JP2853204B2 - Method of manufacturing magnetoresistive element - Google Patents

Method of manufacturing magnetoresistive element

Info

Publication number
JP2853204B2
JP2853204B2 JP1245041A JP24504189A JP2853204B2 JP 2853204 B2 JP2853204 B2 JP 2853204B2 JP 1245041 A JP1245041 A JP 1245041A JP 24504189 A JP24504189 A JP 24504189A JP 2853204 B2 JP2853204 B2 JP 2853204B2
Authority
JP
Japan
Prior art keywords
magnetic
multilayer film
magnetic field
manufacturing
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1245041A
Other languages
Japanese (ja)
Other versions
JPH03108385A (en
Inventor
嘉啓 本村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP1245041A priority Critical patent/JP2853204B2/en
Publication of JPH03108385A publication Critical patent/JPH03108385A/en
Application granted granted Critical
Publication of JP2853204B2 publication Critical patent/JP2853204B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は磁気抵抗効果素子の製造方法に関し、さらに
詳しく磁気抵抗効果を利用した磁界センサ、特に磁界検
出用センサ、磁気ヘッドに好適な磁気抵抗効果素子(以
下、MR素子と略す)の製造方法に関する。
Description: FIELD OF THE INVENTION The present invention relates to a method for manufacturing a magnetoresistive element, and more particularly to a magnetic field sensor utilizing a magnetoresistive effect, particularly a magnetic resistance sensor suitable for a magnetic field detection sensor and a magnetic head. The present invention relates to a method for manufacturing an effect element (hereinafter, abbreviated as an MR element).

[従来の技術] 周知のように、磁気抵抗効果を利用した磁気抵抗効果
素子は高感度で比較的大きな出力が得られるため、磁界
センサ、磁気ヘッドとして広く利用されている。従来、
磁気抵抗効果素子には、2%程度の磁気抵抗硬化率を示
し、軟磁気特性に優れたパーマロイ合金薄膜が広く用い
られている。さらに磁気抵抗変化率の大きい材料とし
て、CoとNiの薄膜を積層した多層膜は3〜4%程度の大
きな磁気抵抗変化率を示し、積層周期を数十Å程度にす
ると軟磁気特性が得られるため、新しいMR素子材料とし
て注目されている。
[Prior Art] As is well known, a magnetoresistive effect element using a magnetoresistive effect is widely used as a magnetic field sensor and a magnetic head since a relatively large output can be obtained with high sensitivity. Conventionally,
Permalloy alloy thin films exhibiting a magnetoresistance hardening rate of about 2% and having excellent soft magnetic properties are widely used for magnetoresistance effect elements. Further, as a material having a large magnetoresistance change rate, a multilayer film in which thin films of Co and Ni are laminated exhibits a large magnetoresistance change rate of about 3 to 4%, and soft magnetic characteristics can be obtained when the lamination cycle is set to about several tens of degrees. Therefore, it is attracting attention as a new MR element material.

このような磁気抵抗効果の大きい軟磁性薄膜を用いた
MR素子においては、膜中の磁壁の不連続な移動に起因す
る、いわゆるバルクハウゼンノイズが大きな問題とな
る。バルクハウゼンノイズの原因は、MR素子端部での反
磁界によって生じる磁壁の移動であると考えられる。こ
のため、MR素子部を単磁区化して磁壁をなくす方法が数
多く提案されているが、主なものは文献ザ・ジャーナル
・オブ・アプライド・フィジックス(The Journal of A
pplied Phisics),1984年,第55巻,2226ページに示され
る次の2つである。即ち第1は、MR素子部の長さを長く
したり、MR素子の長さと幅の比率を大きくして形状異方
性によって単磁区化を図る方法である。第2は、MR素子
の両端に硬磁性材料や反強磁性材料を置いて、硬磁性材
料からの静磁界や反強磁性材料の交換相互作用によって
センス電流方向にバイアス磁界を加える方法である。
Using a soft magnetic thin film with a large magnetoresistance effect
In the MR element, so-called Barkhausen noise caused by discontinuous movement of the domain wall in the film becomes a serious problem. It is considered that the cause of Barkhausen noise is the movement of the domain wall caused by the demagnetizing field at the end of the MR element. For this reason, a number of methods have been proposed for eliminating the magnetic domain wall by forming the MR element into a single magnetic domain. The main method is the publication of The Journal of Applied Physics.
pplied Phisics), 1984, Vol. 55, p. 2226. That is, the first is a method of increasing the length of the MR element portion or increasing the ratio of the length to the width of the MR element to form a single magnetic domain by shape anisotropy. The second is a method in which a hard magnetic material or an antiferromagnetic material is placed at both ends of the MR element, and a bias magnetic field is applied in the sense current direction by a static magnetic field from the hard magnetic material or an exchange interaction of the antiferromagnetic material.

[発明が解決しようとする課題] しかし、MR素子の長さを長くする方法は、磁気ヘッド
等に応用する時はトラック幅を大きくすることになり、
高密度磁気記録の再生用ヘッドとして用いる場合には不
適当であるといった問題点があった。また、硬磁性材料
や反強磁性材料によってバイアス磁界を加えるために
は、MR素子の両端部にこれらの材料を成膜してパターン
形成しなければならず、これはMR素子の製造工程を複雑
にするばかりではなく、新たなバイアス層の厚さだけMR
素子が厚くなってしまったり、パターン形成部の段差に
よってMR素子の特性を劣化させてしまうといった問題点
があった。
[Problems to be Solved by the Invention] However, the method of increasing the length of the MR element increases the track width when applied to a magnetic head or the like.
When used as a reproducing head for high-density magnetic recording, there is a problem that it is unsuitable. In addition, in order to apply a bias magnetic field using a hard magnetic material or an antiferromagnetic material, it is necessary to form a film by forming these materials on both ends of the MR element, which complicates the manufacturing process of the MR element. Not only the new bias layer thickness but also the MR
There has been a problem that the element becomes thicker or the characteristics of the MR element are deteriorated due to a step in the pattern forming portion.

本発明は以上述べたような従来の課題を解決するため
になされたもので、簡便な工程でバルクハウゼンノイズ
のない、高性能の磁気抵抗効果素子を製造する方法を提
供することを目的とする。
The present invention has been made in order to solve the conventional problems as described above, and has as its object to provide a method of manufacturing a high-performance magnetoresistive element without a Barkhausen noise in a simple process. .

[課題を解決するための手段] 本発明は、非磁性基板上にCoまたはCoを主成分とする
第1の強磁性金属薄膜とNiまたはNiを主成分とする第2
の強磁性金属薄膜とを交互に積層した多層膜からなる磁
気抵抗効果素子の製造方法において、多層膜に直流の磁
界を加えつつ、該多層膜の端部近傍にレーザ光を照射し
て加熱後冷却し、該照射部分を合金化する工程を備えて
なることを特徴とする磁気抵抗効果素子の製造方法であ
る。
Means for Solving the Problems The present invention provides a first ferromagnetic metal thin film containing Co or Co as a main component and a second ferromagnetic metal film containing Ni or Ni as a main component on a nonmagnetic substrate.
In a method of manufacturing a magnetoresistive effect element comprising a multilayer film in which a plurality of ferromagnetic metal thin films are alternately laminated, a laser beam is irradiated near the edge of the multilayer film while heating while applying a DC magnetic field to the multilayer film. A method for manufacturing a magnetoresistive element, comprising a step of cooling and alloying the irradiated portion.

以下、図面を参照して本発明をさらに詳細に説明す
る。
Hereinafter, the present invention will be described in more detail with reference to the drawings.

第1図は本発明のMR素子の製造方法を工程順に示す部
分斜視図である。まず、非磁性基板1上に、CoまたはCo
を主成分とする第1の強磁性層とNiまたはNiを主成分と
する第2の強磁性層とを交互に積層した多層膜2を形成
する(第1図(a))。この多層膜2を所定の形状にパ
ターン形成した後、MR素子のセンス電流方向に直流の磁
界を加えながらMR素子の端部にレーザ光4を照射して、
加熱した後自然冷却し、レーザ光4を照射した部分2aを
合金化させる(第1図(b))。最後に電極3を形成す
る(第1図(c))。
FIG. 1 is a partial perspective view showing a method for manufacturing an MR element of the present invention in the order of steps. First, Co or Co is placed on the non-magnetic substrate 1.
To form a multilayer film 2 in which first ferromagnetic layers mainly composed of Ni and Ni or second ferromagnetic layers mainly composed of Ni are alternately laminated (FIG. 1A). After patterning the multilayer film 2 into a predetermined shape, the end of the MR element is irradiated with laser light 4 while applying a DC magnetic field in the sense current direction of the MR element.
After heating, it is naturally cooled, and the portion 2a irradiated with the laser beam 4 is alloyed (FIG. 1 (b)). Finally, the electrode 3 is formed (FIG. 1 (c)).

本発明における非磁性基板1の材料にはガラス、Si、
Al2O3、TiC、SiC、Al2O3とTiCとの焼結体、フェライト
等を用いることができ、また第1の強磁性層にはCoまた
はCo−Fe、Co−Ni等の強磁性合金、あるいはこれらに添
加物を加えたものを用いることができる。また、本発明
における第2の強磁性層の材料としてはNiまたはNi−F
e、Ni−Co等の強磁性合金、あるいはこれらに添加物を
加えたものを用いることができる。
The material of the nonmagnetic substrate 1 in the present invention is glass, Si,
Al 2 O 3 , TiC, SiC, a sintered body of Al 2 O 3 and TiC, ferrite, or the like can be used. The first ferromagnetic layer can be made of Co or Co-Fe, Co-Ni, or the like. A magnetic alloy or a material obtained by adding an additive thereto can be used. Further, the material of the second ferromagnetic layer in the present invention is Ni or Ni-F
e, a ferromagnetic alloy such as Ni-Co, or a material obtained by adding an additive thereto can be used.

多層膜2は、第1の強磁性材料と第2の強磁性材料と
を2基の蒸発源を持つ真空蒸着装置もしくは2基のター
ゲットを持つスパッタリング装置で蒸発させ、2基の蒸
発源のシャッタを交互に開閉したり、あるいは基板を2
基の蒸発源上を交互に通過させて、基板上に2種類の材
料を交互に積層させることによって製造することができ
る。
The multilayer film 2 is formed by evaporating the first ferromagnetic material and the second ferromagnetic material by a vacuum evaporation apparatus having two evaporation sources or a sputtering apparatus having two targets, and shutters of the two evaporation sources. Can be opened and closed alternately, or the board
It can be manufactured by alternately passing over the base evaporation source and alternately laminating the two materials on the substrate.

[作用] 以下に本発明の作用を簡単に説明する。[Operation] The operation of the present invention will be briefly described below.

Co/Niの多層膜は、成膜した時には積層構造をとって
おり、Co層とNi層とでは結晶構造が異なるために、結晶
粒径は各層の膜厚で制限されて数十Å程度の小さな値と
なっている。このため、結晶磁気異方性が抑制され、保
磁力は小さく軟磁気特性を示す。しかし、この材料をあ
る温度以上に加熱してから徐冷すると各層が相互に拡散
して合金化し、結晶粒径も大きくなる。このため、Coの
大きな結晶磁気異方性による保磁力が数10 0eから数100
0eの硬磁性材料となる。また、この加熱冷却の過程で
直流磁界を印加すると、その磁界方向を容易軸とする1
軸性の誘導磁気異方性を生じる。
The Co / Ni multilayer film has a laminated structure when formed, and since the Co layer and the Ni layer have different crystal structures, the crystal grain size is limited by the thickness of each layer and is about several tens of mm. It has a small value. For this reason, the crystal magnetic anisotropy is suppressed, the coercive force is small, and a soft magnetic characteristic is exhibited. However, when this material is heated to a certain temperature or higher and then gradually cooled, the layers diffuse into each other and alloy, and the crystal grain size increases. Therefore, the coercive force due to the large crystal magnetic anisotropy of Co is from several hundreds to several hundreds.
It becomes a hard magnetic material of 0e. When a DC magnetic field is applied during the heating / cooling process, the direction of the magnetic field becomes an easy axis.
Axial induced magnetic anisotropy occurs.

本発明のMR素子は、MR素子の両端の部分がセンス電流
方向に磁化した硬磁性体となっている。MR素子はその両
端からの静磁界を受けるために単磁区構造が安定化さ
れ、バルクハウゼンノイズを生じない。
The MR element of the present invention is a hard magnetic material in which both ends of the MR element are magnetized in the sense current direction. Since the MR element receives a static magnetic field from both ends thereof, the single magnetic domain structure is stabilized, and Barkhausen noise does not occur.

さらに、加熱の方法として、集束したレーザ光を用い
ることによって、特定の部分のみを選択的に合金化して
硬磁性材料とすることができ、新たに硬磁性材料を成膜
してパターン形成する方法と比較して製造工程を簡略化
することができる。
Furthermore, by using a focused laser beam as a heating method, it is possible to selectively alloy only a specific portion into a hard magnetic material, and to form a pattern by newly forming a hard magnetic material. The manufacturing process can be simplified as compared with the first embodiment.

[実施例] 以下に本発明の実施例について詳細に説明する。EXAMPLES Examples of the present invention will be described below in detail.

実施例1,比較例1 2基のターゲットを用いたArガス中でのRFマグネトロ
ンスパッタリングにより、100℃に保持したガラス基板
上にCo層とNi層とを交互に連続的に積層した多層膜を作
製した。この時Co層とNi層との厚さは等しく、それぞれ
20Åとした。成膜速度はCo、Ni共に1Å/秒であった。
また、スパッタ電力は1.3W/cm2、スパッタ圧力は5×10
-3Torrであった。膜全体の厚さは1000Åとした。
Example 1, Comparative Example 1 A multilayer film in which Co layers and Ni layers were alternately and continuously laminated on a glass substrate maintained at 100 ° C. by RF magnetron sputtering in Ar gas using two targets. Produced. At this time, the Co layer and the Ni layer have the same thickness,
20 mm. The film formation rate was 1 ° / sec for both Co and Ni.
The sputtering power was 1.3 W / cm 2 and the sputtering pressure was 5 × 10
-3 Torr. The thickness of the entire film was 1000 mm.

この後、この多層膜上に所定のフォトレジストパター
ンを形成し、Arガス雰囲気でイオンエッチングを行い、
長さ50μm、幅5μmの矩形状のパターンに加工した。
Thereafter, a predetermined photoresist pattern is formed on the multilayer film, and ion etching is performed in an Ar gas atmosphere.
It was processed into a rectangular pattern having a length of 50 μm and a width of 5 μm.

次に、この矩形パターンの長さ方向に100 0eの直流磁
界を印加しながら、矩形パターンの中心から両側それぞ
れ10μmの位置に、レンズによってパターン上での直径
を約5μm径に集束した出力100mWのHe−Neレーザ光を1
0μ秒間照射した後、自然冷却させた。この時、基板は
送り精度0.1μmのXYステージ上に保持し、顕微鏡でレ
ーザ光の照射位置を制御した。
Next, while applying a DC magnetic field of 1000 e in the length direction of the rectangular pattern, a 100 mW output having a diameter on the pattern focused to about 5 μm by a lens at a position of 10 μm on both sides from the center of the rectangular pattern. He-Ne laser light 1
After irradiating for 0 μsec, it was allowed to cool naturally. At this time, the substrate was held on an XY stage with a feed accuracy of 0.1 μm, and the irradiation position of the laser beam was controlled with a microscope.

次いで、前述の積層体にセンス電流を供給する電極を
TiとAuの積層膜を用いて形成し、MR素子を作製した。こ
の時、電極の位置は矩形パターンの中心から両側5μm
とし、電極の間隔は10μmとした。
Next, an electrode for supplying a sense current to the above-described laminate is provided.
An MR element was fabricated using a laminated film of Ti and Au. At this time, the position of the electrode is 5 μm on both sides from the center of the rectangular pattern.
The distance between the electrodes was 10 μm.

また、レーザ光の照射工程を省略した以外は実施例1
とまったく同様の工程でMR素子を作製し、比較例1とし
た。
Example 1 was repeated except that the laser light irradiation step was omitted.
An MR element was manufactured in exactly the same steps as in Example 1, and Comparative Example 1 was obtained.

以上のようなMR素子にセンス電流10mAを流して外部磁
界を印加し、電気抵抗−磁界曲線を測定した。上記2つ
のMR素子の外部磁界に対する抵抗変化率は2つの素子と
も3.0%とほぼ同じ値であったが、実施例1の素子では
バルクハウゼンノイズはまったく認められなかったのに
対して、比較例1の素子ではバルクハウゼンノイズが観
測された。この結果から明らかなように、本発明の製造
方法を用いて作製したMR素子はバルクハウゼンノイズが
認められず、優れた性能を有している。
An external magnetic field was applied by applying a sense current of 10 mA to the above MR element, and an electric resistance-magnetic field curve was measured. The resistance change rate of the two MR elements with respect to the external magnetic field was about the same value of 3.0% for both elements. However, no Barkhausen noise was observed in the element of Example 1, whereas the comparative example Barkhausen noise was observed in the device of No. 1. As is apparent from the results, the MR element manufactured by using the manufacturing method of the present invention has no Barkhausen noise and has excellent performance.

[発明の効果] 以上説明したように、本発明の方法によれば簡便な工
程でバルクハウゼンノイズのない、高性能の磁気抵抗効
果素子が得られるという効果がある。
[Effects of the Invention] As described above, according to the method of the present invention, there is an effect that a high-performance magnetoresistance effect element free of Barkhausen noise can be obtained by simple steps.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の方法を工程順に示す部分斜視図であ
る。 1……非磁性基板 2……多層膜 2a……レーザ光照射部分 3……電極 4……レーザ光
FIG. 1 is a partial perspective view showing the method of the present invention in the order of steps. DESCRIPTION OF SYMBOLS 1 ... Non-magnetic substrate 2 ... Multilayer film 2a ... Laser beam irradiation part 3 ... Electrode 4 ... Laser beam

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】非磁性基板上にCoまたはCoを主成分とする
第1の強磁性金属薄膜とNiまたはNiを主成分とする第2
の強磁性金属薄膜とを交互に積層した多層膜からなる磁
気抵抗効果素子の製造方法において、多層膜に直流の磁
界を加えつつ、該多層膜の端部近傍にレーザ光を照射し
て加熱後冷却し、該照射部分を合金化する工程を備えて
なることを特徴とする磁気抵抗効果素子の製造方法。
A first ferromagnetic metal thin film containing Co or Co as a main component and a second ferromagnetic metal film containing Ni or Ni as a main component on a nonmagnetic substrate.
In a method of manufacturing a magnetoresistive effect element comprising a multilayer film in which a plurality of ferromagnetic metal thin films are alternately laminated, a laser beam is irradiated near the edge of the multilayer film while heating while applying a DC magnetic field to the multilayer film. A method for manufacturing a magnetoresistive element, comprising a step of cooling and alloying the irradiated portion.
JP1245041A 1989-09-22 1989-09-22 Method of manufacturing magnetoresistive element Expired - Fee Related JP2853204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1245041A JP2853204B2 (en) 1989-09-22 1989-09-22 Method of manufacturing magnetoresistive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1245041A JP2853204B2 (en) 1989-09-22 1989-09-22 Method of manufacturing magnetoresistive element

Publications (2)

Publication Number Publication Date
JPH03108385A JPH03108385A (en) 1991-05-08
JP2853204B2 true JP2853204B2 (en) 1999-02-03

Family

ID=17127704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1245041A Expired - Fee Related JP2853204B2 (en) 1989-09-22 1989-09-22 Method of manufacturing magnetoresistive element

Country Status (1)

Country Link
JP (1) JP2853204B2 (en)

Also Published As

Publication number Publication date
JPH03108385A (en) 1991-05-08

Similar Documents

Publication Publication Date Title
US6639766B2 (en) Magneto-resistance effect type composite head and production method thereof
US6818330B2 (en) Perpendicular recording medium with antiferromagnetic exchange coupling in soft magnetic underlayers
JP3231313B2 (en) Magnetic head
JP2550893B2 (en) Magnetic multilayer film
JP2001167420A (en) Magnetic recording medium and its manufacturing method
JP2701557B2 (en) Magnetoresistive element and method of manufacturing the same
JP2853204B2 (en) Method of manufacturing magnetoresistive element
JP2833047B2 (en) Method of manufacturing magnetoresistive head
JP2000276716A (en) Magnetoresistance effect type head, its manufacture and magnetic storage device
JP2009099182A (en) Magnetic recording medium, magnetic recording/reproducing apparatus, and method for manufacturing magnetic recording medium
JP3325853B2 (en) Spin valve thin film magnetic element, thin film magnetic head, and method of manufacturing spin valve thin film magnetic element
JP3130407B2 (en) Manufacturing method of magnetic film and thin film magnetic head
JP2614203B2 (en) Magnetoresistance head
JP2833586B2 (en) Magnetoresistive element and method of manufacturing the same
JPH09180135A (en) Magnetoresistive head
JP3132254B2 (en) Soft magnetic film and method for manufacturing soft magnetic multilayer film
JP2000231706A (en) Magnetic recording and reproducing head and magnetic storage device using the same as well as its production
JP2888810B2 (en) Stack of antiferromagnetic layer and magnetic layer, magnetoresistive element, and magnetic head
JP2692468B2 (en) Magnetoresistive head
JP2003208708A (en) Magnetic head and magnetic storage device using the same
JP2001023117A (en) Magnetoresistance effect composite head, magnetic memory device employing the same, and manufacture of magnetoresistance effect composite head
JPH065573B2 (en) Magnetoresistive effect head
JP3008910B2 (en) Magnetoresistive element, magnetoresistive head and magnetic recording / reproducing apparatus using the same
JP2000132818A (en) Production of magnetoresistance effect film, magnetoresistance effect film and thin film magnetic head using the method
JPH01239821A (en) Magnetic multilayered film and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees