JPS59200411A - Tantalum electrolytic condenser anode element - Google Patents
Tantalum electrolytic condenser anode elementInfo
- Publication number
- JPS59200411A JPS59200411A JP7447583A JP7447583A JPS59200411A JP S59200411 A JPS59200411 A JP S59200411A JP 7447583 A JP7447583 A JP 7447583A JP 7447583 A JP7447583 A JP 7447583A JP S59200411 A JPS59200411 A JP S59200411A
- Authority
- JP
- Japan
- Prior art keywords
- anode
- tantalum
- present
- anode body
- surface area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring Oxygen Concentration In Cells (AREA)
- Carbon And Carbon Compounds (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明はタンタル電解コンデンサ用陽極体素子に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an anode body element for a tantalum electrolytic capacitor.
周知の如く、タンタル電解コンデンサは次のようにして
製造される。As is well known, tantalum electrolytic capacitors are manufactured as follows.
まず、タンタル粉末を所望の形状、寸法にプレス成形し
たのち、真空雰囲気中で1500℃以上の温度で焼結し
陽極3本素子を得る。この陽極3子を陽極と(7、陽極
酸化によって、陽極体素子を構成する粒子の表面に酸化
タンタル皮膜を生成させる。次に、コンデンサが固体電
解コンデンサの場合には、酸化タンタル皮膜上に、陰極
となる二酸化マンガン層、グラファイト層、半田層を順
次形成させ、最後に樹脂等によシ外装している。コンデ
ンサが湿式電解コンデンサの場合は、酸化タンタル皮膜
を生成させた陽極体素子lを硫酸等の電解溶液の入った
金属容器に収め、コンデンサを完成させる。First, tantalum powder is press-molded into a desired shape and size, and then sintered at a temperature of 1500° C. or higher in a vacuum atmosphere to obtain an element with three anodes. These three anodes are connected to the anode (7. By anodization, a tantalum oxide film is generated on the surface of the particles constituting the anode body element. Next, when the capacitor is a solid electrolytic capacitor, on the tantalum oxide film, A manganese dioxide layer, a graphite layer, and a solder layer, which will become the cathode, are formed in sequence, and finally the capacitor is covered with a resin, etc. If the capacitor is a wet electrolytic capacitor, the anode body element l on which a tantalum oxide film has been formed is The capacitor is completed by placing it in a metal container containing an electrolytic solution such as sulfuric acid.
一方、近年の電子産業の進展に伴ない、特に小型で且つ
安価な電子部品が要望され、電解コンデンサにおいても
、その大きさの大部分を占める陽極体素子を小型化する
工夫が検討されている。たとえば粒子径の細かいタンタ
ル粉末を使用する方法或は成形体を出来るだけ低い温度
で焼結する方法である。しかし、このように、細かい粒
子の粉末を用いることは、陽極体素子内の空孔が狭くな
るため、特に陰極層が固体の場合には陰極物質である二
酸化マンガン層が陽極体素子内部まで形成され難くな夛
、コンデンサ特性の重要な特性である誘電体損失を増加
させたシ、漏れ電流を増加させるように−なる。また、
低い温度での焼結は、粒子間の結合を弱め、さらに粉末
中に含まれるタンタル金属以外の元素の除去効果が薄れ
る結果、漏れ電流の増加、耐電圧の低下をもたらすよう
になる。On the other hand, with the progress of the electronic industry in recent years, there has been a demand for particularly small and inexpensive electronic components, and efforts are being made to reduce the size of the anode element, which accounts for most of the size of electrolytic capacitors. . For example, there is a method of using tantalum powder with a fine particle size, or a method of sintering a molded body at the lowest possible temperature. However, using fine powder particles in this way narrows the pores in the anode element, so especially when the cathode layer is solid, the manganese dioxide layer, which is the cathode material, will form inside the anode element. However, this increases dielectric loss, which is an important characteristic of capacitor characteristics, and increases leakage current. Also,
Sintering at a low temperature weakens the bonds between particles and further reduces the effect of removing elements other than tantalum metal contained in the powder, resulting in an increase in leakage current and a decrease in withstand voltage.
本発明の目的は、以上の欠点を改善した従来方法と異な
る新しい陽極体素子を提供し、きらには小型で安価な電
解コンデンサを提供することにある。An object of the present invention is to provide a new anode element different from the conventional method, which improves the above-mentioned drawbacks, and also to provide a small and inexpensive electrolytic capacitor.
すなわち、本発明によれば管体の壁の厚さが0.3μm
以上としたほぼ円筒状を有するタンタル金属の管体を単
体とし、所望のコンデンサを得るためそれらを集め束ね
ることによって、従来よ勺、単位重量当夛の表面積並び
に単位体積当シの表面積を大きく、さらに陰極層を素子
内部まで形成し易くしたタンタル電解コンデンサ用陽極
体素子が得られる。That is, according to the present invention, the wall thickness of the tube is 0.3 μm.
By using the tantalum metal tubes having a substantially cylindrical shape as described above, and collecting and bundling them together to obtain the desired capacitor, the surface area per unit weight and the surface area per unit volume can be increased compared to conventional methods. Furthermore, an anode element for a tantalum electrolytic capacitor in which the cathode layer can be easily formed up to the inside of the element can be obtained.
以下、本発明を図によシ詳しく説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.
まず、本発明の陽極体素子lを説明する。中芯軸として
、有機薬品または弗酸以外の無機薬品或は数百度の温度
で蒸発する所望とする径の細長い物質、たとえばポリエ
チレン等の合成繊維、アルミニウムの低融点金属に、真
空蒸着、イオンプレーテング法等の手段によ、!l)0
.3μmn以上のタンタル膜を被着させる。次に上記の
中芯軸を除去出来る薬品或は熱処理によって、中芯軸を
除去しタンクルの管体を製造する。このタンタルの管体
は単独でも陽極体素子となるが、大容量のコンデンサ用
陽極体素子を得る場合には、さらに管体を束ねると同時
に束ねた管体の機械的強度を有するように撚線機等を用
いて撚シ合せるか、或はさらに高温、高真空雰囲気中で
管体同志を融層させてもよい。First, the anode body element 1 of the present invention will be explained. As the central axis, organic chemicals or inorganic chemicals other than hydrofluoric acid, or elongated substances of the desired diameter that evaporate at temperatures of several hundred degrees, such as synthetic fibers such as polyethylene, or low melting point metals such as aluminum, are coated with vacuum evaporation or ion spraying. By means such as the proboscis method! l) 0
.. A tantalum film of 3 μm or more is deposited. Next, the central shaft is removed using a chemical or heat treatment capable of removing the central shaft, and the tube body of the tankle is manufactured. This tantalum tube can be used alone as an anode element, but in order to obtain an anode element for a large capacity capacitor, the tubes are further bundled and at the same time twisted wires are added to provide the mechanical strength of the bundled tubes. The tube bodies may be twisted together using a machine or the like, or the tube bodies may be melted together in a high-temperature, high-vacuum atmosphere.
なお、このようにして得た陽極体素子1をコンテンサ化
する場合には、酸化皮膜2を生成させない先端部分を設
け、それを陽極リードとして用いることが出来る。Note that when the anode body element 1 obtained in this manner is made into a capacitor, a tip portion where no oxide film 2 is formed can be provided and used as an anode lead.
次に本発明の単位重量当りの表面積についで、
□説明する。第1図に示す本発明の陽極体素子単体1
を距離tの長さまで化成液に浸漬し、通常実施されてい
る陽械酸化手段によυ酸化皮膜を形成させると、第2図
に示すように素子の外面、内面および底面に酸化皮膜2
が形成される。この酸化皮膜2の形成面の面積Spと、
酸化皮膜の形成部分のタンタル金属の重さWpの比、す
なわち単位重量当シの面積Sp/Wpは、タンタル金属
の密度をρTa%管壁の厚さをt(=(a−b)/2)
とすると次の(1)式が得られる。Next, regarding the surface area per unit weight of the present invention,
□Explain. Single anode body element 1 of the present invention shown in FIG.
When the element is immersed in a chemical solution to a distance t and a υ oxide film is formed by a commonly used mechanical oxidation method, an oxide film 2 is formed on the outer, inner and bottom surfaces of the element, as shown in FIG.
is formed. The area Sp of the surface on which this oxide film 2 is formed,
The ratio of the weight Wp of the tantalum metal in the area where the oxide film is formed, that is, the area per unit weight Sp/Wp, is given by the density of the tantalum metal being ρTa%, the thickness of the tube wall being t(=(a-b)/2 )
Then, the following equation (1) is obtained.
Sp/Wp=(2を十t)/l−t・ρTa・・・・・
・(1)ここに、単位はC,G、 S単位であジ後述の
式でも同じである。管体の壁の厚さtは酸化皮膜2を形
成し得る厚さ以上に設ける必要があるので、陽極酸化時
の化成電圧によって異なってくる。本発明では、実用的
な化成電圧として、最高化成電圧を250 Vとして、
管体の壁の厚さを最低0.3μmとした。すなわち公知
のように、陽極酸化によって生成される酸化皮膜2はタ
ンタル金属の内側に1/3、タンタル金属の外側に2/
3の割合で、且り化成電圧1■当シ17λの厚さで生成
する。従って最高化成電圧250vではタンタル金属の
内側に#1ぼ厚さ1400^の酸化皮膜2が生成される
。Sp/Wp=(2 to 10t)/lt・ρTa...
・(1) Here, the units are C, G, and S, and the same applies to the formulas described below. The thickness t of the wall of the tube needs to be greater than the thickness at which the oxide film 2 can be formed, and therefore varies depending on the anodizing voltage during anodization. In the present invention, as a practical forming voltage, the maximum forming voltage is 250 V,
The wall thickness of the tube was at least 0.3 μm. That is, as is well known, the oxide film 2 produced by anodic oxidation has a thickness of 1/3 on the inside of the tantalum metal and 2/3 on the outside of the tantalum metal.
3 and a thickness of 17λ per chemical formation voltage of 1μ. Therefore, at the maximum anodizing voltage of 250V, an oxide film 2 with a thickness of approximately 1400^ is formed on the inside of the tantalum metal.
又このタンタル金属には陽極として導通する金属部分が
必要であシ、その厚さを酸化皮膜2の厚さと同等程度と
して、管体の壁の厚さを約300OA(= 0.3μm
)とした。この厚さは、通常のコンデンサで化成される
距離t(>1mm)に比較し、非常に小さい。このため
上記(1)式は、次のように近似化される。In addition, this tantalum metal requires a conductive metal part as an anode, and the thickness of the metal part is about the same as the thickness of the oxide film 2, and the thickness of the wall of the tube is about 300 OA (= 0.3 μm).
). This thickness is very small compared to the distance t (>1 mm) formed in a normal capacitor. Therefore, the above equation (1) is approximated as follows.
8p/Wp=2/l・ρT8 ・・・・・・・
・・ (2)一方、周知の如く、従来のタンタル粉末の
焼結体を陽極体素子lとするその表面積は、粉末の平均
粒子径から求めた表面積を焼結による表面積減少分を補
正して求めることが出来る。すなわち、焼結後の実効表
面積と平均粒子径によって求めた表面積の比をK(以下
補正係数と称す)とし、平均粒子径をDとすると、陽極
体素子lの表面積S5とタンタル金属の重さWsの比す
なわち単位重量当シの面積8 s/W5は、次の(3)
式で表わされる。8p/Wp=2/l・ρT8 ・・・・・・・・・
(2) On the other hand, as is well known, the surface area of a conventional sintered body of tantalum powder as the anode element l is calculated by correcting the surface area obtained from the average particle diameter of the powder by the reduction in surface area due to sintering. You can ask for it. That is, if the ratio of the effective surface area after sintering to the surface area determined by the average particle diameter is K (hereinafter referred to as a correction coefficient) and the average particle diameter is D, then the surface area S5 of the anode body element l and the weight of the tantalum metal are The ratio of Ws, that is, the area per unit weight 8 s/W5, is the following (3)
It is expressed by the formula.
Ss/ Ws = 6 ・K/ D−ρTa ++
・・++・++ (3)ここにKは1以下の値であシ、
発明者の経験ではO15〜0.9である。Ss/ Ws = 6 ・K/ D−ρTa ++
・・++・++ (3) Here, K must be a value of 1 or less,
In the inventor's experience, it is O15 to 0.9.
(2)式と(3)式から、本発明と従来の各陽極体索子
1の単位重量当9の面積比(Sp/Wp)/(as/W
s)が次の(4)式で衣わされる。From equations (2) and (3), the area ratio (Sp/Wp)/(as/W
s) is given by the following equation (4).
(Sp/Wp) / (Ss/Ws ) =D/3 k
t・・・・・・(4)この(4)式に、先に述べたt
の値(−” 0.3 ttm )、Kの最大値(= 0
.9μm)を代入して、単位重量当りの面積比と粒子径
の関係を示した第3図の実線Aよシ本発明と従来各陽極
体素子lの単位重量当シの面積が同じになるDを求める
と0.81μmとなる。(Sp/Wp) / (Ss/Ws) = D/3k
t...(4) In this equation (4), the previously mentioned t
value (-” 0.3 ttm), maximum value of K (= 0
.. 9 μm), the area per unit weight of each anode body element l of the present invention and the conventional anode body element l becomes the same as shown by the solid line A in FIG. 3 showing the relationship between the area ratio per unit weight and the particle diameter D. is found to be 0.81 μm.
これはタンタルの童が同じである場合の平均粒子径が0
.81μmを越えた粉末の焼結体から成る陽極体素子1
を使用する時より、本発明で製造した陽極体素子lの方
が、表面積を大きく出来ることを意味する。たとえば、
現在実用化されている平均粒子径約3μmの粉末と比較
した場合で言えば、本発明によって3.7倍の表面積が
得られるようになる。同−容量のコンデンサを得る場合
で言えば、タンタル重量を1/3.7にして、製造する
ことが出来るようになる。This means that the average particle diameter is 0 when the tantalum particles are the same.
.. Anode body element 1 made of a sintered body of powder exceeding 81 μm
This means that the anode body element l manufactured according to the present invention can have a larger surface area than when using . for example,
Compared to powders currently in practical use with an average particle diameter of about 3 μm, the present invention makes it possible to obtain a surface area 3.7 times larger. In the case of obtaining a capacitor of the same capacity, it becomes possible to manufacture it by reducing the weight of tantalum to 1/3.7.
次に、本発明の単位体積当夛の表面積について従来の粉
末焼結体から成る陽極体素子1の金属の占める体積は、
粒子の大きさ、焼結条件によって異なってくるが、見掛
は体積(外寸法によシ求まる体積)に対し35〜65%
であシ、平均的にみて50%である。仁の値は、粒子を
球とし、粒子径を一辺とした立方体の中にこの粒子を入
れた時の立方体の体積と球の体積との比率と近似してい
る。従ってこれを陽極体素子1体積の素体として評価出
来る。Next, with respect to the surface area per unit volume of the present invention, the volume occupied by the metal of the conventional anode body element 1 made of a powder sintered body is:
Although it varies depending on the particle size and sintering conditions, the apparent volume is 35 to 65% of the volume (volume determined by external dimensions).
Well, on average it's 50%. The value of jin is approximated by the ratio of the volume of the cube to the volume of the sphere when the particle is assumed to be a sphere and the particle is placed in a cube whose side is the particle diameter. Therefore, this can be evaluated as an element having one volume of an anode element.
本発明の場合でも、先の粒子径を一辺とした立方体中に
、外径を粒子径と同じにし、上面、底面を立方体面中に
相対して接触させた状態にして評価出来る。In the case of the present invention, evaluation can also be made by placing the particles in a cube with the particle diameter as one side, with the outer diameter being the same as the particle diameter, and with the top and bottom surfaces facing each other and in contact with the surface of the cube.
このようにして、本発明の陽極体素子Jにおける単位体
積当シの表面積Sp/Vpと従来手段の陽極体素子1に
おける単位体積当シの表面積S8/V。In this way, the surface area per unit volume Sp/Vp of the anode body element J of the present invention and the surface area per unit volume S8/V of the anode body element 1 of the conventional means.
の比(8p/Vp)/(8s/Vs)は、簡単な数式を
経て次の(5)式を得る。The ratio (8p/Vp)/(8s/Vs) is obtained from the following equation (5) through a simple formula.
(8p/■p)/(Ss/Vs) =2−(2t2/D
2) =・(5)この(5)式に先に述べたtの値(=
0.3μm)を代入し、単位重量当りの表面積比と粒子
径の関係を示した第3図の点線Bよシ、本発明と従来の
各陽極体素子lの単位体積当シの面積が同じになるDを
求めると、0.42μmとなる。これは、陽極体の単素
子において、平均粒子径が0.42μmを越えた粉末の
焼結体を陽極体素子1を使用する時よシ、本発明の手段
で製造した陽極体素子1の方が、表面積を大きく出来る
ことを意味する。たとえば現在実用化されている平均粒
子径約3μmの粉末で比較した場合で言えば、本発明に
よって約2倍の表面積が得られるようになる。同一容量
のコンデンサを得る場合で言えば、体積を約1/2にし
て製造出来るようになる。(8p/■p)/(Ss/Vs) =2-(2t2/D
2) =・(5) In this equation (5), the value of t mentioned earlier (=
According to the dotted line B in FIG. 3, which shows the relationship between the surface area ratio per unit weight and the particle diameter, the area per unit volume of each anode body element l of the present invention and the conventional one is the same. When D is calculated, it is 0.42 μm. This is because, in a single anode element, when the anode body element 1 is used with a powder sintered body having an average particle diameter exceeding 0.42 μm, the anode body element 1 manufactured by the means of the present invention is This means that the surface area can be increased. For example, when compared with powders currently in practical use having an average particle diameter of about 3 μm, the present invention makes it possible to obtain about twice the surface area. In the case of obtaining a capacitor of the same capacity, the volume can be reduced to about 1/2.
以上は、陽極体の単素子についての説明であるが単素子
の県合である実際の陽極体素子lでは、従来手段におい
−Cは、焼結による表面積の減少がメジ、その補正係数
には(5)式全体の分母に表わされるので、本発明の効
果は、先の説明以上に大きくなる。The above is an explanation of a single element of an anode body. However, in an actual anode body element l, which is a single element, in the conventional means, -C is significantly reduced in surface area due to sintering, and its correction coefficient is Since it is expressed in the denominator of the entire equation (5), the effect of the present invention is greater than the above explanation.
次に陰極物質である二酸化マンガンの形成し易さについ
て説明する。Next, the ease of forming manganese dioxide, which is a cathode material, will be explained.
周知のように、二酸化マンガンは陽極化成した陽極体索
子lに硝酸マンガン溶液を付着、或は浸み込ませたあと
熱分解させて作られる。従来の粉末焼結体から成る陽極
体素子1の内部空孔は粉末の粒子径が細かくなるに従い
微細で、且つ複雑な構造になっている。As is well known, manganese dioxide is produced by adhering or impregnating a manganese nitrate solution to an anodized anode core, and then thermally decomposing the solution. The internal pores of the anode body element 1 made of a conventional powder sintered body become finer and have a more complicated structure as the particle size of the powder becomes finer.
一方、本発明による陽極体素子1では、空孔が単純でほ
ぼ直線的な構造である。従って本発明の陽極体素子では
毛細管現象も働き、従来の陽極体素子に比べ硝酸マンガ
ン溶液が浸み込み易いことは容易に推察出来る。On the other hand, in the anode body element 1 according to the present invention, the holes have a simple and substantially linear structure. Therefore, it can be easily inferred that in the anode body element of the present invention, capillary phenomenon also works, and the manganese nitrate solution penetrates into the anode body element more easily than in the conventional anode body element.
以上、本発明の陽極体素子は(i)従来の陽極体素子よ
)単位体積当9並びに重量当シの表面積を大きくできる
ので、小型で安価な陽極体素子を製造することが出来る
。(ii)従って小型で安価な電気特性の優れた電解コ
ンデンサを提供することができる。As described above, since the anode element of the present invention (i) can have a larger surface area per unit volume and weight than the conventional anode element, it is possible to manufacture a small and inexpensive anode element. (ii) Therefore, it is possible to provide a small, inexpensive electrolytic capacitor with excellent electrical characteristics.
なお本発明は陽極体素子単体例として、同心円状の円筒
状タンタル金属で説明したが、管体の最小の壁の厚さが
0.3μmであれば、断面多角形の形状でよいことは勿
論である。Although the present invention has been described using a concentric cylindrical tantalum metal as an example of a single anode body element, it is of course possible to use a polygonal cross-sectional shape as long as the minimum wall thickness of the tube is 0.3 μm. It is.
また本発明は、陽極体素子に関するもので、電解コンデ
ンサの陰極物質が固体、或は液体どちらでも有効であ)
、さらにタンタル以外の弁作用金属から成る陽極体素子
に応用出来ることは言うまでもない。The present invention also relates to an anode element, and it is effective whether the cathode material of the electrolytic capacitor is solid or liquid.
Needless to say, the present invention can also be applied to anode elements made of valve metals other than tantalum.
第1図は本発明の陽極体素子単体の断面図。第2図は、
酸化タンタル皮膜を形成させた本発明の陽極体素子単体
の断面図、第3図社、本発明実施と従来例会陽極体素子
の面積比と従来陽極体素子を構成する平均粒子径との関
係図である。
l・・・・・・陽極体素子単体、2・・・・・・酸化皮
膜、A・・・・・・単位重量当夛の従来陽極体面積に対
する本発明陽極体面積の比、B・・・・・・単位体積当
シの従来陽極体面積に対する本発明陽極体面積の比。FIG. 1 is a sectional view of a single anode element according to the present invention. Figure 2 shows
A cross-sectional view of a single anode element of the present invention on which a tantalum oxide film is formed, Figure 3, and a relationship diagram between the area ratio of the present invention and the conventional anode element and the average particle diameter constituting the conventional anode element. It is. l... Anode body element alone, 2... Oxide film, A... Ratio of the area of the anode body of the present invention to the area of the conventional anode body per unit weight, B... ... Ratio of the area of the anode body of the present invention to the area of the conventional anode body per unit volume.
Claims (1)
タンタル金属で陽性体を構成したことを特徴とするタン
タル電解コンデンサ用陽極体素子。1. An anode body element for a tantalum electrolytic capacitor, characterized in that a positive body is made of 1211 cylindrical tantalum metal having a wall thickness of 0.3 μm or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7447583A JPS59200411A (en) | 1983-04-27 | 1983-04-27 | Tantalum electrolytic condenser anode element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7447583A JPS59200411A (en) | 1983-04-27 | 1983-04-27 | Tantalum electrolytic condenser anode element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59200411A true JPS59200411A (en) | 1984-11-13 |
Family
ID=13548320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7447583A Pending JPS59200411A (en) | 1983-04-27 | 1983-04-27 | Tantalum electrolytic condenser anode element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59200411A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55151325A (en) * | 1979-05-15 | 1980-11-25 | Nichicon Capacitor Ltd | Sintered electrolytic condenser |
JPS5713733A (en) * | 1980-06-16 | 1982-01-23 | Emhart Ind | Capacitor |
-
1983
- 1983-04-27 JP JP7447583A patent/JPS59200411A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55151325A (en) * | 1979-05-15 | 1980-11-25 | Nichicon Capacitor Ltd | Sintered electrolytic condenser |
JPS5713733A (en) * | 1980-06-16 | 1982-01-23 | Emhart Ind | Capacitor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6010772B2 (en) | Manufacturing method of solid electrolytic capacitor | |
CN103137330A (en) | Wet electrolytic capacitor with gel-based electrolyte | |
JP2009010238A (en) | Solid-state electrolytic capacitor | |
JP2007180424A (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JPH06505829A (en) | Anode for porous electrolysis | |
JP5232899B2 (en) | Solid electrolytic capacitor | |
JP2008182098A (en) | Solid electrolytic capacitor and its manufacturing method | |
JP4931776B2 (en) | Solid electrolytic capacitor | |
JPS59200411A (en) | Tantalum electrolytic condenser anode element | |
JP2007180440A (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JP7028481B2 (en) | Electrode members for electrolytic capacitors and electrolytic capacitors | |
JP2006278789A (en) | Solid electrolytic capacitor and its fabrication process | |
JP4803741B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP2004014667A (en) | Solid electrolytic capacitor | |
JP5091710B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JP2003086464A (en) | Solid electrolytic capacitor | |
JP2008263167A (en) | Solid electrolytic capacitor and method of producing the same | |
JPS63124511A (en) | Aluminum solid electrolytic capacitor | |
US4517626A (en) | Solid electrolyte capacitor anode assembly | |
JP4818006B2 (en) | Solid electrolytic capacitor element, manufacturing method thereof and solid electrolytic capacitor | |
US3222751A (en) | Preanodization of tantalum electrodes | |
JP2775762B2 (en) | Solid electrolytic capacitors | |
JP2010109265A (en) | Solid electrolytic capacitor | |
JP3123083B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JP2009176887A (en) | Solid electrolytic capacitor |