角部周辺部分を覆う面積が増加するので、樹脂モールド時に注入される樹脂により、コンデンサ素子のこの陰極側端面を垂直方向に押す力が増加することが少なくなり、と陰極接続面と陰極側端面との角部周辺部分にストレスがかかりにくくなる。   Further, the width of the cathode terminal is at least three-quarters of the width of the capacitor element from the peripheral portion of the corner between the side surface of the square capacitor element and the cathode side end surface opposite to the anode lead to the cathode side end surface portion. It is preferable that it is from the above to an equivalent grade. By doing so, the lead frame increases the area covering the peripheral portion of the corner between the cathode connection surface and the cathode side end surface, so that the cathode side end surface of the capacitor element is vertically oriented by the resin injected during resin molding. When the pushing force is less increased, stress is hardly applied to the peripheral portion of the corner between the cathode connection surface and the cathode side end surface.

図2は、本発明に係る別の例を模式的に示した斜視図である。
図2(a)では、中央に抜き穴、図2(b)では、陰極外部端子幅より狭くした場合を示している。
抜き穴8または陰極端子幅より狭い幅W1にした部分の範囲を、導出部7の陰極端子の折り曲げ部(曲げ部B10)から陰極側端面6にまで十分拡張した状態を示している。拡張の範囲は、コンデンサ素子3の側面4から陽極リード5とは反対側の陰極側端面6に沿い折り曲げた(曲げ部A9)部分を除いた部分まで、好ましくはリードフレームの陰極側端面6部分の半分程度までが好ましい。
FIG. 2 is a perspective view schematically showing another example according to the present invention.
2A shows a case where a hole is formed in the center, and FIG. 2B shows a case where the width is made narrower than the cathode external terminal width.
The state of the part made into the width W1 narrower than the punch hole 8 or the cathode terminal width is shown in a sufficiently expanded state from the bent portion (bent portion B10) of the cathode terminal to the cathode side end face 6. The expansion range is from the side surface 4 of the capacitor element 3 to the portion excluding the portion (bent portion A9) bent along the cathode side end surface 6 opposite to the anode lead 5, preferably the cathode side end surface 6 portion of the lead frame. Up to about half of this is preferable.

拡張の範囲が拡大すると、リードフレームの抜き穴部分または導出部が陰極端子幅より狭い幅W1になっている部分は、より変形しやすくなり、陰極接続面と陰極側端面との角部周辺部分のストレスを緩和することができる。
拡張の範囲が減少すると、リードフレームの陰極側端面を覆っている部分が増加するので、その分、樹脂モールド時に注入される樹脂により、コンデンサ素子のこの陰極側端面を押す力は減少することになる。そのため、陰極接続面と陰極側端面との角部周辺部分のストレスを緩和することができる。
When the range of expansion is expanded, the portion of the lead frame in which the lead hole portion or lead-out portion has a width W1 narrower than the cathode terminal width is more easily deformed, and the corner peripheral portion between the cathode connection surface and the cathode side end surface Can relieve stress.
As the expansion range decreases, the portion of the lead frame that covers the cathode side end surface increases, so that the force that pushes the cathode side end surface of the capacitor element is reduced by the amount of resin injected during resin molding. Become. Therefore, the stress around the corner portion between the cathode connection surface and the cathode side end surface can be alleviated.

定格6.3V,100μFのタンタルチップ型固体電解コンデンサの製造方法について述べる。弁作用金属として、タンタルの微粉末を用い、これにアクリル樹脂をバインダとして加えた微粉末を、タンタル製の陽極用リード線の一端を埋め込んだ状態にして、プレス機により圧縮成形する。そしてこの成形体を真空中で加熱処理し、焼結して、幅2.5mm、厚さ1.5mm、長さ2mmの直方体形状の焼結体を形成する。次に、焼結体を希硝酸液中に浸漬し、直流電圧20Vを印加して、誘電体皮膜を形成する。誘電体皮膜を形成後、導電性ポリチオフェンからなる導電層を積層する。加熱乾燥後、カーボン層その上に銀ペースト層を形成する。厚さ0.1mmのリードフレームの形状(図2参照)は、表1のようにし、リードフレームの陰極端子部に素子の銀層を銀導電性ペーストにより接続するとともに、リードフレームの陽極端子部に陽極用リード線を溶接して、焼結体をリードフレームに取り付ける。素子をリードフレームに取り付け後、エポキシ樹脂を用いてトランスファーモールド法により外装を形成する。外装を形成後、エージング処理を行ない、リードフレームを切断除去し、陰極端子及び陽極端子をフォーミングし、チップ型の固体電解コンデンサとする。   A method for manufacturing a tantalum chip type solid electrolytic capacitor having a rating of 6.3 V and 100 μF will be described. A fine powder of tantalum is used as the valve action metal, and a fine powder obtained by adding an acrylic resin as a binder to the fine powder is compression-molded by a press machine with one end of a tantalum anode lead wire embedded. The compact is heat-treated in a vacuum and sintered to form a rectangular parallelepiped sintered body having a width of 2.5 mm, a thickness of 1.5 mm, and a length of 2 mm. Next, the sintered body is immersed in a dilute nitric acid solution, and a DC voltage of 20 V is applied to form a dielectric film. After forming the dielectric film, a conductive layer made of conductive polythiophene is laminated. After heat drying, a silver paste layer is formed on the carbon layer. The shape of the lead frame having a thickness of 0.1 mm (see FIG. 2) is as shown in Table 1. The silver layer of the element is connected to the cathode terminal portion of the lead frame with a silver conductive paste, and the anode terminal portion of the lead frame. The lead wire for the anode is welded to and the sintered body is attached to the lead frame. After the element is attached to the lead frame, an exterior is formed by transfer molding using epoxy resin. After forming the exterior, aging treatment is performed, the lead frame is cut and removed, the cathode terminal and the anode terminal are formed, and a chip-type solid electrolytic capacitor is obtained.

(比較例1)
リードフレームの陰極端子側の部分を短冊状にした(図3参照)以外、実施例1同様に作成した。
(Comparative Example 1)
The lead frame was prepared in the same manner as in Example 1 except that the portion on the cathode terminal side was strip-shaped (see FIG. 3).

(比較例2)
リードフレームの陰極端子側の部分を、陰極側端面に沿い折り曲げた(曲げ部A)周辺部分から、その陰極側端面そして、その陰極側端面から垂直方向に折り曲げられ(曲げ部B)伸びた部分にかけて、陰極端子の外部端子部の幅より狭い幅W1する方法(図4参照)以外、実施例1同様に作成した。
(Comparative Example 2)
The portion of the lead frame on the cathode terminal side that is bent along the cathode side end surface (bend portion A), the cathode side end surface, and the portion that is bent vertically from the cathode side end surface (bend portion B) In the same manner as in Example 1 except that the width W1 is narrower than the width of the external terminal portion of the cathode terminal (see FIG. 4).

実施例と比較例を下記のパラメータ(図2参照)で製作し、できたチップ型の固体電解コンデンサの漏れ電流測定した。測定は各n10で行い、その平均測定結果を表1に示す。
W: 陰極外部端子幅 2.4mm
L: 曲げ部Aと曲げ部B間の長さ 0.8mm
W1:陰極外部端子幅より狭くした部分の幅(陰極外部端子幅から抜き穴幅を引いた幅)
W2:曲げ部Aの幅
E: 拡張した長さ
Examples and Comparative Examples were manufactured with the following parameters (see FIG. 2), and the leakage current of the resulting chip-type solid electrolytic capacitor was measured. The measurement is performed at each n10, and the average measurement results are shown in Table 1.
W: Cathode external terminal width 2.4 mm
L: Length between bent part A and bent part B 0.8 mm
W1: The width of the portion narrower than the cathode external terminal width (width obtained by subtracting the punched hole width from the cathode external terminal width)
W2: Width E of the bent part A: Extended length

Figure 2010080600
Figure 2010080600

以上、表1から明らかな通り、実施例1〜実施例6は、従来例1〜従来例2に比較して、漏れ電流を低減できる。
As described above, as apparent from Table 1, Examples 1 to 6 can reduce leakage current as compared with Conventional Examples 1 to 2.

本発明に係るリードフレームとコンデンサ素子部分の例を模式的に示した斜視図である。It is the perspective view which showed typically the example of the lead frame and capacitor | condenser element part which concern on this invention. 本発明に係る別のリードフレームとコンデンサ素子部分を模式的に示した斜視図である。It is the perspective view which showed typically another lead frame and capacitor | condenser element part which concern on this invention. 従来のリードフレームとコンデンサ素子部分を模式的に示した斜視図である。It is the perspective view which showed the conventional lead frame and the capacitor | condenser element part typically. 従来のリードフレームとコンデンサ素子部分を模式的に示した斜視図である。It is the perspective view which showed the conventional lead frame and the capacitor | condenser element part typically.

符号の説明Explanation of symbols

1…陰極端子側の部分、2…陽極端子側の部分、3…コンデンサ素子、4…側面、5…陽極リード、6…端面、7…導出部、8…抜き穴、9…曲げ部A、10…曲げ部B。   DESCRIPTION OF SYMBOLS 1 ... Part by the side of a cathode terminal, 2 ... Part by the side of an anode terminal, 3 ... Capacitor element, 4 ... Side surface, 5 ... Anode lead, 6 ... End surface, 7 ... Lead-out part, 8 ... Punching hole, 9 ... Bending part A, 10: Bending part B.

Claims (1)

方形のコンデンサ素子を実装するのにリードフレームを用い、方形の樹脂モールドにより樹脂外装し、その対向する端面からリードフレームが露出し、露出部分が外部端子部となるチップ型固体電解コンデンサにあって、
前記コンデンサ素子は、弁作用金属よりなる成形体の陽極体の表面に、誘電体酸化被膜と陰極層を順次積層するとともに、前記陽極体の一方の端面から導出された陽極リードを有し、
前記陽極リードと前記リードフレームの陽極端子と、また、前記陰極層の側面部分と前記リードフレームの陰極端子とを接続し、
前記陰極端子は、方形の前記コンデンサ素子の側面から前記陽極リードとは反対側の端面に沿い折り曲げ、前記コンデンサ素子の端面から垂直方向に折り曲げられ伸びていて、前記端面の折り曲げ部周辺部分からその垂直方向に伸びた部分にかけての導出部は、前記陰極端子の前記外部端子部の幅より狭いかまたは中央に抜き穴を設けることを特徴とするチップ型固体電解コンデンサ。
In a chip type solid electrolytic capacitor that uses a lead frame to mount a square capacitor element, is covered with resin by a square resin mold, the lead frame is exposed from the opposite end face, and the exposed part becomes the external terminal part. ,
The capacitor element is formed by sequentially laminating a dielectric oxide film and a cathode layer on a surface of an anode body of a molded body made of a valve metal, and has an anode lead led out from one end face of the anode body,
Connecting the anode lead and the anode terminal of the lead frame, and connecting the side surface portion of the cathode layer and the cathode terminal of the lead frame;
The cathode terminal is bent from the side surface of the square capacitor element along the end surface opposite to the anode lead, and is bent and extended in the vertical direction from the end surface of the capacitor element, from the peripheral portion of the bent portion of the end surface. The chip-type solid electrolytic capacitor characterized in that the lead-out portion extending to the portion extending in the vertical direction is narrower than the width of the external terminal portion of the cathode terminal or provided with a through hole in the center.
JP2008245738A 2008-09-25 2008-09-25 Chip-shaped solid electrolytic capacitor Pending JP2010080600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008245738A JP2010080600A (en) 2008-09-25 2008-09-25 Chip-shaped solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008245738A JP2010080600A (en) 2008-09-25 2008-09-25 Chip-shaped solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2010080600A true JP2010080600A (en) 2010-04-08

Family

ID=42210733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008245738A Pending JP2010080600A (en) 2008-09-25 2008-09-25 Chip-shaped solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2010080600A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110310531A1 (en) * 2010-06-17 2011-12-22 Sanyo Electric Co., Ltd. Solid electrolytic capacitor and method of manufacturing the same
CN109300689A (en) * 2018-11-02 2019-02-01 北京元六鸿远电子科技股份有限公司 Molding Surface Mount ceramic capacitor and preparation method with non-slip groove

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110310531A1 (en) * 2010-06-17 2011-12-22 Sanyo Electric Co., Ltd. Solid electrolytic capacitor and method of manufacturing the same
US8753409B2 (en) 2010-06-17 2014-06-17 Sanyo Electric Co., Ltd. Solid electrolytic capacitor and method of manufacturing the same
CN109300689A (en) * 2018-11-02 2019-02-01 北京元六鸿远电子科技股份有限公司 Molding Surface Mount ceramic capacitor and preparation method with non-slip groove
CN109300689B (en) * 2018-11-02 2024-05-10 北京元六鸿远电子科技股份有限公司 Molded surface-mounted ceramic dielectric capacitor with anti-skid groove and preparation method thereof

Similar Documents

Publication Publication Date Title
EP3226270B1 (en) Solid electrolytic capacitor
JP6391944B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP6295433B2 (en) Solid electrolytic capacitor
JP5879491B2 (en) Solid electrolytic capacitor
WO2018143354A1 (en) Solid electrolytic capacitor and method for manufacturing same
TWI248097B (en) Solid electrolytic capacitor
JP4895035B2 (en) Solid electrolytic capacitor
JP2012069788A (en) Solid electrolytic capacitor
JP2010080600A (en) Chip-shaped solid electrolytic capacitor
JP4748726B2 (en) Solid electrolytic capacitor
JP2007013043A (en) Electrode assembly for mounting electric element, electric component employing the same, and solid electrolytic capacitor
JP5926485B2 (en) Method for manufacturing solid electrolytic capacitor element
JP7012260B2 (en) Solid electrolytic capacitors and their manufacturing methods
JP5898927B2 (en) Chip type solid electrolytic capacitor
US20220319778A1 (en) Electrolytic capacitor
JP4735251B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5546919B2 (en) Solid electrolytic capacitor
JP5176697B2 (en) Solid electrolytic capacitor
JP3826153B1 (en) Multilayer solid electrolytic capacitor and method for forming cathode lead layer in multilayer solid electrolytic capacitor
JP4574544B2 (en) Solid electrolytic capacitor
JP2007317930A (en) Solid electrolytic capacitor
JP2005328100A (en) Method for manufacturing solid electrolytic capacitor
JP5770444B2 (en) Solid electrolytic capacitor
JP5739148B2 (en) Method for manufacturing solid electrolytic capacitor element
WO2018180437A1 (en) Solid electrolytic capacitor and method for manufacturing same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Effective date: 20091229

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100518