JPH09213570A - Chip type tantalum solid state electrolytic capacitor - Google Patents

Chip type tantalum solid state electrolytic capacitor

Info

Publication number
JPH09213570A
JPH09213570A JP8033085A JP3308596A JPH09213570A JP H09213570 A JPH09213570 A JP H09213570A JP 8033085 A JP8033085 A JP 8033085A JP 3308596 A JP3308596 A JP 3308596A JP H09213570 A JPH09213570 A JP H09213570A
Authority
JP
Japan
Prior art keywords
capacitor
tantalum
partition line
external electrode
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8033085A
Other languages
Japanese (ja)
Inventor
Shinji Sano
真二 佐野
Kosuke Nakamura
浩介 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lincstech Circuit Co Ltd
Original Assignee
Hitachi AIC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi AIC Inc filed Critical Hitachi AIC Inc
Priority to JP8033085A priority Critical patent/JPH09213570A/en
Publication of JPH09213570A publication Critical patent/JPH09213570A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent generation of voids and unfilled parts, by specifying the distance between a partition line and the upper surface of a capacitor. SOLUTION: A tantalum capacitor element 6 wherein an anode external electrode 7A and a cathode external electrode 7B are fixed is accommodated in an upper metal mold wherein a distance 19 between a partition line 9 and the upper surface of a capacitor is set to be 0.1-0.3mm and a lower metal mold wherein a standoff part is eliminated. A sheath 22 is formed by using a transfer mold system wherein sheath resin composed of epoxy resin is injected from a resin gate of the partition line 9 surface. Thereby the fraction defective due to voids and unfilled parts which are contained in sheath resin can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はチップ形タンタル固
体電解コンデンサに関する。
TECHNICAL FIELD The present invention relates to a chip type tantalum solid electrolytic capacitor.

【0002】[0002]

【従来の技術】チップ形固体電解コンデンサは、図3に
示す如く、タンタル金属微粉末に陽極導出線1を埋植
し、プレスにてタンタル金属微粉末を圧縮成形してペレ
ットとし、このペレットを焼結し多孔質ペレット2とす
る。次にこの多孔質ペレット2の表面に誘電体である酸
化膜を生成し、この酸化膜を生成した多孔質ペレットを
硝酸マンガン溶液に浸漬し、次に硝酸マンガン溶液が付
着した多孔質ペレット2に熱を加え硝酸マンガン溶液を
分解し、二酸化マンガン層3を析出させる。その後、多
孔質ペレット2に硝酸マンガン溶液を浸漬→硝酸マンガ
ンを熱分解→二酸化マンガン層3の析出の作業を数回繰
り返す。
2. Description of the Related Art In a chip type solid electrolytic capacitor, as shown in FIG. 3, an anode lead wire 1 is embedded in fine tantalum metal powder, and the fine tantalum metal powder is compression molded into pellets by pressing. Sinter to obtain porous pellet 2. Next, an oxide film, which is a dielectric, is formed on the surface of the porous pellet 2, the porous pellet having the oxide film formed is immersed in a manganese nitrate solution, and then the porous pellet 2 to which the manganese nitrate solution is adhered is formed. The manganese nitrate solution is decomposed by applying heat to deposit the manganese dioxide layer 3. After that, the operations of immersing the manganese nitrate solution in the porous pellets 2 → thermal decomposition of manganese nitrate → precipitation of the manganese dioxide layer 3 are repeated several times.

【0003】次いで、多孔質ペレット2の表面に析出し
た二酸化マンガン層3の上にカーボンペーストを塗布し
た後、乾燥し、カーボン層4を形成する。次に、このカ
ーボン層4の表面に銀ペーストを塗布し、銀ペースト層
5を形成しタンタルコンデンサ素子6とする。次いで、
タンタルコンデンサ素子6から導出している陽極導出線
1の必要部分を残して切断した後、洋白からなるリード
フレームである外部電極7を抵抗溶接12にて陽極導出
線1に抵抗溶接12にて陽極外部電極7Aとする。次
に、リードフレームである外部電極7をはんだ付け13
にて取り付け陰極外部電極7Bとする。
Next, a carbon paste is applied on the manganese dioxide layer 3 deposited on the surface of the porous pellet 2 and then dried to form a carbon layer 4. Next, a silver paste is applied to the surface of the carbon layer 4 to form a silver paste layer 5 to form a tantalum capacitor element 6. Then
After the anode lead wire 1 derived from the tantalum capacitor element 6 is cut while leaving a necessary portion, an external electrode 7 which is a lead frame made of nickel silver is resistance-welded 12 to the anode lead-out wire 1 by resistance welding 12. The anode external electrode is 7A. Next, the external electrode 7 which is a lead frame is soldered 13
And is used as a cathode external electrode 7B.

【0004】次いで、図4に示す如く陽極外部電極7
A、陰極外部電極7Bを取り付けたタンタルコンデンサ
素子6を上金型14と下金型15に入れ、パーテーンシ
ョンライン9上のレジンゲート16よりエポキシ樹脂か
らなる外装樹脂を注入するトランスファーモールドにて
モールド外装8を行い、外部電極7であるリードフレー
ムを外装8に沿ってフォーミングを行い、チップ形固体
電解コンデンサとする。
Next, as shown in FIG. 4, the anode external electrode 7
A, the tantalum capacitor element 6 to which the cathode external electrode 7B is attached is placed in the upper mold 14 and the lower mold 15, and is molded by transfer molding in which the exterior resin made of epoxy resin is injected from the resin gate 16 on the partition line 9. The exterior 8 is formed, and the lead frame, which is the external electrode 7, is formed along the exterior 8 to form a chip-type solid electrolytic capacitor.

【0005】[0005]

【発明が解決しようとする課題】従来のチップ形タンタ
ル固体電解コンデンサは、図3に示す如く、タンタルコ
ンデンサ素子6を形成した後、このタンタルコンデンサ
素子6に陽極外部電極7A、陰極外部電極7Bを取り付
ける。次いで、図4に示す如く、この陽極外部電極7A
と陰極外部電極7Bとを結ぶ線を上金型4と下金型とが
含まれる部分即ちパーテーションライン9とする金型に
よってエポキシ樹脂からなる外装樹脂でトランスファー
モールドを行いモールド外装8としている。
In the conventional chip type tantalum solid electrolytic capacitor, as shown in FIG. 3, after forming a tantalum capacitor element 6, an anode external electrode 7A and a cathode external electrode 7B are formed on the tantalum capacitor element 6. Install. Next, as shown in FIG. 4, this anode external electrode 7A
The line connecting the cathode external electrode 7B with the upper mold 4 and the lower mold is the partition line 9, and the mold outer casing 8 is formed by transfer molding with an outer resin made of epoxy resin.

【0006】このエポキシ樹脂からなる外装樹脂は、タ
ンタルコンデンサ素子6を外装樹脂の熱膨張による力の
影響から守るため、200μm以下の大きさのフィラー
が多量に含まれているので、トランスファーモールドに
てモールド外装8を行う際のエポキシ樹脂の流れが悪
い。前記エポキシ樹脂をパーティションライン9上に設
けられているレジンゲート16より金型内に注入する
と、パーティションライン9とコンデンサ上面10との
空間は障害物が少くエポキシ樹脂注入抵抗の小さな部分
と、パーテーションライン9より下側の障害物が多くエ
ポキシ樹脂注入抵抗の大きな部分とではエポキシ樹脂の
流量や流速17が異り、エポキシ樹脂より発生するガス
や、エポキシ樹脂に含まれている空気の金型外への廃出
が充分に出来ずエポキシ樹脂の合流点付近18では、ボ
イドや、未充填部分が発生することが多い。
Since the exterior resin made of this epoxy resin protects the tantalum capacitor element 6 from the influence of the force due to the thermal expansion of the exterior resin, it contains a large amount of filler having a size of 200 μm or less. The flow of the epoxy resin when performing the mold exterior 8 is bad. When the epoxy resin is injected into the mold from the resin gate 16 provided on the partition line 9, the space between the partition line 9 and the capacitor upper surface 10 has few obstacles and a small epoxy resin injection resistance, and the partition line. The flow rate of the epoxy resin and the flow velocity 17 are different in the part where there are many obstacles below 9 and the epoxy resin injection resistance is large, and the gas generated from the epoxy resin and the air contained in the epoxy resin go out of the mold. In the vicinity 18 where the epoxy resin merges, voids and unfilled parts often occur.

【0007】特に従来のチップ形固体電解コンデンサ
は、パーテーションライン9とコンデンサ上面10との
距離11が0.8〜1.5mmと大きいこともありエポキ
シ樹脂の合流点付近18では、ボイドや未充填部分の発
生が多く、この様なボイドや未充填部分の発生率は工程
内で0.5〜1.5%もあり、不良低減の障害になって
いる。
Particularly, in the conventional chip type solid electrolytic capacitor, the distance 11 between the partition line 9 and the upper surface 10 of the capacitor may be as large as 0.8 to 1.5 mm. There are many parts, and the occurrence rate of such voids and unfilled parts is 0.5 to 1.5% in the process, which is an obstacle to reducing defects.

【0008】[0008]

【課題を解決するための手段】本発明はかかる問題点を
解決するため、図1に示す如く、タンタル金属微粉末に
陽極導出線1を埋植し、プレス圧縮したペレットを焼結
した多孔質ペレット2に酸化膜の生成、この酸化膜の表
面に二酸化マンガン層3、カーボン層4、銀ペースト層
5を形成し、タンタルコンデンサ素子6とする。このタ
ンタルコンデンサ素子6に陽極外部電極7Aおよび陰極
外部電極7Bを取付ける。次に図2に示す如く、タンタ
ルコンデンサ素子6に陽極外部電極7Aおよび陰極外部
電極7Bを取り付けた後、このタンタルコンデンサ素子
6を上金型20と下金型15に入れ、この金型内にパー
テーションライン9面に設けられたレジンゲート16よ
りエポキシ樹脂を注入する。
In order to solve the above problems, the present invention, as shown in FIG. 1, embeds an anode lead-out wire 1 in fine tantalum metal powder and sinters a pellet obtained by press-compressing a porous material. An oxide film is formed on the pellet 2, and a manganese dioxide layer 3, a carbon layer 4, and a silver paste layer 5 are formed on the surface of the oxide film to form a tantalum capacitor element 6. An anode external electrode 7A and a cathode external electrode 7B are attached to this tantalum capacitor element 6. Next, as shown in FIG. 2, after the anode external electrode 7A and the cathode external electrode 7B are attached to the tantalum capacitor element 6, the tantalum capacitor element 6 is put into the upper mold 20 and the lower mold 15, and is placed in this mold. Epoxy resin is injected from the resin gate 16 provided on the surface of the partition line 9.

【0009】しかし、図4に示す如く、パーテーション
ライン9とコンデンサ上面10との距離11が従来の
0.5〜1.5mmであると上金型14を使用すると、パ
ーテーションライン9とコンデンサ上面10の障害物の
少ない空間と、パーテーションライン9より下側の障害
物の多い空間とではエポキシ樹脂の流量や流速17が異
りボイドや未充填部分が発生する。このボイドや未充填
部分の発生を防止するため、図2に示す如く、パーテー
ションライン9とコンデンサ上面10との距離19が
0.1〜0.3mmである上金型20を使用することによ
りパーテーションライン9とコンデンサ上面10との間
のエポキシ樹脂の注入抵抗の小さな空間とパーテーショ
ンライン9より下側の障害物が多くエポキシ樹脂混入抵
抗の大きな空間とのエポキシ樹脂の注入抵抗を同一にす
ることにより、パーテーションライン9とコンデンサ上
面10との間の室内とパーテーションライン9より下側
の空間とのエポキシ樹脂の流量や流速17が同一とな
る。
However, as shown in FIG. 4, when the distance 11 between the partition line 9 and the upper surface 10 of the capacitor is 0.5 to 1.5 mm, which is the conventional value, when the upper mold 14 is used, the partition line 9 and the upper surface 10 of the capacitor are used. In the space with few obstacles and the space with many obstacles below the partition line 9, the epoxy resin flow rate and the flow velocity 17 are different, and voids and unfilled portions are generated. In order to prevent the occurrence of voids and unfilled portions, as shown in FIG. 2, by using an upper mold 20 having a distance 19 between the partition line 9 and the upper surface 10 of the capacitor of 0.1 to 0.3 mm, the partition is used. By making the injection resistance of the epoxy resin the same between the line 9 and the capacitor upper surface 10 and the space where the injection resistance of the epoxy resin is small and the space below the partition line 9 where there are many obstacles and where the resistance of the epoxy resin is large. The flow rate of the epoxy resin and the flow velocity 17 are the same in the space between the partition line 9 and the capacitor upper surface 10 and in the space below the partition line 9.

【0010】このためエポキシ樹脂より発生するガス
や、エポキシ樹脂に含まれる空気の金型外への廃出が充
分出来るためボイドや、未充填部分の工程中での発生率
が皆無となった。なお、前記した如く、パーテーション
ライン9とコンデンサ上面10との間の空間とパーテー
ションライン9より下側の空間とのエポキシ樹脂の流量
や流速17を同一にするため、図3に示すコンデンサ底
面のスタンドオフ21部分を消除し、図1に示す如くコ
ンデンサ底面を平にすることにより、ボイドや未充填部
分の工程中での発生率がより改善される。
Therefore, since the gas generated from the epoxy resin and the air contained in the epoxy resin can be sufficiently discharged out of the mold, voids and the generation rate of the unfilled portion in the process are completely eliminated. As described above, in order to make the flow rate 17 and the flow velocity 17 of the epoxy resin in the space between the partition line 9 and the upper surface 10 of the capacitor and the space below the partition line 9 the same, the stand on the bottom surface of the capacitor shown in FIG. By eliminating the off 21 part and flattening the bottom surface of the capacitor as shown in FIG. 1, the occurrence rate of voids and unfilled parts in the process is further improved.

【0011】[0011]

【発明の実施の形態】本発明の実施例をチップ形タンタ
ル固体電解コンデンサを例に図1によって証明する。平
均粒径3μm、2次粒径約100μmのタンタル金属微
粉末を用いてのタンタル微粉末内に陽極導出線1となる
タンタル線を埋植し、このタンタル微粉末をプレス圧縮
成形してタンタルペレットとする。このタンタルペレッ
トを1500〜1600℃の真空中で焼結し、多孔質ペ
レット2を純水で洗浄した後、0.1%の硝酸液中に浸
漬し、多孔質ペレット2より導出している陽極導出線1
と0.1%の硝酸液間に電圧を加えて化成を行い、誘電
体である五酸化タンタルの酸化膜を生成する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be demonstrated with reference to FIG. 1 by taking a chip type tantalum solid electrolytic capacitor as an example. A tantalum wire serving as the anode lead wire 1 is embedded in a tantalum fine powder having a mean particle diameter of 3 μm and a secondary particle diameter of about 100 μm, and the tantalum fine powder is press-compressed to form a tantalum pellet. And The tantalum pellets were sintered in a vacuum of 1500 to 1600 ° C., the porous pellets 2 were washed with pure water, then immersed in a 0.1% nitric acid solution, and the anodes derived from the porous pellets 2 were washed. Lead-out line 1
Then, a voltage is applied between 0.1% nitric acid solution and 0.1% nitric acid solution to perform chemical conversion to form an oxide film of tantalum pentoxide as a dielectric.

【0012】次に、この酸化膜を生成した多孔質ペレッ
ト2を硝酸マンガン液に浸漬し、次いで硝酸マンガン溶
液の付着した多孔質ペレット2に熱を加え硝酸マンガン
溶液を熱分解し、二酸化マンガン層3を析出させる。多
孔質ペレット2を硝酸マンガン溶液に浸漬→硝酸マンガ
ンの熱分解→二酸化マンガン層3の析出の作業を5〜1
0回繰り返す。次に、多孔質ペレット2の表面に析出し
た二酸化マンガン層3の表面にカーボンペーストを塗布
した後、乾燥し、カーボン層4を形成する。
Next, the porous pellets 2 on which the oxide film has been formed are immersed in a manganese nitrate solution, and then the porous pellets 2 to which the manganese nitrate solution has adhered are heated to thermally decompose the manganese nitrate solution to form a manganese dioxide layer. Precipitate 3. The porous pellet 2 is dipped in a manganese nitrate solution, the thermal decomposition of manganese nitrate is performed, and the manganese dioxide layer 3 is deposited.
Repeat 0 times. Next, a carbon paste is applied to the surface of the manganese dioxide layer 3 deposited on the surface of the porous pellet 2 and then dried to form a carbon layer 4.

【0013】次いで、このカーボン層4の表面に銀ペー
ストを塗布した後、乾燥し、銀ペースト層5を形成し、
タンタルコンデンサ素子6とする。次に、このタンタル
コンデンサ素子6から導出している陽極導出線1の必要
部分を残して切断した後、洋白からなるリードフレーム
である外部電極7を抵抗溶接12にてタンタルコンデン
サ素子6の陽極導出線1の先端部に取り付け陽極外部電
極7Aとする。次いで、洋白からなるリードフレームで
ある外部電極7をはんだ付け13にてタンタルコンデン
サ素子6に取り付け陰極外部電極7Bとする。
Then, a silver paste is applied to the surface of the carbon layer 4 and then dried to form a silver paste layer 5,
The tantalum capacitor element 6 is used. Next, after cutting the anode lead wire 1 derived from the tantalum capacitor element 6 while leaving a necessary portion, an external electrode 7 which is a lead frame made of nickel silver is resistance-welded 12 to the anode of the tantalum capacitor element 6. The anode external electrode 7A is attached to the tip of the lead wire 1. Then, the external electrode 7 which is a lead frame made of nickel silver is attached to the tantalum capacitor element 6 by soldering 13 to form a cathode external electrode 7B.

【0014】次に、陽極外部電極7Aと陰極外部電極7
Bを取り付けたタンタルコンデンサ素子6を図2に示す
如く、パーテーションライン9とコンデンサ上面10と
の距離19が0.1〜0.3mmになる様な上金型20と
スタンドオフ21部を削除した下金型15とに入れ、パ
ーテーションライン9面のレジンゲート16よりエポキ
シ樹脂からなる外装樹脂を注入するトランスファーモー
ルド方式により外装22を行う。次いで、金型よりコン
デンサを取り出し外装22の外沿に沿って陽極外部電極
7Aと陰極外部電極7Bをフォーミングして、チップ形
固体電解コンデンサとする。
Next, the anode external electrode 7A and the cathode external electrode 7
As shown in FIG. 2, the tantalum capacitor element 6 to which B is attached has the upper mold 20 and the standoff 21 part so that the distance 19 between the partition line 9 and the capacitor upper surface 10 is 0.1 to 0.3 mm. An outer casing 22 is formed by a transfer molding method in which the outer casing resin made of epoxy resin is injected from the resin gate 16 on the surface of the partition line 9 into the lower mold 15. Then, the capacitor is taken out of the mold and the anode external electrode 7A and the cathode external electrode 7B are formed along the outer periphery of the outer package 22 to form a chip-type solid electrolytic capacitor.

【0015】[0015]

【発明の効果】本発明のチップ形タンタル固体電解コン
デンサは以上の様に製造されるので以下に記載する様な
特有な効果を奏する。図5に示す如く、チップ形タンタ
ル固体電解コンデンサのパーテーションラインとコンデ
ンサ上面との距離が小さい程、外装樹脂中に含まれるボ
イドや未充填の不良率が減少する。即ち従来のチップ形
タンタル固体電解コンデンサはパーテーションラインと
コンデンサ上面との距離が0.8〜1.5mmであり、工
程中でのボイドや未充填の不良率が0.5〜1.5%で
あった。しかし本発明を用いることにより前記不良率は
0%となった。
Since the chip type tantalum solid electrolytic capacitor of the present invention is manufactured as described above, it has the following unique effects. As shown in FIG. 5, the smaller the distance between the partition line of the chip-type tantalum solid electrolytic capacitor and the upper surface of the capacitor, the smaller the voids contained in the exterior resin and the unfilled defect rate. That is, in the conventional chip-type tantalum solid electrolytic capacitor, the distance between the partition line and the upper surface of the capacitor is 0.8 to 1.5 mm, and the void or unfilled defect rate during the process is 0.5 to 1.5%. there were. However, the defective rate was 0% by using the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の断面図。FIG. 1 is a cross-sectional view of the present invention.

【図2】本発明の断面図。FIG. 2 is a sectional view of the present invention.

【図3】従来の断面図。FIG. 3 is a conventional sectional view.

【図4】従来の断面図。FIG. 4 is a conventional sectional view.

【図5】パーテーションラインとコンデンサ上面との距
離と不良率の関係。
FIG. 5 shows the relationship between the distance between the partition line and the upper surface of the capacitor and the defect rate.

【符号の説明】[Explanation of symbols]

1…陽極導出線 2…多孔質ペレット 3…二酸化マンガン層 4…カーボン層 5…銀ペースト層 6…タンタルコンデンサ素子 7…外部電極 7A…陽極外部電極 7B…陰極外部電極 8…モールド外装 9…パーテーションライン 10…コンデンサ上面 11…パーテーションラインとコンデンサ上面の距離 12…抵抗溶接 13…はんだ付け 14…上金型 15…下金型 16…レジンゲート 17…流量や流速 18…合流上付近 19…パーテーションラインとコンデンサ上面との距離 20…上金型 21…スタンドオフ 22…外装 DESCRIPTION OF SYMBOLS 1 ... Anode lead wire 2 ... Porous pellet 3 ... Manganese dioxide layer 4 ... Carbon layer 5 ... Silver paste layer 6 ... Tantalum capacitor element 7 ... External electrode 7A ... Anode external electrode 7B ... Cathode external electrode 8 ... Mold exterior 9 ... Partition Line 10 ... Capacitor upper surface 11 ... Distance between partition line and capacitor upper surface 12 ... Resistance welding 13 ... Soldering 14 ... Upper mold 15 ... Lower mold 16 ... Resin gate 17 ... Flow rate and flow velocity 18 ... Near confluence 19 ... Partition line Between the capacitor and the top surface of the capacitor 20 ... Upper mold 21 ... Standoff 22 ... Exterior

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 タンタル金属微粉末内に陽極導出線を埋
植し、このタンタル金属微粉末をプレス圧縮成形したペ
レットを用い、このペレットを焼結し多孔質ペレットと
し、この多孔質ペレットの表面に酸化膜を生成し、この
酸化膜の上に二酸化マンガン層、カーボン層、銀ペース
ト層を形成したタンタルコンデンサ素子に外部電極を取
り付けた後、モールド外装してなるチップ形タンタル固
体電解コンデンサにおいて、パーテーションラインとコ
ンデンサ上面との距離を0.1〜0.3mmとすることを
特徴とするチップ形固体電解コンデンサ。
1. A pellet obtained by embedding an anode lead wire in fine tantalum metal powder and press-compressing the fine tantalum metal powder, and sintering the pellet to obtain a porous pellet, and the surface of the porous pellet. In the chip-type tantalum solid electrolytic capacitor formed by forming an oxide film on the tantalum capacitor element having a manganese dioxide layer, a carbon layer, and a silver paste layer formed on the oxide film, and attaching external electrodes to the tantalum capacitor element. A chip type solid electrolytic capacitor, characterized in that the distance between the partition line and the upper surface of the capacitor is 0.1 to 0.3 mm.
JP8033085A 1996-01-29 1996-01-29 Chip type tantalum solid state electrolytic capacitor Pending JPH09213570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8033085A JPH09213570A (en) 1996-01-29 1996-01-29 Chip type tantalum solid state electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8033085A JPH09213570A (en) 1996-01-29 1996-01-29 Chip type tantalum solid state electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH09213570A true JPH09213570A (en) 1997-08-15

Family

ID=12376864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8033085A Pending JPH09213570A (en) 1996-01-29 1996-01-29 Chip type tantalum solid state electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH09213570A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6891716B2 (en) 2000-11-20 2005-05-10 Epcos Ag Capacitor
US7135754B2 (en) 2003-01-24 2006-11-14 Nec Tokin Corporation Chip type solid electrolytic capacitor having a small size and a simple structure
JP2007103400A (en) * 2005-09-30 2007-04-19 Nec Tokin Corp Lower face electrode-type solid electrolytic capacitor
JP2010258312A (en) * 2009-04-27 2010-11-11 Sanyo Electric Co Ltd Solid electrolytic capacitor and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6891716B2 (en) 2000-11-20 2005-05-10 Epcos Ag Capacitor
US7135754B2 (en) 2003-01-24 2006-11-14 Nec Tokin Corporation Chip type solid electrolytic capacitor having a small size and a simple structure
JP2007103400A (en) * 2005-09-30 2007-04-19 Nec Tokin Corp Lower face electrode-type solid electrolytic capacitor
JP2010258312A (en) * 2009-04-27 2010-11-11 Sanyo Electric Co Ltd Solid electrolytic capacitor and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JPH07320982A (en) Manufacture of capacitor element for tantalum solid electrolytic capacitor
JPH09232196A (en) Composite part
JPH09213570A (en) Chip type tantalum solid state electrolytic capacitor
JP2001244145A (en) Solid electrolytic capacitor
JPH09120935A (en) Tantalum solid-state electrolytic capacitor
JP3536951B2 (en) Tantalum solid electrolytic capacitor
JP3266205B2 (en) Method for manufacturing solid electrolytic capacitor
JPH05326341A (en) Manufacture of solid electrolytic capacitor
JPH09148189A (en) Dip tantalum solid electrolytic capacitor
JP2001358038A (en) Method of manufacturing tantalum electrolytic capacitor
JP4090021B2 (en) Capacitor element in solid electrolytic capacitor, method for manufacturing the capacitor element, and solid electrolytic capacitor using the capacitor element
JPH09129512A (en) Tantalum solid electrolytic capacitor
JPH0226776B2 (en)
JPH0992577A (en) Manufacture of chip-type solid-state electrolytic capacitor
JPH09293646A (en) Tantalum solid electrolytic capacitor
JP3191715B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2003142339A (en) Solid electrolytic capacitor structure and manufacturing method therefor
JPH0992578A (en) Manufacture of chip-type solid-state electrolytic capacitor
JPH09148198A (en) Tantalum solid electrolytic capacitor
JPS5915484Y2 (en) solid electrolytic capacitor
JPS5915483Y2 (en) solid electrolytic capacitor
JP2001244147A (en) Solid electrolytic capacitor and manufacturing method therefor
JPH09213571A (en) Solid electrolytic chip tantalum capacitor
JP2001176756A (en) Solid electrolytic capacitor
JPS5915487Y2 (en) solid electrolytic capacitor