JPH09129512A - Tantalum solid electrolytic capacitor - Google Patents

Tantalum solid electrolytic capacitor

Info

Publication number
JPH09129512A
JPH09129512A JP30043995A JP30043995A JPH09129512A JP H09129512 A JPH09129512 A JP H09129512A JP 30043995 A JP30043995 A JP 30043995A JP 30043995 A JP30043995 A JP 30043995A JP H09129512 A JPH09129512 A JP H09129512A
Authority
JP
Japan
Prior art keywords
layer
fine powder
tantalum
silver paste
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30043995A
Other languages
Japanese (ja)
Inventor
Shinji Sano
真二 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lincstech Circuit Co Ltd
Original Assignee
Hitachi AIC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi AIC Inc filed Critical Hitachi AIC Inc
Priority to JP30043995A priority Critical patent/JPH09129512A/en
Publication of JPH09129512A publication Critical patent/JPH09129512A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a clearance between a carbon layer and a silver paste layer from being caused and enhance high frequency characteristics by a method wherein a metal layer composed of a fine powder of gold or silver or palladium or a fine powder of these mixtures is formed between a carbon layer and a silver paste layer. SOLUTION: Liquid in which a fine powder of gold or silver or palladium or a fine powder of these mixtures is dispersed in organic liquid at molecular weight of 74 to 154 at boiling point of 58 to 220 deg.C is applied onto a carbon layer 4, to form a metal layer 6 dried and formed. Next, silver paste is applied onto the metal layer 6 to form a silver paste layer 5 to make a tantalum capacitor element 7. As viscosity of the metal layer 6 is low, it is easy to enter a recess of the carbon layer 4, so that a clearance cannot be caused and equivalent series resistance is small. Accordingly, high frequency characteristics can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本考案は、タンタル固体電解コン
デンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tantalum solid electrolytic capacitor.

【0002】[0002]

【従来の技術】図3に示す如く、タンタル固体電解コン
デンサは、タンタル金属微粉末に陽極導出線1を埋植
し、プレスにてタンタル金属微粉末を圧縮しペレットと
し、これを焼結した多孔質ペレット2の表面に誘電体で
ある酸化皮膜を生成し、この誘電体である酸化皮膜を生
成した多孔質ペレット2を硝酸マンガン溶液に浸漬し、
次いで、硝酸マンガン溶液が付着した多孔質ペレット2
に熱を加え硝酸マンガン溶液を熱分解し、二酸化マンガ
ン層3を析出させる。その後多孔質ペレット2に硝酸マ
ンガン溶液を浸漬→硝酸マンガンの熱分解→二酸化マン
ガン層3の析出の作業を行い、これらの作業を数回繰り
返す。
2. Description of the Related Art As shown in FIG. 3, in a tantalum solid electrolytic capacitor, an anode lead wire 1 is embedded in fine tantalum metal powder, and the fine tantalum metal powder is compressed into pellets by a press, which is then sintered into a porous structure. An oxide film that is a dielectric is formed on the surface of the porous pellet 2, and the porous pellet 2 that has formed the oxide film that is a dielectric is immersed in a manganese nitrate solution,
Then, the porous pellet 2 to which the manganese nitrate solution is attached
Is heated to thermally decompose the manganese nitrate solution to deposit the manganese dioxide layer 3. Thereafter, the manganese nitrate solution is dipped in the porous pellet 2 → the pyrolysis of manganese nitrate → the precipitation of the manganese dioxide layer 3 is performed, and these operations are repeated several times.

【0003】次いで多孔質ペレット2の表面に析出した
二酸化マンガン層3の表面にカーボンペーストを塗布し
た後、乾燥し、カーボン層4を形成する。次にカーボン
層4の表面に銀ペーストを塗布し銀ペースト層5を形成
しタンタルコンデンサ素子7とする。タンタルコンデン
サ素子7から導出している陽極導出線1の必要部分を残
して切断した後、洋白からなるリードフレームである外
部電極8を抵抗溶接9にてタンタルコンデンサ素子7の
陽極導出線1の先端部に取り付け陽極外部電極8Aとす
る。次に外部電極8をはんだ付け13にてタンタルコン
デンサ素子7に取り付け陰極外部電極8Bとする。次い
でトランスモールドにてエポキシ樹脂からなるモールド
樹脂で外装10を行い、外部電極8として使用する以外
のリードフレームを切断し、次に外部電極8であるリー
ドフレームを外装10に沿ってフォーミングし、タンタ
ル固体電解コンデンサを製造する。
Next, a carbon paste is applied to the surface of the manganese dioxide layer 3 deposited on the surface of the porous pellet 2 and then dried to form a carbon layer 4. Next, a silver paste is applied on the surface of the carbon layer 4 to form a silver paste layer 5 to form a tantalum capacitor element 7. After cutting the anode lead wire 1 derived from the tantalum capacitor element 7 while leaving a necessary portion, an external electrode 8 which is a lead frame made of nickel silver is resistance-welded 9 to the anode lead wire 1 of the tantalum capacitor element 7. It is attached to the tip and used as the anode external electrode 8A. Next, the external electrode 8 is attached to the tantalum capacitor element 7 by soldering 13 to form a cathode external electrode 8B. Then, the outer casing 10 is formed by a mold resin made of epoxy resin by a trans mold, the lead frame other than the one used as the external electrode 8 is cut, and then the lead frame which is the external electrode 8 is formed along the outer casing 10 by tantalum. Manufacture solid electrolytic capacitors.

【0004】[0004]

【発明が解決しようとする課題】最近機器の高性能化に
ともないタンタル固体電解コンデンサも特性の改善を迫
られており、特に高周波特性の優れたタンタル固体電解
コンデンサの要求が多くなってきている。このため等価
直列抵抗を小さくすることにより高周波特性の改善を図
る動きが強まっている。しかし、従来のタンタル固体電
解コンデンサは、図4に示す如く、陰極層を構成する二
酸化マンガン層3の表面に凹凸があるため、カーボン層
4の表面も凹凸になり、カーボン層4の上に形成される
銀ペースト層5は比較的粘度の高い銀ペーストを使用す
るためカーボン層4の凹部11に銀ペーストが入り込め
ず、カーボン層4と銀ペースト層5の間に空隙12が出
来やすいため実接続面積が小さくなり、等価直列抵抗が
大となり高周波特性が悪くなる問題があった。
Recently, the performance of tantalum solid electrolytic capacitors has been required to be improved as the performance of equipment has improved, and there has been an increasing demand for tantalum solid electrolytic capacitors having excellent high frequency characteristics. Therefore, there is an increasing trend to improve high frequency characteristics by reducing the equivalent series resistance. However, in the conventional tantalum solid electrolytic capacitor, as shown in FIG. 4, since the surface of the manganese dioxide layer 3 forming the cathode layer has irregularities, the surface of the carbon layer 4 also becomes irregular and is formed on the carbon layer 4. Since the silver paste layer 5 to be used is a silver paste having a relatively high viscosity, the silver paste cannot enter the recesses 11 of the carbon layer 4, and a void 12 is easily formed between the carbon layer 4 and the silver paste layer 5 so that it is actually formed. There is a problem that the connection area becomes small, the equivalent series resistance becomes large, and the high frequency characteristics deteriorate.

【0005】[0005]

【課題を解決するための手段】本発明はかかる問題点を
解決するため、図1に示す如く、タンタル金属微粉末に
陽極導出線1を埋設しプレス圧縮したペレットを焼結
し、多孔質ペレット2とし、この多孔質ペレット2に誘
電体である酸化皮膜を生成し、この誘電体である酸化皮
膜を生成した多孔質ペレット2を硝酸マンガン液に浸漬
し、次いで硝酸マンガン溶液が附着した多孔質ペレット
2に熱を加え硝酸マンガンを熱分解し、二酸化マンガン
層3を析出させる。多孔質ペレット2に硝酸マンガン溶
液を浸漬→硝酸マンガンの熱分解→二酸化マンガン層3
の析出の作業を行い、これらの作業を数回繰り返す。次
に、多孔質ペレット2の表面に析出した二酸化マンガン
層3の表面にカーボンペーストを塗布した後、乾燥し、
カーボン層4を形成する。
In order to solve the above problems, the present invention, as shown in FIG. 1, embeds anode lead wire 1 in tantalum metal fine powder and press-presses the pellet to sinter the porous pellet. 2, the porous pellets 2 are formed with an oxide film which is a dielectric, and the porous pellets 2 having an oxide film which is a dielectric are immersed in a manganese nitrate solution, and then a manganese nitrate solution is attached to the porous pellets 2. Heat is applied to the pellets 2 to thermally decompose manganese nitrate to deposit the manganese dioxide layer 3. Immersing a manganese nitrate solution in the porous pellet 2 → thermal decomposition of manganese nitrate → manganese dioxide layer 3
Is performed and these operations are repeated several times. Next, a carbon paste is applied to the surface of the manganese dioxide layer 3 deposited on the surface of the porous pellet 2 and then dried,
The carbon layer 4 is formed.

【0006】次いで、カーボン層4の上に金又は銀ある
いはパラジウムの微粉末またはこれらの混合物の微粉末
を分子量が74〜154で沸点が58〜220℃の有機
液体中に分散させた液体を塗布し、乾燥して形成した金
属層6を形成することにより、図2に示す如く金属層6
は粘度が低いためカーボン層4の凹部11入りやすく空
隙が出来ず等価直列抵抗が小となり高周波特性が改善さ
れる。
Next, a liquid in which fine powder of gold, silver or palladium or a fine powder of a mixture thereof is dispersed in an organic liquid having a molecular weight of 74 to 154 and a boiling point of 58 to 220 ° C. is applied on the carbon layer 4. Then, by forming the metal layer 6 formed by drying, as shown in FIG.
Has a low viscosity, it is easy to enter the recess 11 of the carbon layer 4 and voids are not formed, so that the equivalent series resistance becomes small and the high frequency characteristics are improved.

【0007】[0007]

【発明の実施の形態】本発明の実施例をチップ形タンタ
ル固体電解コンデンサを例に説明する。平均粒径3μ
m、2次粒径約100μmのタンタル金属微粉末に陽極
導出線1であるタンタル線を埋植しプレスで圧縮成形し
てタンタルペレットとする。このタンタルペレットを1
500〜1600℃の真空中で焼結し、多孔質ペレット
2を形成する。次いで多孔質ペレット2を純水で洗浄し
た後、0.1%の硝酸液中に浸漬し、多孔質ペレット2
より導出している陽極導出線1と0.1%の硝酸液の間
に電圧を加えて化成を行い、誘電体である五酸化タンタ
ルの酸化皮膜を生成する。次に、酸化皮膜を生成した多
孔質ペレット2を硝酸マンガン溶液に浸漬し、次いで硝
酸マンガン溶液の附着した多孔質ペレット2に熱を加え
硝酸マンガン溶液を熱分解し、二酸化マンガン層3を析
出させる。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described by taking a chip type tantalum solid electrolytic capacitor as an example. Average particle size 3μ
m, a tantalum metal fine powder having a secondary particle diameter of about 100 μm is embedded with a tantalum wire serving as the anode lead wire 1 and compression molded by a press to obtain a tantalum pellet. 1 tantalum pellet
The porous pellets 2 are formed by sintering in a vacuum of 500 to 1600 ° C. Then, the porous pellets 2 are washed with pure water and then immersed in a 0.1% nitric acid solution to obtain the porous pellets 2.
A voltage is applied between the anode lead-out wire 1 and the 0.1% nitric acid solution, which is led out, to perform chemical conversion to form an oxide film of tantalum pentoxide as a dielectric. Next, the porous pellets 2 having an oxide film formed thereon are dipped in a manganese nitrate solution, and then heat is applied to the porous pellets 2 to which the manganese nitrate solution is attached to thermally decompose the manganese nitrate solution to deposit the manganese dioxide layer 3. .

【0008】多孔質ペレット2を硝酸マンガン溶液に浸
漬→硝酸マンガンの熱分解→二酸化マンガン層3の析出
の作業を行い、これらの作業を数回繰り返す。次いで多
孔質ペレット2の表面に析出した二酸化マンガン層3の
表面にカーボンペーストを塗布した後乾燥し、カーボン
層4を形成する。このカーボン層4の上に約3μm〜1
0μmの金の微粉末をトルエンに分散させた溶液を塗布
し、約250℃で乾燥を行い金属層6を形成する。この
金属層6は、前記金の他に銀又はパラジウムあるいは
金、銀、パラジウムの混合物の微粉末をトルエンに分散
させた溶液を塗布してもよい。
The operations of immersing the porous pellets 2 in a manganese nitrate solution → thermal decomposition of manganese nitrate → precipitation of the manganese dioxide layer 3 are repeated several times. Next, a carbon paste is applied to the surface of the manganese dioxide layer 3 deposited on the surface of the porous pellet 2 and then dried to form a carbon layer 4. About 3 μm to 1 on this carbon layer 4
A solution of 0 μm fine gold powder dispersed in toluene is applied and dried at about 250 ° C. to form the metal layer 6. The metal layer 6 may be coated with a solution prepared by dispersing fine powder of silver or palladium or a mixture of gold, silver and palladium in toluene in addition to the above gold.

【0009】次に金属層6の上に銀ペーストを塗布し銀
ペースト層5を形成しタンタルコンデンサ素子7とす
る。タンタルコンデンサ素子7から導出している陽極導
出線1の必要部分を残して切断した後、洋白からなるリ
ードフレームである外部電極8を抵抗溶接9にてタンタ
ルコンデンサ素子7の陽極導出線1の先端部に取り付け
陽極外部電極8Aとする。次に外部電極8をはんだ付け
13にてタンタルコンデンサ素子7に取付け陰極外部の
電極8Bとする。次にトランスファーモールドにてエポ
キシ樹脂からなるモールド樹脂で外装10を行い、外部
電極8として使用する以外のリードフレームを切断し、
次に外部電極8であるリードフレームを外装10に沿っ
てフォーミングし、タンタル固体電解コンデンサを製造
する。
Next, a silver paste is applied on the metal layer 6 to form a silver paste layer 5 to form a tantalum capacitor element 7. After cutting the anode lead wire 1 derived from the tantalum capacitor element 7 while leaving a necessary portion, an external electrode 8 which is a lead frame made of nickel silver is resistance-welded 9 to the anode lead wire 1 of the tantalum capacitor element 7. It is attached to the tip and used as the anode external electrode 8A. Next, the external electrode 8 is attached to the tantalum capacitor element 7 by soldering 13 to form an electrode 8B outside the cathode. Next, the outer casing 10 is formed by a mold resin made of epoxy resin by transfer molding, and the lead frame other than the one used as the external electrode 8 is cut,
Next, the lead frame which is the external electrode 8 is formed along the exterior 10 to manufacture a tantalum solid electrolytic capacitor.

【0010】[0010]

【発明の効果】本発明のタンタル固体電解コンデンサは
以上の様に製造させるので以下に記載する様な特有な効
果を奏する。従来品と本発明品との等価直列抵抗を測定
周波数100KHzで比較したのが図5である。図5に
示す如く、従来品の等価直列抵抗の平均値が0.13Ω
であるのに対して本発明品の等価直列接続の平均値が
0.055Ωであり、従来品に比較して等価直列抵抗は
1/2以下となり高周波特性が大幅に改善される。
Since the tantalum solid electrolytic capacitor of the present invention is manufactured as described above, it has a unique effect as described below. FIG. 5 compares the equivalent series resistances of the conventional product and the product of the present invention at a measurement frequency of 100 KHz. As shown in Fig. 5, the average equivalent series resistance of the conventional product is 0.13Ω.
On the other hand, the average value of the equivalent series connection of the product of the present invention is 0.055Ω, the equivalent series resistance is 1/2 or less as compared with the conventional product, and the high frequency characteristics are significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の断面図を示す。FIG. 1 shows a sectional view of the present invention.

【図2】本発明の陰極の詳細な断面図を示す。FIG. 2 shows a detailed cross-sectional view of the cathode of the present invention.

【図3】従来の断面図を示す。FIG. 3 shows a conventional cross-sectional view.

【図4】従来の陰極の詳細な断面図を示す。FIG. 4 shows a detailed cross-sectional view of a conventional cathode.

【図5】本発明と従来の等価直列抵抗値の比較を示す。FIG. 5 shows a comparison between the present invention and a conventional equivalent series resistance value.

【符号の説明】[Explanation of symbols]

1…陽極導出線 2…多孔質ペレット 3…二酸化マンガン層 4…カーボン層 5…銀ペースト層 6…金属層 7…コンデンサ素子 8…外部電極 8A…陽極外部電極 8B…陰極外部電極 9…抵抗溶接 10…外装 11…凹部 12…空隙 13…はんだ付け DESCRIPTION OF SYMBOLS 1 ... Anode lead wire 2 ... Porous pellet 3 ... Manganese dioxide layer 4 ... Carbon layer 5 ... Silver paste layer 6 ... Metal layer 7 ... Capacitor element 8 ... External electrode 8A ... Anode external electrode 8B ... Cathode external electrode 9 ... Resistance welding 10 ... Exterior 11 ... Recess 12 ... Void 13 ... Soldering

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 タンタル金属微粉末内に陽極線を埋設し
プレス圧縮したペレット用い、このペレットを焼結し、
多孔質ペレットとしたものの表面に、誘電体である酸化
皮膜を生成し、この酸化皮膜上に二酸化マンガン層、カ
ーボン層、銀ペースト層の陰極層を順次形成してなるタ
ンタル固体電解コンデンサにおいて、前記カーボン層と
銀ペースト層の間に金又は銀あるいはパラジウムの微粉
末またはこれらの混合物の微粉末からなる金属層を設け
たことを特徴とするタンタル固体電解コンデンサ。
1. A pellet obtained by embedding an anode wire in tantalum metal fine powder and press-compressing, and sintering the pellet,
On the surface of the porous pellet, an oxide film which is a dielectric is formed, and a manganese dioxide layer, a carbon layer, and a cathode layer of a silver paste layer are sequentially formed on this oxide film, in the tantalum solid electrolytic capacitor, A tantalum solid electrolytic capacitor characterized in that a metal layer made of fine powder of gold, silver or palladium or a fine powder of a mixture thereof is provided between a carbon layer and a silver paste layer.
【請求項2】 請求項1において、微粉末の分子量が7
4〜154で沸点が58〜220℃の有機液体中に分散
させた液体を用いて金属層を形成することを特徴とする
タンタル固体電解コンデンサ。
2. The fine powder according to claim 1, having a molecular weight of 7
A tantalum solid electrolytic capacitor, characterized in that a metal layer is formed by using a liquid dispersed in an organic liquid having a boiling point of 58 to 220 ° C. and a boiling point of 58 to 220 ° C.
JP30043995A 1995-10-26 1995-10-26 Tantalum solid electrolytic capacitor Pending JPH09129512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30043995A JPH09129512A (en) 1995-10-26 1995-10-26 Tantalum solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30043995A JPH09129512A (en) 1995-10-26 1995-10-26 Tantalum solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH09129512A true JPH09129512A (en) 1997-05-16

Family

ID=17884819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30043995A Pending JPH09129512A (en) 1995-10-26 1995-10-26 Tantalum solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH09129512A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6661644B2 (en) 2001-10-05 2003-12-09 Matsushita Electric Industrial Co., Ltd. Capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6661644B2 (en) 2001-10-05 2003-12-09 Matsushita Electric Industrial Co., Ltd. Capacitor

Similar Documents

Publication Publication Date Title
US4017773A (en) Solid valve-metal capacitor with buried graphite in the particles in the electrolyte
US7221555B2 (en) Surface mount MELF capacitor
US20080123251A1 (en) Capacitor device
US3850764A (en) Method of forming a solid tantalum capacitor
US6914770B1 (en) Surface mount flipchip capacitor
JP3536951B2 (en) Tantalum solid electrolytic capacitor
JPH09129512A (en) Tantalum solid electrolytic capacitor
CN100369169C (en) Producing method for solid electrolytic capacitor
JPH09148198A (en) Tantalum solid electrolytic capacitor
JP2000068160A (en) Ta SOLID ELECTROLYTIC CAPACITOR AND ITS MANUFACTURE
JPS6334917A (en) Capacitor
JPH09120935A (en) Tantalum solid-state electrolytic capacitor
JPH09213570A (en) Chip type tantalum solid state electrolytic capacitor
JPH05326341A (en) Manufacture of solid electrolytic capacitor
JPH06132167A (en) Manufacture of solid electrolytic capacitor
JPH1092695A (en) Solid electrolytic chip capacitor and its manufacturing method
JPH09205042A (en) Production of tantalum capacitor
US3222751A (en) Preanodization of tantalum electrodes
JPH09293646A (en) Tantalum solid electrolytic capacitor
JP2008205190A (en) Solid electrolytic capacitor and its manufacturing method
JP2513369B2 (en) Method for manufacturing solid electrolytic capacitor
JPH09148189A (en) Dip tantalum solid electrolytic capacitor
JPH0521278A (en) Solid electrolytic capacitor and its manufacture
JP2002033247A (en) Solid electrolytic capacitor and method of manufacturing the same
JP2006013031A (en) Solid-state electrolytic capacitor and its manufacturing method