JPS61120349A - Manufacture of double layer film vertical magnetic recording medium - Google Patents

Manufacture of double layer film vertical magnetic recording medium

Info

Publication number
JPS61120349A
JPS61120349A JP24116284A JP24116284A JPS61120349A JP S61120349 A JPS61120349 A JP S61120349A JP 24116284 A JP24116284 A JP 24116284A JP 24116284 A JP24116284 A JP 24116284A JP S61120349 A JPS61120349 A JP S61120349A
Authority
JP
Japan
Prior art keywords
soft magnetic
magnetic
layer
magnetic field
backing layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24116284A
Other languages
Japanese (ja)
Inventor
Taro Nanbu
太郎 南部
Ryuji Sugita
龍二 杉田
Kazuyoshi Honda
和義 本田
Kiyokazu Touma
清和 東間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24116284A priority Critical patent/JPS61120349A/en
Publication of JPS61120349A publication Critical patent/JPS61120349A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain a couble-layer film vertical magnetic recording medium excellent in record reproducing efficiency and small in fluctuation of reproducing outputs by arranging one or more pair of magnets having the same poles facing each other in the nearly longitudinal direction of a long substrate near the part where a soft magnetic backing layer is formed. CONSTITUTION:Mangets having the same poles facing each other parallel to the longitudinal direction (MD direction) of a substrate, i.e. the direction of running of the substrate are arranged at the time of vapor deposition or sputtering of the soft magnetic backing layer. In the case where a soft magnetic body which is liable to be influenced by a magnetic field in vapor deposition in a magnetic field as a soft magnetic layer, a magnetic field that gives influences in vapor deposition or sputtering in a magnetic field in the flow of magnetic flux in arrangement of magnet in which the same poles face to each to other is a component at the inside of the face of soft magnetic backing layer at the place where the soft magnetic backing layer is formed. Most of magnetic fluxes enter in the direction of normal of the soft magnetic backing layer, and the direction to which the magnetic field is applied does not become an axis of easy magnetization, but obtaing of an isotropic film becomes possible. A double-layer film medium 7 in which a Co-Cr vertical anisotropic film is formed on the soft magnetic layer made into isotropic is blanked to a discoid shape.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高密度記録特性に優れた二層膜垂直磁気記録媒
体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a double-layer perpendicular magnetic recording medium having excellent high-density recording characteristics.

従来の技術 短波長記録特性に優れた磁気記録方式として、垂直磁気
記録方式がある。この方式においては、媒体の膜面に略
垂直方向が磁化容易軸である垂直磁気記録媒体が必要と
なる。このような媒体に信号を記録すると残留磁化は媒
体の膜面に略垂直方向を向き、従って信号が短波長にな
る程媒体内の反磁界は減少し、優れた再生出力が得られ
る。単層膜媒体と呼ばれる垂直磁気記録媒体は、非磁性
材料より成る基板上に、垂直異方性膜をスパッタリング
法や真空蒸着法(イオンブレーティング法のように蒸発
原子の一部をイオノ化して蒸着する方法も含む)で形成
したものである。このような構造の単層膜媒体に対し、
非磁性材料より成る基板と垂直異方性膜との間に、軟磁
性裏打ち層を設けた、いわゆる二層膜垂直磁気記録媒体
(以後単九二層膜媒体と称す)と呼ばれる構造にするこ
とKより、記録効率及び再生出力が向上することが知ら
れている。特に公知の補助磁極励磁型垂直ヘッドを用い
て記録再生を行う際には、記録効率が約20 dB改善
され、再生出力が約2odB向上する。
2. Description of the Related Art A perpendicular magnetic recording method is known as a magnetic recording method with excellent short wavelength recording characteristics. This method requires a perpendicular magnetic recording medium whose axis of easy magnetization is approximately perpendicular to the film surface of the medium. When a signal is recorded on such a medium, the residual magnetization is oriented in a direction substantially perpendicular to the film surface of the medium, and therefore, the shorter the wavelength of the signal, the smaller the demagnetizing field within the medium, resulting in excellent reproduction output. Perpendicular magnetic recording media, called single-layer media, are produced by forming a perpendicular anisotropic film on a substrate made of non-magnetic material using sputtering or vacuum evaporation (ionization of some of the evaporated atoms, as in ion blating). (including vapor deposition methods). For a single-layer film medium with such a structure,
A structure called a so-called double-layer perpendicular magnetic recording medium (hereinafter referred to as a single-layer double-layer medium) in which a soft magnetic underlayer is provided between a substrate made of a non-magnetic material and a perpendicular anisotropic film. It is known that recording efficiency and reproduction output are improved by K. In particular, when recording and reproducing using a known auxiliary pole excitation type vertical head, the recording efficiency is improved by about 20 dB and the reproduction output is improved by about 2 odB.

上記二層膜媒体においてはその記録再生効率は軟磁性裏
打ち層の磁気特性が大きく影響を及ぼし、軟磁性裏打ち
層の保磁力が小さい程、記録再生効率が高いことが知ら
れている。しかし、第6図の如く、長尺の非磁性基板1
上に連続してスパッタリング法や蒸着法(イオンブレー
ティング法のように蒸発原子の一部をイオン化して蒸着
する方法も含む)で保磁力の小さい高速a率の軟磁性裏
打ち層を形成すると、自己陰影効果により第7図の様に
基板1の幅方向(TD)を磁化容易軸、長手方向(MD
)を磁化困難軸とする膜面内−軸異方性がついてし塘う
。即ち、形成された軟磁性裏打ち層の初透磁率μ、はM
D力方向は犬きぐ、TD方向くに小さい。更にこの上に
垂直異方性膜を形成した二層膜媒体から円板を打ち抜い
てディスク状媒体とすると、軟磁性裏打ち層の異方性忙
より1周の間で出力変動を生じる。この様子を第8図及
び第9図を用いて説明する。第8図中、7は長尺の非磁
性基板1に軟磁性裏打ち層、垂直異方性膜の二層が形成
された長尺の二層膜媒体である。
It is known that the recording and reproducing efficiency of the above-mentioned two-layer film medium is greatly influenced by the magnetic properties of the soft magnetic underlayer, and the smaller the coercive force of the soft magnetic underlayer, the higher the recording and reproducing efficiency. However, as shown in FIG.
If a soft magnetic underlayer with a low coercive force and a high rate of a is continuously formed on top by a sputtering method or a vapor deposition method (including a method in which a part of the evaporated atoms is ionized and vapor deposited like the ion blating method), Due to the self-shading effect, as shown in Figure 7, the width direction (TD) of the substrate 1 is the axis of easy magnetization, and the longitudinal direction (MD
) is the axis of difficulty in magnetization, resulting in in-plane-axis anisotropy. That is, the initial magnetic permeability μ of the formed soft magnetic underlayer is M
The D force direction is very small in the TD direction. Furthermore, when a disk-shaped medium is punched out from a two-layer film medium on which a vertically anisotropic film is formed, output fluctuations occur during one revolution due to the anisotropy of the soft magnetic underlayer. This situation will be explained using FIGS. 8 and 9. In FIG. 8, 7 is an elongated two-layer film medium in which two layers, a soft magnetic underlayer and a perpendicular anisotropic film, are formed on an elongated non-magnetic substrate 1.

8はその2層膜媒体から打ち抜いたディスク状媒体であ
る。ヘッドがディスク状媒体8上の同心円上の点である
A点、B点、0点、D点を順次通過し記録再生した時の
再生出力の変化の様子を第9図に示している。横軸は時
間経過を示し、縦軸は出力であり、出力エンベロープと
呼ばれるものである。図中A、B、C,Dはディスク状
媒体8上のA点、B点、0点、D点にそれぞれ対応して
いる。ヘッドはA点、0点では軟磁性裏打ち層の初透磁
率μlの低い方向と平行に、B点、D点では逆にμi 
の高い方向と平行に走行する。その結果、第9図に示さ
れるように、A点、0点では出力が低く、B点、L1点
では出力が高くなる。このような出力変動はディスク状
媒体では不都合であり、その改善は必要であった。
8 is a disk-shaped medium punched out from the two-layer film medium. FIG. 9 shows how the reproduction output changes when the head sequentially passes through points A, B, 0, and D, which are concentric points on the disk-shaped medium 8, and performs recording and reproduction. The horizontal axis shows the passage of time, and the vertical axis shows the output, which is called an output envelope. In the figure, A, B, C, and D correspond to points A, B, 0, and D on the disk-shaped medium 8, respectively. At points A and 0, the head is parallel to the direction of low initial magnetic permeability μl of the soft magnetic underlayer, and at points B and D, μi is the opposite direction.
Run parallel to the higher direction. As a result, as shown in FIG. 9, the output is low at points A and 0, and high at points B and L1. Such output fluctuations are inconvenient for disk-shaped media, and an improvement is needed.

出力変動をなくすKは軟磁性裏打ち層の等方化が必要で
ある。磁界中蒸着がその一手段として挙げられる。これ
は軟磁性裏打ち層の蒸着、又はスパッタリング時に軟磁
性裏打ち層形成部で、磁界がない場合磁化困難軸となる
方向K、異なる極を対向させた磁石を配置するととくよ
り等方化しようとするものである。磁界は、軟磁性裏打
ち層の形成される非磁性基板1上で200e以上あれば
十分である。
To eliminate output fluctuations, the soft magnetic underlayer must be made isotropic. Deposition in a magnetic field is one such method. This occurs in the soft magnetic under layer forming part during vapor deposition or sputtering of the soft magnetic under layer, and in the absence of a magnetic field, the direction K becomes the axis of difficult magnetization, and when magnets with different poles facing each other are placed, it tends to become isotropic. It is something. It is sufficient that the magnetic field is 200 e or more on the nonmagnetic substrate 1 on which the soft magnetic underlayer is formed.

発明が解決しようとする問題点 磁界中蒸着で磁界に影響され易い軟磁性体を二層膜媒体
の良打ち層として用いた場合は、上記の方法によると通
常軟磁性裏打ち層の磁化困難軸と磁化容易軸が入れ換わ
ってしまい、入れ換わる手前の等方膜を得るのは困難で
あった。
Problems to be Solved by the Invention When a soft magnetic material, which is easily influenced by the magnetic field, is used as the good-strike layer of a two-layer film medium by deposition in a magnetic field, the above method usually results in the hard magnetization axis of the soft magnetic backing layer being The axes of easy magnetization were swapped, and it was difficult to obtain an isotropic film before the swapping.

本発明は、記録再生効率に優れ、かつ再生出力変動の少
ない二層膜垂直磁気記録媒体を得ることのできる軟磁性
裏打ち層の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a soft magnetic underlayer, which makes it possible to obtain a two-layer perpendicular magnetic recording medium with excellent recording and reproducing efficiency and with little variation in reproduction output.

問題点を解決するための手段 長尺基板上に軟磁性裏打ち層を蒸着法もしくはスパッタ
法によって連続的に形成する工程において、前記軟磁性
裏打ち層形成部近傍に、前記長尺基板の略長手方向に同
極を対向させた一対以上の磁石を配置すること分特徴と
する。
Means for Solving the Problems In the step of continuously forming a soft magnetic backing layer on a long substrate by a vapor deposition method or a sputtering method, a soft magnetic backing layer is formed near the soft magnetic backing layer forming portion in a substantially longitudinal direction of the long substrate. It is characterized by arranging one or more pairs of magnets with the same polarity facing each other.

作   用 磁界が基板に対して垂直になシ、面内成分の磁界により
軟磁性層が異方化されることがなくなる。
Since the applied magnetic field is perpendicular to the substrate, the soft magnetic layer will not be anisotropic due to the in-plane component of the magnetic field.

実施例 第1図は本発明の一実施例を説明するための軟磁性裏打
ち層蒸着又はスパッタリング時の遮蔽板6上での磁石配
置である。
Embodiment FIG. 1 shows the arrangement of magnets on a shielding plate 6 during deposition or sputtering of a soft magnetic underlayer to explain an embodiment of the present invention.

第1図において、基板1は円筒状キャン2の周面に沿っ
て走行しつつ6pその途中で泰板1茂面上に、遮蔽板6
のすき間を通して蒸発源5から飛んで来る軟磁性体の蒸
着膜が形成される。スパッタリングの時は5には軟磁性
体ターゲットが置かれ、Ar+等のイオンでスパッタさ
れる。9はa画板6上に置かれた磁石であり、矢印はそ
の磁化方向を示しており、第1図では基板の長手方向(
MD方向)即ち基板の走行方向に平行に同極の対向した
磁石が軟磁性裏打ち層蒸着、又はスパッタリング時に配
置されている。尚、磁石の磁化の方向は逆でも差支えな
い。又、磁界を発生するものとして永久磁石以外にもコ
イルに電流を流す等の方法を用いても同じである。
In FIG. 1, the board 1 is traveling along the circumferential surface of the cylindrical can 2, and on the way, a shielding plate 6 is placed on the surface of the plate 1.
A vapor deposited film of soft magnetic material flying from the evaporation source 5 through the gap is formed. During sputtering, a soft magnetic target is placed at 5, and sputtered with ions such as Ar+. 9 is a magnet placed on the A drawing board 6, and the arrow indicates its magnetization direction; in FIG.
(MD direction), that is, in parallel to the running direction of the substrate, opposing magnets with the same polarity are arranged during deposition or sputtering of the soft magnetic underlayer. Note that the direction of magnetization of the magnet may be reversed. Furthermore, the same effect can be achieved even if a method other than a permanent magnet is used to generate the magnetic field, such as passing a current through a coil.

第S図のような真空蒸着装置を用いて軟磁性裏打ち層を
蒸着すると自己陰影効果によって第7図のような異方性
がつくため第1図の本発明の説明では磁界がMD方向に
かかっている。
When a soft magnetic underlayer is deposited using a vacuum evaporation apparatus as shown in FIG. ing.

次に軟磁性裏打ち層としてミが中蒸着で磁界に影響され
易い軟磁性体を用いた時、本発明が有効である理由を説
明をする。第2図は従来例の異極を対向させた磁石配置
での磁束の流れであり、第3図が本発明の同極を対向さ
せた磁石配置での磁束の流れである。磁界中蒸着、又は
スパッタリングで影響を与える磁界は、軟磁性裏打ち層
が形成される所での軟磁性裏打ち層面内方向の成分であ
る。従来例の第2図では多くの磁束が軟磁性裏打ち層の
面内方向に入るため、前記のように磁界中蒸着で磁界に
影響され易い材料を軟磁性体として使用すると簡単に磁
束の流れる方向が磁化容易軸となり等方膜とはなり得な
い。本発明の第3図では殆んどの磁束が軟磁性裏打ち層
の法線方向に入り、軟磁性裏打ち層の面内方向に入る磁
束は磁石の磁極近傍に少しあるだけである。従って前記
のように磁界中蒸着で磁界に影響され易い材料を軟磁性
体として便用しても、磁界のかかった方向が磁化容易軸
とまではならず第4図の等方膜を得るのが可能となる。
Next, the reason why the present invention is effective when a soft magnetic material that is medium-deposited and easily influenced by a magnetic field is used as the soft magnetic underlayer will be explained. FIG. 2 shows the flow of magnetic flux in a conventional magnet arrangement in which different poles face each other, and FIG. 3 shows the flow in magnetic flux in a magnet arrangement in which the same poles face each other according to the present invention. The magnetic field that influences magnetic field deposition or sputtering is a component in the in-plane direction of the soft magnetic underlayer where the soft magnetic underlayer is formed. In the conventional example shown in Fig. 2, most of the magnetic flux enters the soft magnetic underlayer in the in-plane direction, so if a material that is easily influenced by the magnetic field is used as the soft magnetic material by deposition in a magnetic field as described above, it is easy to change the direction in which the magnetic flux flows. is the axis of easy magnetization and cannot be an isotropic film. In FIG. 3 of the present invention, most of the magnetic flux enters the normal direction of the soft magnetic underlayer, and only a small amount of magnetic flux enters the in-plane direction of the soft magnetic underlayer near the magnetic poles of the magnet. Therefore, even if a material that is easily affected by the magnetic field is used as a soft magnetic material by deposition in a magnetic field as described above, the direction in which the magnetic field is applied will not be the axis of easy magnetization, making it difficult to obtain the isotropic film shown in Figure 4. becomes possible.

尚、磁界中蒸着で磁界に影響され易い軟磁性体としては
、具体的にばCo、Fe及びNi を主成分とするもの
が挙げられる。又、磁界中蒸着で磁界に影響され易いと
は具体的には、基板温度250℃での磁界中蒸着で誘導
される一軸異方性定数Kuが3 X 10 erq/c
rd以上であることを言う。
Specific examples of soft magnetic materials that are easily affected by the magnetic field when deposited in a magnetic field include those whose main components are Co, Fe, and Ni. Also, specifically, being susceptible to the magnetic field during deposition in a magnetic field means that the uniaxial anisotropy constant Ku induced by deposition in a magnetic field at a substrate temperature of 250°C is 3 x 10 erq/c.
rd or higher.

かくして本発明によシ等方化された軟磁性裏打ち層の上
にCo−Cr垂直異方性膜を形成した二層膜媒体7を第
8図の如くディスク状に打ち抜く。
Thus, the two-layer film medium 7 in which the Co--Cr perpendicular anisotropic film is formed on the isotropic soft magnetic backing layer according to the present invention is punched out into a disk shape as shown in FIG.

ヘッドがディスク状媒体8上の同心円上の点であるA点
、B点、0点、D点を順次通過し記録再生した時の再生
出力の変化を第5図に示す。横軸は時間経過を示し、縦
軸は出力を示し、出力エンペロープと呼ばれるものであ
る。図中A、B、C。
FIG. 5 shows changes in the reproduction output when the head sequentially passes through points A, B, 0, and D, which are concentric points on the disk-shaped medium 8, and performs recording and reproduction. The horizontal axis shows the passage of time, and the vertical axis shows the output, which is called an output envelope. A, B, and C in the diagram.

Dはディスク状媒体8上のA点、B点、0点、D点にそ
れぞれ対応している。第5図を見ると出力変動は殆んど
見られず、軟磁性裏打ち層の等力比の効果が認められる
D corresponds to point A, point B, point 0, and point D on the disk-shaped medium 8, respectively. Looking at FIG. 5, almost no output fluctuation is seen, and the effect of the uniform force ratio of the soft magnetic underlayer is recognized.

次に具体的な一実施例を述べる。軟磁性裏打ち層として
CO1sF @ 1e N l s 9を用い第1図の
ような磁界とかけた中で蒸着を行い8000人の軟磁性
裏打ちノごを形成した。その上に連続してCo−Cr垂
直異方性膜を20oO人 の膜厚で形成した。その結果
、軟磁性裏打ち層のB−とループとしては第4図のもの
が得られ保磁力としては66eとなり、出力エンペロー
プとしては第5図が得られ、きわめて出力変動の小さい
良好な垂直心気記録用二層膜媒体が得られた。
Next, a specific example will be described. CO1sF @ 1e Nl s 9 was used as the soft magnetic backing layer, and evaporation was performed in a magnetic field as shown in FIG. 1 to form 8,000 soft magnetic backing holes. A Co--Cr vertically anisotropic film was continuously formed thereon to a thickness of 200 μm. As a result, the B- and loops of the soft magnetic backing layer as shown in Figure 4 were obtained, the coercive force was 66e, and the output envelope was as shown in Figure 5. Good vertical centering with extremely small output fluctuations was obtained. A two-layer recording medium was obtained.

発明の効果 本発明の方法によれば、垂直磁気記録用二層膜媒体の再
生出力変動を、従来大きかったものが小さく抑えられる
ようになる。
Effects of the Invention According to the method of the present invention, fluctuations in reproduction output of a double-layer film medium for perpendicular magnetic recording, which were conventionally large, can be suppressed to a small level.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を説明するための蒸着装置内部の部分図
、第2図は従来の磁界中蒸着又はスパッタリング部での
磁束の流れを示す図、第3図は本発明の磁界中蒸着又は
スパッタリング部での磁束の流れを示す図、第4図は本
発明により得られた軟磁性裏打ち層の磁気特性を示すグ
ラフ、第5図は本発明により得られた二層膜媒体の出力
変動を示すグラフ、第6図は軟磁性裏打ち層を作製する
だめの従来の真空蒸着装置内部の正面図、第7図は従来
の軟磁性裏打ち層のみの磁気特性を示すグラフ、第8図
は従来の二層膜媒体の問題点と説明するだめの図、第9
図は従来の二層1莫媒体の出力変動を示すグラフである
。 1・・・・・・非磁性基板、2・・・・・・円筒状キャ
ン、3・・・・・基板入側ローラ、4・・・・・・基板
出側ローラ、5・・・・・蒸発源、6・・・・・・遮藪
板、7・・・・・・長尺の垂直磁気記録用二層膜媒体、
8・・・・・ディスク状媒体、9・・・・・・磁石。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名宕 
工 図 第2図 第4図 (す 軟至し主膜の長手方向(百〇)つB−Hルーズ(b) 軟磁性膜り福方向(TO)のf3−Hルフ0第5図 第6図 第 7 図 (a−) 軟ヨ1生膜の長子方向(r’tD)つB−Fl/Ti−
7’(b) δ 軟五程膜の↑晶方向(丁D)のB−Hlレーデ第8図 第9図
FIG. 1 is a partial diagram of the inside of a vapor deposition apparatus for explaining the present invention, FIG. 2 is a diagram showing the flow of magnetic flux in the conventional magnetic field vapor deposition or sputtering section, and FIG. 3 is a diagram showing the magnetic flux vapor deposition or sputtering part of the present invention. FIG. 4 is a graph showing the magnetic flux flow in the sputtering part, FIG. 4 is a graph showing the magnetic properties of the soft magnetic underlayer obtained by the present invention, and FIG. 5 is a graph showing the output fluctuation of the two-layer film medium obtained by the present invention. Figure 6 is a front view of the inside of a conventional vacuum evaporation apparatus used to produce a soft magnetic backing layer, Figure 7 is a graph showing the magnetic properties of only the conventional soft magnetic backing layer, and Figure 8 is a graph showing the magnetic properties of only the conventional soft magnetic backing layer. Diagram explaining the problems of double-layer membrane media, No. 9
The figure is a graph showing output fluctuations of a conventional two-layer, one-layer media. 1... Non-magnetic substrate, 2... Cylindrical can, 3... Board entry roller, 4... Board exit roller, 5...・Evaporation source, 6...Brush plate, 7...Long double-layer film medium for perpendicular magnetic recording,
8... Disk-shaped medium, 9... Magnet. Name of agent: Patent attorney Toshio Nakao and one other person
Fig. 2 Fig. 4 (Longitudinal direction (100) of soft magnetic film main film (100) B-H loose (b) Soft magnetic film vertical direction (TO) f3-H 0 Fig. 5 Fig. 6 Figure 7 (a-) Longitudinal direction (r'tD) of soft membrane 1 B-Fl/Ti-
7'(b) δ B-Hl Rede of the ↑ crystal direction (D) of the soft five-dimensional film Fig. 8 Fig. 9

Claims (5)

【特許請求の範囲】[Claims] (1)長尺基板上に軟磁性裏打ち層を蒸着法もしくはス
パッタ法によって連続的に形成する工程において、前記
軟磁性裏打ち層形成部近傍に、前記長尺基板の略長手方
向に同極を対向させた一対以上の磁石を配置することを
特徴とする二層膜垂直磁気記録媒体の製造方法。
(1) In the step of continuously forming a soft magnetic backing layer on a long substrate by vapor deposition or sputtering, the same polarity is placed near the soft magnetic backing layer forming part in the substantially longitudinal direction of the long substrate. 1. A method for manufacturing a double-layer perpendicular magnetic recording medium, comprising arranging one or more pairs of magnets with a diameter of 1.
(2)前記軟磁性裏打ち層がCo、Fe及びNiを主成
分とする軟磁性体であることを特徴とする特許請求の範
囲第1項記載の二層膜垂直磁気記録媒体の製造方法。
(2) The method for manufacturing a double-layer perpendicular magnetic recording medium according to claim 1, wherein the soft magnetic underlayer is a soft magnetic material containing Co, Fe, and Ni as main components.
(3)前記軟磁性体が5〜32重量%のCoを含有する
ことを特徴とする特許請求の範囲第2項記載の二層膜垂
直磁気記録媒体の製造方法。
(3) The method for manufacturing a double-layer perpendicular magnetic recording medium according to claim 2, wherein the soft magnetic material contains 5 to 32% by weight of Co.
(4)前記軟磁性体が10〜25重量%のCoを含有す
ることを特徴とする特許請求の範囲第2項記載の二層膜
垂直磁気記録媒体の製造方法。
(4) The method for manufacturing a two-layer perpendicular magnetic recording medium according to claim 2, wherein the soft magnetic material contains 10 to 25% by weight of Co.
(5)前記軟磁性裏打ち層が、前記基板温度を250℃
とした時の磁界中蒸着で誘導される一軸異方性定数Ku
として3×10^3erg/cm^3以上を持つ軟磁性
体であることを特徴とする特許請求の範囲第1項記載の
二層膜垂直磁気記録媒体の製造方法。
(5) The soft magnetic underlayer lowers the substrate temperature to 250°C.
The uniaxial anisotropy constant Ku induced by deposition in a magnetic field when
2. The method for manufacturing a double-layer perpendicular magnetic recording medium according to claim 1, wherein the soft magnetic material has an erg/cm^3 or more.
JP24116284A 1984-11-15 1984-11-15 Manufacture of double layer film vertical magnetic recording medium Pending JPS61120349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24116284A JPS61120349A (en) 1984-11-15 1984-11-15 Manufacture of double layer film vertical magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24116284A JPS61120349A (en) 1984-11-15 1984-11-15 Manufacture of double layer film vertical magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS61120349A true JPS61120349A (en) 1986-06-07

Family

ID=17070180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24116284A Pending JPS61120349A (en) 1984-11-15 1984-11-15 Manufacture of double layer film vertical magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS61120349A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02286473A (en) * 1989-04-27 1990-11-26 Toyota Autom Loom Works Ltd Oil filler port covering device for industrial vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02286473A (en) * 1989-04-27 1990-11-26 Toyota Autom Loom Works Ltd Oil filler port covering device for industrial vehicle

Similar Documents

Publication Publication Date Title
US6151193A (en) Thin film magnetic head
JPS60131608A (en) Integrated magnetic head
US4695351A (en) Method for producing magnetic heads
JPH06103553A (en) Perpendicular magnetic recording medium and its production
JPH0423325B2 (en)
JPH06180834A (en) Perpendicular magnetic recording medium
JPS61120349A (en) Manufacture of double layer film vertical magnetic recording medium
JPH0785442A (en) Vertical magnetic recording medium
JP2614203B2 (en) Magnetoresistance head
JP3617400B2 (en) Method for manufacturing perpendicular magnetic recording medium
JPS59107417A (en) Permanent magnet bias type magneto-resistance effect head
JPH0583965B2 (en)
JPS61243942A (en) Manufacture of vertical magnetic recording medium
JPH0719343B2 (en) Method of manufacturing magnetoresistive type magnetic head
JP2541084B2 (en) Thin film magnetic head
JPS5987612A (en) Vertical magnetic recording system
JPH0845034A (en) Magneto-resistive magnetic head, combined magnetic head for recording and reproducing and their production
JPS5945616A (en) Vertical magnetic recording and reproducing head
JPH0845068A (en) Magnetic recording medium and its production
JP2853204B2 (en) Method of manufacturing magnetoresistive element
JPS61104431A (en) Production of vertical recording magnetic medium
JPS60256903A (en) Magnetic head
JPS61131228A (en) Vertical magnetic recording medium
JPS60251522A (en) Production of vertically magnetizable recording medium
JPH0330968B2 (en)