JPS60251522A - Production of vertically magnetizable recording medium - Google Patents

Production of vertically magnetizable recording medium

Info

Publication number
JPS60251522A
JPS60251522A JP10818184A JP10818184A JPS60251522A JP S60251522 A JPS60251522 A JP S60251522A JP 10818184 A JP10818184 A JP 10818184A JP 10818184 A JP10818184 A JP 10818184A JP S60251522 A JPS60251522 A JP S60251522A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
recording
thin film
high permeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10818184A
Other languages
Japanese (ja)
Inventor
Riichi Tanaka
田中 利一
Etsuko Nakamura
悦子 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP10818184A priority Critical patent/JPS60251522A/en
Publication of JPS60251522A publication Critical patent/JPS60251522A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To provide a titled medium which is improved in the uniformity of easy magnetizability of a high permeability thin magnetic film layer and has excellent uniformity of recording efficiency and reproducing efficiency by providing a magnetic shielding plate between a disk-shaped substrate and an evaporating source to prevent the influence of the magnetic field from an electron gun. CONSTITUTION:Vapor deposition is executed after the magnetic shielding plate 8 is disposed between the disk-shaped base body 4 and the evaporating source 1 in the stage of depositing the high permeability thin magnetic film layer 5 consisting of an Fe-Ni alloy on the base body 4 by electron beam heating using the magnetic field deflection type electron gun 2. A vertically magnetizable recording layer 10 consisting of a Co-Cr alloy is then formed by vapor deposition on the layer 5. The influence of the magnetic field from the magnetic field deflection type electron gun is prevented by providing the magnetic shielding plate between the body 4 and the source 1 and therefore the uniformity in the easy magnetizability of the resultant thin high permeability magnetic film layer is improved and the vertically magnetizable recording medium having the excellent uniformity of the recording efficiency and regenerating efficiency is produced.

Description

【発明の詳細な説明】 〔産業上の利用分前〕 本発明は、記録媒体磁性面に対して垂直方向の残留磁化
を用いて情報の記録を行なう所謂垂直磁化記録方式にお
いて使用さする垂直磁化記録媒体の製法に関するもので
ある。
[Detailed Description of the Invention] [Before Industrial Use] The present invention relates to perpendicular magnetization used in the so-called perpendicular magnetization recording method in which information is recorded using residual magnetization perpendicular to the magnetic surface of a recording medium. This relates to a method for manufacturing a recording medium.

〔背景技術とその問題点〕[Background technology and its problems]

例えばコンピュータ等の記憶媒体としては、ランダムア
クセスが可能なディスク状の磁気記録媒体が多用さ汎て
いるが、この種の磁気記録媒体にあっては、従来は基板
上に被着形成される磁気記録層に対して水平方向の磁化
(面内方向磁化)を行なってその記録を行なっている。
For example, disk-shaped magnetic recording media that can be randomly accessed are widely used as storage media for computers, etc., but conventionally, this type of magnetic recording media has a magnetic Recording is performed by magnetizing the recording layer in the horizontal direction (in-plane direction magnetization).

しかしながら、この面内方向磁化による記録の場合、記
録信号が短波長になるにつね、すなわち記録密度が高ま
るにつね、媒体内の反磁界が増して残留磁束密度Brが
減衰し再生出力が低下してしまい、記憶容量の拡大等を
図るために高密度記録化を進めるうえで大きな障害とな
っている。
However, in the case of recording using in-plane direction magnetization, as the recording signal becomes shorter in wavelength, that is, as the recording density increases, the demagnetizing field within the medium increases, the residual magnetic flux density Br attenuates, and the reproduction output decreases. This has become a major obstacle in promoting high-density recording in order to increase storage capacity.

そこでさらに従来、磁気記録媒体の記録層の厚さ方向の
磁化によシ記録を行なう垂直磁化記録層ることから、特
に短波長記録、高密度記録において上述した面内方向磁
化による記録より有利でるることが知られている。
Therefore, conventionally, a perpendicular magnetization recording layer that performs recording by magnetization in the thickness direction of the recording layer of a magnetic recording medium is more advantageous than recording by in-plane magnetization described above, especially in short wavelength recording and high-density recording. It is known that

そして、この種の記録方式に用いられる垂直磁化記録媒
体としては、高分子フィルム等の非磁性基板上に直接C
o−Cr合金によシ垂直磁化記録層音形成した単層膜垂
直磁化記録媒体や、上記非磁性基板と垂直磁化記録層の
間KF e −N L合金からなる高透磁率磁性薄膜層
を設けた2層膜垂直磁化記録媒体等が考えら君ているが
、特に記録効率、再生効率共に優ねた2層膜垂直磁化記
録媒体が注目されている。
The perpendicular magnetization recording medium used in this type of recording method is a C
A single-layer perpendicular magnetization recording medium with a perpendicular magnetization recording layer made of an o-Cr alloy, and a high magnetic permeability magnetic thin film layer made of a KF e -N L alloy between the nonmagnetic substrate and the perpendicular magnetization recording layer. Two-layer film perpendicular magnetization recording media are being considered, but two-layer film perpendicular magnetization recording media are attracting particular attention because of their superior recording efficiency and reproduction efficiency.

ところで、この2層膜垂直磁化記録媒体においては、上
記高透磁率磁性薄膜層の磁気特性が重要で、特にディス
ク状の記録媒体においては、円周に溢って記録・再生が
行なわれるため、上記高透磁率磁性薄膜層は方向による
異方性をできるだけ持たないことが望ましい。
By the way, in this two-layer film perpendicular magnetization recording medium, the magnetic properties of the high permeability magnetic thin film layer are important, and especially in a disk-shaped recording medium, recording and reproduction are performed over the circumference. It is desirable that the high permeability magnetic thin film layer has as little directional anisotropy as possible.

しかしながら、上記高透磁率磁性薄膜層は生産性等の点
から電子ビーム加熱方式の真空蒸着法で作製されておシ
、この種の加熱方式では磁場偏向型電子銃が採用される
ことから、電子ビームを偏向させるための磁場の影響に
より得られる高透磁率磁性薄膜層に異方性が生じてしま
っている。したがって、上記高透磁率磁性薄膜層の磁化
され易さが場所によって異なってしまい、得られる垂直
磁化記録媒体の記録・再生効率が場所によって異なるこ
とになってしまう。
However, the above-mentioned high permeability magnetic thin film layer is manufactured by a vacuum evaporation method using an electron beam heating method from the viewpoint of productivity, etc., and since this type of heating method uses a magnetic field deflection type electron gun, Anisotropy has occurred in the high permeability magnetic thin film layer obtained by the influence of the magnetic field for deflecting the beam. Therefore, the ease with which the high permeability magnetic thin film layer is magnetized differs depending on the location, and the recording/reproducing efficiency of the resulting perpendicular magnetization recording medium differs depending on the location.

〔発明の目的〕[Purpose of the invention]

そこで本発明は、ディスク状垂直磁化記録媒体の面内磁
化層として優れた磁気的性質を示す尚透磁率磁性薄膜層
の製造方法を提供し、もって記録・再生効率の均一性に
優ねた垂直磁化記録媒体を製造することが可能な垂直磁
化記録媒体の製法を提供することを目的とする。
Therefore, the present invention provides a method for manufacturing a permeable magnetic thin film layer that exhibits excellent magnetic properties as an in-plane magnetization layer of a disk-shaped perpendicular magnetization recording medium, thereby providing a perpendicular magnetic thin film layer with excellent uniformity of recording and reproducing efficiency. An object of the present invention is to provide a method for manufacturing a perpendicular magnetization recording medium that can produce a magnetization recording medium.

〔発明の概要〕[Summary of the invention]

上述の如き目的を達成するために、本発明は、ディスク
状基体上にFe−N4合金よシなる高透磁率磁性薄膜層
を磁場偏向型電子銃を用いた電子ビーム加熱に19蒸着
するに際し、上記基体と蒸発源との間に磁気シールド板
を配して蒸着を行ない、次いで上記高透磁率磁性薄膜層
上K Co −Cr合金よりなる垂直磁化記録層を蒸着
により形成することを特徴とするものである。
In order to achieve the above-mentioned objects, the present invention provides the following steps when depositing a high permeability magnetic thin film layer made of Fe-N4 alloy on a disk-shaped substrate by electron beam heating using a magnetic field deflection type electron gun. A magnetic shield plate is arranged between the substrate and the evaporation source to perform the vapor deposition, and then a perpendicular magnetization recording layer made of a K Co -Cr alloy is formed on the high permeability magnetic thin film layer by vapor deposition. It is something.

〔実施例〕〔Example〕

以下、本発明を適用した垂直磁化記録媒体の製法につい
て、その工程順序に従って説明する。
Hereinafter, a method for manufacturing a perpendicular magnetization recording medium to which the present invention is applied will be explained in accordance with the process order.

本発明においては、先ず、第1図に示すように、Fe−
N=合金インゴットの如き蒸発源1と磁場偏向型電子銃
2とを備えた電子ビーム加熱方式の真空蒸着装置の真空
槽3内に、ポリイミドやポリエチレンテレフタレート等
の非磁性材料によシ円形フィルムとして形成されるディ
スク状基体4を配置し、上記蒸発源1を上記磁場偏向型
電子銃2の電子ビーム(図中、破線で示す。シで加熱し
て、上記ディスク状基体40表面に蒸発原子を被着して
高透磁率磁性薄膜層5を形成する。ここで、上記磁場偏
向型電子銃2にβりては、フィラメント6から出る電子
ビームをマグネット7の磁場によシ曲げ、上記蒸発源1
に集束するように構成されているが、本発明においては
、上記マグネット7の磁場が得られる高透磁率磁性薄膜
層5に対して影響を与えないように、上記ディスク状基
体4と蒸発源10間に所定6窓部aa=有する磁気シー
ルド板8を配設してお匂 上記磁気シールド板8は、例えばFe−N=金合金軟鉄
等で形成さ九、この磁気/−ルド板8を設けることによ
って上記マグネット7の磁場が遮蔽さ1上記高透磁率磁
性薄膜層5に異方性が生ずることがなくなるのである。
In the present invention, first, as shown in FIG.
N = A circular film made of non-magnetic material such as polyimide or polyethylene terephthalate is placed in a vacuum chamber 3 of an electron beam heating type vacuum evaporation apparatus equipped with an evaporation source 1 such as an alloy ingot and a magnetic field deflection type electron gun 2. The disk-shaped substrate 4 to be formed is placed, and the evaporation source 1 is heated with an electron beam (indicated by a broken line in the figure) of the magnetic field deflection type electron gun 2 to form evaporated atoms on the surface of the disk-shaped substrate 40. The film is deposited to form a high permeability magnetic thin film layer 5. Here, in the magnetic field deflection type electron gun 2, the electron beam emitted from the filament 6 is bent by the magnetic field of the magnet 7, and the evaporation source 1
However, in the present invention, the disk-shaped substrate 4 and the evaporation source 10 are arranged so that the magnetic field of the magnet 7 does not affect the high permeability magnetic thin film layer 5. A magnetic shielding plate 8 having six predetermined windows (aa) is disposed in between. As a result, the magnetic field of the magnet 7 is shielded, and anisotropy does not occur in the high permeability magnetic thin film layer 5.

ところで、上記磁気シールド板8に6つては、窓部8a
の大きさが生産効率等に影響を与えるが、一般に上記マ
グネット7L:/)磁場が強い時には上記窓部8aを小
さく、また上記磁場が弱い時には上記窓部8aを大きく
すわばよく、また蒸発源1と基板4間の距離によっても
影響の大きさが異なるので、状況に応じχ適宜設定すれ
ばよい。
By the way, the magnetic shield plate 8 has six windows 8a.
The size of the magnet 7L affects production efficiency, but in general, when the magnetic field is strong, the window 8a should be made small, and when the magnetic field is weak, the window 8a should be made large. Since the magnitude of the influence also differs depending on the distance between 1 and the substrate 4, χ may be set appropriately depending on the situation.

上述のように、上記磁気シールド板8を設けることによ
って磁場偏向型電子銃2の磁場の影響を受けることなく
高透磁率磁性薄膜層5としてFe−N、l、合金薄膜を
膜厚0.2〜1.0μm程度となるように被着形成した
後、この高透磁率磁性薄膜層5上KTb薄膜9及び垂直
磁化記録層10を順次スパッタ法や蒸着法等により被着
形成し、第2図に示すような構成の垂直磁化記録媒体1
1を完成する。
As mentioned above, by providing the magnetic shield plate 8, the Fe-N, L, alloy thin film can be formed as the high permeability magnetic thin film layer 5 with a film thickness of 0.2 without being affected by the magnetic field of the magnetic field deflection type electron gun 2. After depositing the film to a thickness of about 1.0 μm, a KTb thin film 9 and a perpendicular magnetization recording layer 10 are sequentially deposited on the high permeability magnetic thin film layer 5 by sputtering, vapor deposition, etc., as shown in FIG. Perpendicular magnetization recording medium 1 having a configuration as shown in
Complete 1.

上記垂直磁化記録層10は、Crを10〜25原子係を
含み残部COからなるCo−Cr合金をスパッタ法や蒸
着法等によシ被着することにより作製されるものであっ
て、こねによって垂直方向の配向に優nたものが得られ
る。
The perpendicular magnetization recording layer 10 is fabricated by depositing a Co--Cr alloy containing 10 to 25 atoms of Cr and the remainder being CO by sputtering, vapor deposition, etc., and by kneading. Excellent vertical alignment is obtained.

丑た、上記TL薄膜9は、上記垂直磁化記録層10の膜
成長速度を向上し優れたCo−Cr合金膜を形成するた
めに設けられるものであって、その膜厚は100〜5o
oKに選定される。上記TL薄膜9の膜厚が100λ未
満では、TLの連続膜が形成しにくく、TLの下地膜と
しての効果が不充分となる虞れがあり、また上記膜厚が
5ooKを越えてもCo−Cr合金膜の磁気的特性や機
械的特性にこれ以上の効果が認められない。なお、この
TL薄膜9は、場合によっては無くともよい。
The TL thin film 9 is provided to improve the film growth rate of the perpendicular magnetization recording layer 10 and form an excellent Co-Cr alloy film, and has a thickness of 100 to 50 mm.
Selected as OK. If the thickness of the TL thin film 9 is less than 100λ, it will be difficult to form a continuous TL film, and there is a risk that the effect as a TL base film will be insufficient. No further effects were observed on the magnetic properties or mechanical properties of the Cr alloy film. Note that this TL thin film 9 may be omitted depending on the case.

以上述べたように、上述の製法によれば、ディスク状基
板4と蒸発源1との間に磁場偏向型電子銃2の磁場を遮
蔽するための磁気シールド板8を設けているので、方向
による異方性が少なく均一性に優ねた高透磁率磁性薄膜
5が得られ、この結果、記録効率や再生効率の均一性に
優れた垂直磁化記録媒体11を作製することが可能でお
る。
As described above, according to the above manufacturing method, since the magnetic shield plate 8 for shielding the magnetic field of the magnetic field deflection type electron gun 2 is provided between the disk-shaped substrate 4 and the evaporation source 1, A high permeability magnetic thin film 5 with little anisotropy and excellent uniformity is obtained, and as a result, it is possible to produce a perpendicular magnetization recording medium 11 with excellent uniformity in recording efficiency and reproduction efficiency.

すなわち、上記垂直磁化記録媒体11にめり又は、第3
図に示すように、主磁極12と補助磁極13とを備えて
なる垂直磁気ヘッド14を摺接移動し、上記主磁極12
から出る磁力線(図中、破線で示す、)によシ上記垂直
磁化記録層10を厚さ方向に磁化するとともに、上記磁
力線を面内磁化層でろる高透磁率磁性薄膜層5を経て補
助磁極13に形成することによ少記録・再生を行なうわ
けてるるか、上記Fe−Nb合金薄膜の磁化され易さが
上記磁力線の向きによらず#11.は等しいため、この
垂直磁化記録媒体11の向きによらず記録効率や再生効
率かはぼ等しくなるのである。
That is, the perpendicular magnetization recording medium 11 or the third
As shown in the figure, a vertical magnetic head 14 comprising a main magnetic pole 12 and an auxiliary magnetic pole 13 is moved in sliding contact with the main magnetic pole 12.
The perpendicular magnetization recording layer 10 is magnetized in the thickness direction by the magnetic lines of force (indicated by broken lines in the figure) emitted from the magnetic field, and the lines of magnetic force are passed through the high permeability magnetic thin film layer 5 that is blocked by the in-plane magnetization layer to form the auxiliary magnetic pole. This may be because the Fe--Nb alloy thin film is easily magnetized regardless of the direction of the magnetic lines of force. Since these are the same, the recording efficiency and reproduction efficiency are approximately the same regardless of the orientation of the perpendicular magnetization recording medium 11.

以下、本発明の具体的な実施例につい工説明する。Hereinafter, specific embodiments of the present invention will be explained.

実施例1 ボリイ樗ドからなるディスク状基体を用意し、この基体
上に磁場偏向型電子銃を用いた電子ビーム加熱方式の真
空蒸着装置を使用して下記の蒸着条件で膜厚0.394
mのFe−N=合金薄膜(Fe21.5%、N、、78
.5チ)を被着形成した。
Example 1 A disk-shaped substrate made of bolywood was prepared, and a film thickness of 0.394 was deposited on this substrate under the following evaporation conditions using an electron beam heating type vacuum evaporation apparatus using a magnetic field deflection type electron gun.
m of Fe-N=alloy thin film (Fe21.5%, N, 78
.. 5) was deposited.

蒸着条件 真空度 2. OX 10 Torr 基板温度 260℃ 蒸着速度 39人/sec このとき、基体と蒸発源の間に磁気シールド板を設けて
蒸着を行なったが、基板位置における磁場の強さは0.
5エルステツドでめった。
Vapor deposition conditions vacuum degree 2. OX 10 Torr Substrate temperature 260°C Vapor deposition rate 39 people/sec At this time, a magnetic shield plate was provided between the substrate and the evaporation source for vapor deposition, but the strength of the magnetic field at the substrate position was 0.
5 I rarely met Oersted.

次に、上記Fe−N=合金薄膜上に真空度2.0×10
−’T・・・、基板温度180℃、蒸着速度14尺/江
の条件で膜厚300λのTL薄膜を形成し、さらにこの
TL薄膜上に真空度2.0 X 10−’ Torr、
基板温度180℃、蒸着速度32 Eh/ secで膜
厚0゜1μInのCo−Cr合金膜を形成してサンプル
ディスクを作製した。
Next, a vacuum degree of 2.0 × 10
-'T..., a TL thin film with a film thickness of 300λ was formed under the conditions of a substrate temperature of 180°C and a deposition rate of 14 feet/g, and a vacuum degree of 2.0 × 10-' Torr on this TL thin film.
A sample disk was prepared by forming a Co--Cr alloy film with a thickness of 0.1 μIn at a substrate temperature of 180° C. and a deposition rate of 32 Eh/sec.

得られたサンプルディスクのFe−NL合金薄膜につい
て、第4図に示すようKA、B、C方向にそJ%ぞれ磁
場を印加して、抗磁力HC及び磁化するに要する磁場の
大きさについて調べた。結果を第1表に示す。なお、第
1表において、H(0,8Is)は飽和磁化の80%ま
で磁化するに要する磁場の大きさ、H(0,9IS)は
飽和磁化の90係まで磁化するに要する磁場の大きさを
示すものでろる。
Magnetic fields were applied to the Fe-NL alloy thin film of the obtained sample disk in J% directions in the KA, B, and C directions as shown in Figure 4, and the coercive force HC and the magnitude of the magnetic field required for magnetization were determined. Examined. The results are shown in Table 1. In Table 1, H(0,8Is) is the magnitude of the magnetic field required to magnetize to 80% of the saturation magnetization, and H(0,9IS) is the magnitude of the magnetic field required to magnetize to the 90th factor of the saturation magnetization. It's something that shows.

第1表 この第1表よシ、後述の比較例に比べて磁化されやすさ
の均一性が改善されたことが分がる。
Table 1 From Table 1, it can be seen that the uniformity of magnetization was improved compared to the comparative example described below.

比較例 先の実施例1において、磁気シールド板を除いてFe−
Ni合金薄膜を被着形成し、実施例1と同様の方法によ
りサンプルディスクを作製した。
Comparative Example In Example 1, except for the magnetic shield plate, Fe-
A sample disk was prepared in the same manner as in Example 1 by depositing a Ni alloy thin film.

なお、上記Fe−Ni合金薄膜を被着形成したときの基
板位置における磁場の強さは椙エルステッドであった。
The strength of the magnetic field at the substrate position when the Fe--Ni alloy thin film was deposited was Oersted.

得られたサンプルディスクのFe−Ni合金薄 4・膜
について、先の実施例1と同様に抗磁力He及び磁化す
るに要する磁場の大きさについて調べた。
Regarding the obtained Fe--Ni alloy thin film 4 of the sample disk, the coercive force He and the magnitude of the magnetic field required for magnetization were investigated in the same manner as in Example 1 above.

結果を第2表に示す。The results are shown in Table 2.

第2表 〔発明の効果〕 上述の実施例の説明からも明らかなように、本発明によ
れば、ディスク状基体と蒸発源との間に磁気シールド板
を設は磁場偏向型電子銃の磁場の影響を防止しているの
で、得られる高透磁率磁性薄膜層の磁化され易さの均一
性が改善され、したがって記録効率や再生効率の均一性
に優れた垂直磁化記録媒体を製造することが可能となっ
ている。
Table 2 [Effects of the Invention] As is clear from the description of the above embodiments, according to the present invention, a magnetic shield plate is provided between the disk-shaped substrate and the evaporation source to prevent the magnetic field of the magnetic field deflection type electron gun. Since the influence of the above is prevented, the uniformity of the ease of magnetization of the obtained high permeability magnetic thin film layer is improved, and therefore, it is possible to manufacture perpendicular magnetization recording media with excellent uniformity of recording efficiency and reproduction efficiency. It is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は高透磁率磁性薄膜層の形成に用いられる磁場偏
向型電子銃を用いた電子ビーム加熱方式の真空蒸着装置
の一例を示す模式図、第2図は本発明によって製造され
る垂直磁化記録媒体の構成を示す要部断面図、第3図は
垂直磁化記録方式孕説明するための模式図である。 第4図は、本発明の実施例及び比較例において抗磁力H
e及び磁化に要する磁場の大きさを測定する際に印加し
た磁場の向きを示す模式的な平面図である。 1・・・ 蒸発源 2・・・ 磁場偏向型電子銃 4・・・ ディスク状基体 5・・・ 高透磁率磁性薄膜層 8・・・ 磁気シールド板 特許出願人 ン二一株式会社 代理人 弁理士 小 池 晃 同 1) 村 榮 − 第1図 第2図 第3図 第4図
Fig. 1 is a schematic diagram showing an example of an electron beam heating type vacuum evaporation apparatus using a magnetic field deflection type electron gun used for forming a high permeability magnetic thin film layer, and Fig. 2 shows a perpendicular magnetization produced by the present invention. FIG. 3 is a sectional view of a main part showing the structure of a recording medium, and is a schematic diagram for explaining the perpendicular magnetization recording method. Figure 4 shows the coercive force H in the examples and comparative examples of the present invention.
FIG. 3 is a schematic plan view showing the direction of the magnetic field applied when measuring e and the magnitude of the magnetic field required for magnetization. 1... Evaporation source 2... Magnetic field deflection type electron gun 4... Disc-shaped substrate 5... High permeability magnetic thin film layer 8... Magnetic shield plate patent applicant N21 Co., Ltd. agent Patent attorney Kodo Shi Koike 1) Ei Mura - Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] ディスク状基体上にFe−NL金合金シなる高透磁率磁
性薄膜層を磁場偏向型電子銃を用いた電子ビーム加熱に
より蒸着するに際し、上記基体と蒸発源との間に磁気シ
ールド板を配して蒸着を行ない、次いで上記高透磁率磁
性薄膜層上KCo−Cr合金よシなる垂直磁化記録層を
蒸着Kx!ll形成することを特徴とする垂直磁化記録
媒体の製法。
When depositing a high permeability magnetic thin film layer of Fe-NL gold alloy on a disk-shaped substrate by electron beam heating using a magnetically deflected electron gun, a magnetic shield plate is placed between the substrate and the evaporation source. Then, a perpendicular magnetization recording layer made of KCo-Cr alloy is deposited on the high permeability magnetic thin film layer Kx! 1. A method for manufacturing a perpendicular magnetization recording medium, characterized by forming a perpendicular magnetization recording medium.
JP10818184A 1984-05-28 1984-05-28 Production of vertically magnetizable recording medium Pending JPS60251522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10818184A JPS60251522A (en) 1984-05-28 1984-05-28 Production of vertically magnetizable recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10818184A JPS60251522A (en) 1984-05-28 1984-05-28 Production of vertically magnetizable recording medium

Publications (1)

Publication Number Publication Date
JPS60251522A true JPS60251522A (en) 1985-12-12

Family

ID=14478043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10818184A Pending JPS60251522A (en) 1984-05-28 1984-05-28 Production of vertically magnetizable recording medium

Country Status (1)

Country Link
JP (1) JPS60251522A (en)

Similar Documents

Publication Publication Date Title
JPS6063710A (en) Magnetic recording medium
JPH056738B2 (en)
JPH0454367B2 (en)
JPS60251522A (en) Production of vertically magnetizable recording medium
JPS63220411A (en) Perpendicular magnetic recording medium
JP3132254B2 (en) Soft magnetic film and method for manufacturing soft magnetic multilayer film
JPH05101385A (en) Production of magnetic recording medium having axis of easy magnetization unified in circumferential direction
JPS59157828A (en) Magnetic recording medium
JPS59107417A (en) Permanent magnet bias type magneto-resistance effect head
JPS6235605A (en) Magnetically soft thin film
JPS5862827A (en) Magnetic recording medium
JPS6066309A (en) Magnetic head
JPS60231911A (en) Magnetic recording medium
JPS59157833A (en) Magnetic recording medium
JPS60125933A (en) Production of magnetic medium
JPS59127235A (en) Vertical magnetic recording medium
JPS61120349A (en) Manufacture of double layer film vertical magnetic recording medium
JPH01269211A (en) Magnetic head
JPS61122919A (en) Vertical magnetic recording medium
JPS63124213A (en) Perpendicular magnetic recording medium
JPS61255533A (en) Vertical magnetic recording medium and its production
JPH0261819A (en) Perpendicular magnetic recording medium
JPS6224432A (en) Production of magnetic recording medium
JPH01211318A (en) Magnetic recording medium
JPS62231420A (en) Magnetic recording medium