JPH0785442A - Vertical magnetic recording medium - Google Patents

Vertical magnetic recording medium

Info

Publication number
JPH0785442A
JPH0785442A JP23326193A JP23326193A JPH0785442A JP H0785442 A JPH0785442 A JP H0785442A JP 23326193 A JP23326193 A JP 23326193A JP 23326193 A JP23326193 A JP 23326193A JP H0785442 A JPH0785442 A JP H0785442A
Authority
JP
Japan
Prior art keywords
film
magnetic
recording medium
backing layer
cob
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23326193A
Other languages
Japanese (ja)
Inventor
Hiroaki Wakamatsu
弘晃 若松
Masaki Shinohara
正喜 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP23326193A priority Critical patent/JPH0785442A/en
Publication of JPH0785442A publication Critical patent/JPH0785442A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To realize a vertical magnetic recording medium being superior in productivity and having excellent recording-reproducing characteristics. CONSTITUTION:The vertical magnetic recording medium is constructed from a nonmagnetic base 11 and a soft magnetic backing layer 12 and a vertical magnetization recording layer 13 provided thereon. In this vertical magnetic recording medium, a CoB film 21 is used for the soft magnetic backing layer 12 and the film is divided into at least two layers or more by a nonmagnetic film 22.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は垂直磁気記録方式の磁気
ディスク装置に用いて良好な記録再生特性を有し、且つ
生産性に優れた垂直磁気記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a perpendicular magnetic recording medium which has excellent recording and reproducing characteristics and is excellent in productivity when used in a magnetic disk device of a perpendicular magnetic recording system.

【0002】従来の磁気ディスク装置においては、情報
の記録は、記録媒体を水平方向に磁化する水平記録方式
で行われている。この方式では、記録層に対して水平方
向に磁化した微小な磁石が、隣の磁石と反発しあって、
互いに磁化を弱め合ってしまう。この影響は情報を高密
度に記録すると顕著に現れ、情報の高密度記録に対して
限界が生じてくる。
In a conventional magnetic disk device, information is recorded by a horizontal recording method in which a recording medium is magnetized in a horizontal direction. In this method, a minute magnet magnetized in the horizontal direction with respect to the recording layer repels the adjacent magnet,
They weaken each other's magnetization. This effect becomes conspicuous when information is recorded at a high density, and there is a limit to the high density recording of information.

【0003】この限界を打破するものとして垂直磁気記
録方式が提案され、それを実現する記録媒体の最も一般
的なものとして、CoCr膜とNiFe膜を積層した二
層膜媒体がある。CoCr膜は記録層で、膜に対して垂
直に磁化を残して記録する。NiFe膜は裏打ち層で、
磁気ヘッドからの記録磁界がCoCr記録層を磁化した
後ヘッドに戻す役割を果たし、磁気ヘッドの一部とも考
えられ、優れた軟磁性特性を有する事が必要とされる。
Perpendicular magnetic recording has been proposed to overcome this limitation, and the most common recording medium that realizes this is a two-layer film medium in which a CoCr film and a NiFe film are laminated. The CoCr film is a recording layer, and recording is performed with magnetization left perpendicular to the film. The NiFe film is a backing layer,
The recording magnetic field from the magnetic head plays the role of returning the magnetic field to the head after magnetizing the CoCr recording layer, and is considered to be a part of the magnetic head, and it is necessary to have excellent soft magnetic characteristics.

【0004】[0004]

【従来の技術】従来の垂直二層膜の記録媒体は、図5に
示すように、非磁性のディスク基板11の上に、高透磁
率の裏打ち層12と垂直磁化記録層13を形成したもの
であり裏打ち層12には、例えばNiP表面処理を施し
たアルミニウムからなる非磁性基板11上に、電解めっ
き法を用いて4μmの厚さに形成したNiFe膜が用い
られる。この裏打ち層12の厚さとしては、ディスクの
一周内の記録再生特性のばらつき(モジュレーション)
などを考慮すると3〜4μm以上が必要である。
2. Description of the Related Art As shown in FIG. 5, a conventional perpendicular double-layered recording medium has a high magnetic permeability backing layer 12 and a perpendicular magnetization recording layer 13 formed on a non-magnetic disk substrate 11. As the backing layer 12, for example, a NiFe film formed to have a thickness of 4 μm on the non-magnetic substrate 11 made of aluminum subjected to NiP surface treatment by electrolytic plating is used. The thickness of the backing layer 12 is the variation (modulation) of the recording / reproducing characteristics within one round of the disc.
Considering the above, 3 to 4 μm or more is necessary.

【0005】また垂直磁化記録層13には、例えばスパ
ッタによりCoCrを0.15μmの厚さに成膜したも
のが用いられる。さらに必要に応じて垂直磁化記録層1
3の上に潤滑保護膜を設ける。
The perpendicular magnetization recording layer 13 is made of CoCr having a thickness of 0.15 μm, for example, by sputtering. Further, if necessary, the perpendicular magnetization recording layer 1
A lubrication protective film is provided on the surface of No. 3.

【0006】このような記録媒体を用いる磁気ディスク
装置は、近年、小型化が急速に進み、使用するディスク
サイズは5.25インチから3.5インチへ、更に2.
5インチへと小さくなっている。
In recent years, the magnetic disk apparatus using such a recording medium has been rapidly miniaturized, and the disk size to be used is changed from 5.25 inches to 3.5 inches, and further 2.
It has been reduced to 5 inches.

【0007】このようにディスクサイズが小さくなる
と、成膜装置へのセッティングの工数がかかり、特に電
解めっきにより成膜を行う裏打ち層のNiFe膜を成膜
する場合には大きな負担となる。またNiFe膜の飽和
磁束密度は高々10000Gauss であり、上記したよう
にヘッドの一部としての役割を担う裏打ち層としては、
ヘッド磁極と同様に13000〜15000Gauss とす
ることが望ましい。そのような飽和磁束密度の高い裏打
ち層としては無電解めっきで成膜が可能な高飽和磁束密
度のCoB膜を用いれば良い。
When the disk size is reduced as described above, the number of man-hours required for setting the film forming apparatus is increased, which is a heavy burden particularly when forming a NiFe film as a backing layer to be formed by electrolytic plating. Further, the saturation magnetic flux density of the NiFe film is at most 10000 Gauss, and as described above, as the backing layer which plays a role as a part of the head,
It is desirable to set it to 13000 to 15000 Gauss like the head magnetic pole. As such a backing layer having a high saturation magnetic flux density, a CoB film having a high saturation magnetic flux density that can be formed by electroless plating may be used.

【0008】[0008]

【発明が解決しようとする課題】上記CoB膜は、その
特性は優れているが、無電解めっき法による形成である
ため、膜厚が厚くなるとCoBの析出率が低下し、1μ
m以上の厚さの膜を安定して成膜することが困難になる
という問題がある。また、ディスクの一周内の記録再生
特性のばらつき(モジュレーション)を無くするために
は裏打ち層のディスク面内の磁気異方性を同一方向に揃
えることが必要となる。
The above CoB film has excellent characteristics, but since it is formed by the electroless plating method, the deposition rate of CoB decreases as the film thickness increases, and the CoB deposition rate decreases to 1 μm.
There is a problem that it becomes difficult to stably form a film having a thickness of m or more. Further, in order to eliminate the variation (modulation) of the recording / reproducing characteristics within one round of the disk, it is necessary to align the magnetic anisotropy in the disk surface of the backing layer in the same direction.

【0009】本発明は、生産性に優れ、且つ良好な記録
再生特性を有する垂直磁気記録媒体を実現しようとす
る。
The present invention intends to realize a perpendicular magnetic recording medium having excellent productivity and good recording / reproducing characteristics.

【0010】[0010]

【課題を解決するための手段】本発明の垂直磁気記録媒
体に於いては、非磁性基板11と、その上に設けられた
軟磁性裏打ち層に及び垂直磁化記録層13とからなる垂
直磁気記録媒体において、上記軟磁性裏打ち層12は、
CoB膜21を用い、該膜を非磁性膜22で少なくとも
2層以上に分断して成ることを特徴とする。また、それ
に加えて、上記非磁性膜22の膜厚を10nm以上とし、
CoB膜21との膜厚比率を少なくとも1/2以下とな
るように各膜厚を設定したことを特徴とする。
In the perpendicular magnetic recording medium of the present invention, a perpendicular magnetic recording comprising a non-magnetic substrate 11, a soft magnetic backing layer provided thereon, and a perpendicular magnetization recording layer 13. In the medium, the soft magnetic backing layer 12 is
The CoB film 21 is used, and the film is divided into at least two layers by the nonmagnetic film 22. In addition to that, the thickness of the non-magnetic film 22 is set to 10 nm or more,
Each film thickness is set so that the film thickness ratio with the CoB film 21 is at least ½ or less.

【0011】また、上記非磁性基板11の上に硬磁性膜
又は半硬磁性膜(31)を形成し、該膜に一軸方向たと
えば非磁性基板11の半径方向、もしくは円周方向の残
留磁化を付与した後に軟磁性裏打ち層12を形成したこ
とを特徴とする。
Further, a hard magnetic film or a semi-hard magnetic film (31) is formed on the non-magnetic substrate 11, and a residual magnetization in a uniaxial direction, for example, a radial direction of the non-magnetic substrate 11 or a circumferential direction is applied to the film. The soft magnetic backing layer 12 is formed after the application.

【0012】この構成を採ることにより、生産性に優
れ、且つ良好な記録再生特性を有する垂直磁気記録媒体
が得られる。
By adopting this structure, a perpendicular magnetic recording medium having excellent productivity and good recording / reproducing characteristics can be obtained.

【0013】[0013]

【作用】本発明では、軟磁性裏打ち層12としてCoB
膜21を用い、該CoB膜12を非磁性膜22で少なく
とも2層以上に分断することで安定して析出できる厚さ
のCoB膜を非磁性膜の上に形成でき、それを所望の厚
さまで繰返し成膜することでμmオーダの膜厚の裏打ち
層を得ることが可能となる。
In the present invention, the soft magnetic backing layer 12 is made of CoB.
By using the film 21 and dividing the CoB film 12 into at least two layers by the nonmagnetic film 22, a CoB film having a thickness that can be stably deposited can be formed on the nonmagnetic film, and the CoB film can be formed to a desired thickness. By repeatedly forming the film, a backing layer having a film thickness on the order of μm can be obtained.

【0014】また、非磁性基板11と軟磁性裏打ち層1
2との間に硬磁性又は半硬磁性の膜31を設け、該膜3
1を半径方向もしくは円周方向に残留磁化を付与してお
くことにより、軟磁性裏打ち層であるCoB膜21の磁
気異方性が半径方向又は円周方向に揃えられ、ディスク
の一周内の軟磁気特性が均一になるため良好なモジュレ
ーション特性を得ることが可能となる。
Further, the non-magnetic substrate 11 and the soft magnetic backing layer 1
2 is provided with a hard magnetic or semi-hard magnetic film 31, and the film 3
By imparting residual magnetization to No. 1 in the radial direction or the circumferential direction, the magnetic anisotropy of the CoB film 21, which is the soft magnetic backing layer, is aligned in the radial direction or the circumferential direction, and the soft anisotropy in one circumference of the disk is increased. Since the magnetic characteristics are uniform, good modulation characteristics can be obtained.

【0015】[0015]

【実施例】図1は本発明の第1の実施例を示す断面図で
ある。本実施例は、NiP表面処理を施したアルミニウ
ムよりなる非磁性基板11の上に、CoB膜21を0.
5μm形成し、その上にNiPよりなる非磁性膜22を
0.1μm形成し、引続きCoB膜を6層、NiP膜を
5層交互に成膜し、CoBの合計膜厚として3.0μm
(0.5×6μm),NiPの合計膜厚として0.5μ
m(0,1×5μm)、軟磁性裏打ち層12としての全
膜厚として3.5μmの厚さに形成した。さらにこの上
にスパッタ法によりCoCrTaの垂直磁化記録層13
を0.1μm成膜した。
1 is a sectional view showing a first embodiment of the present invention. In this embodiment, the CoB film 21 is formed on the non-magnetic substrate 11 made of aluminum which is surface-treated with NiP.
5 μm in thickness, 0.1 μm in thickness of non-magnetic film 22 made of NiP, 6 layers of CoB film and 5 layers of NiP film are alternately formed, and the total thickness of CoB is 3.0 μm.
(0.5 × 6 μm), the total film thickness of NiP is 0.5 μ
m (0.1 × 5 μm), and the total thickness of the soft magnetic backing layer 12 was 3.5 μm. Further, a perpendicular magnetization recording layer 13 of CoCrTa is further formed thereon by a sputtering method.
Was deposited to a thickness of 0.1 μm.

【0016】ここで、CoB膜の無電解めっきによる成
膜は、硫酸コバルトとジメチルアミンボランを主成分と
するめっき溶液を60℃に加熱し、所定時間浸漬する。
また、NiP膜の無電解めっきによる成膜は、塩化ニッ
ケル、次亜リン酸ナトリウムを主成分とするめっき溶液
を80〜90℃に加熱し、所定時間浸漬する。また、C
oCrTa膜のスパッタによる成膜条件は、パワー密度
5.5w/cm2 、ガス圧5mTorr、基板温度250℃で
ある。
Here, the CoB film is formed by electroless plating by heating a plating solution containing cobalt sulfate and dimethylamine borane as main components to 60 ° C. and immersing the solution for a predetermined time.
The NiP film is formed by electroless plating by heating a plating solution containing nickel chloride and sodium hypophosphite as main components to 80 to 90 ° C. and immersing it for a predetermined time. Also, C
The conditions for forming the oCrTa film by sputtering are a power density of 5.5 w / cm 2 , a gas pressure of 5 mTorr, and a substrate temperature of 250 ° C.

【0017】以上の多層膜形成により裏打ち層として3
μm以上の厚さのものを得ることが可能となり、再生出
力、D50などの記録再生特性も従来のNiFe膜と比較
してほぼ同程度のものが得られている。また成膜工程
は、CoB膜もNiP膜も無電解めっきで成膜できるた
め、基板取付け治具の取替えは不要で、CoB膜の浴と
NiP膜の浴に交互に浸けることで多層構造の膜が形成
できるため、電気めっきに比して著しく工数が節減でき
る。
As a backing layer, 3 is formed by the above multi-layer film formation.
It is possible to obtain a film having a thickness of μm or more, and the reproduction output and D 50 and other recording and reproducing characteristics are almost the same as those of the conventional NiFe film. In addition, since the CoB film and the NiP film can be formed by electroless plating in the film forming process, it is not necessary to replace the substrate mounting jig, and the CoB film bath and the NiP film bath are alternately dipped to form a multi-layered film. Since it can be formed, the number of steps can be significantly reduced as compared with electroplating.

【0018】なお上記実施例では、CoB膜とNiP膜
の各膜厚としてそれぞれ0.5μm,0.1μmとした
が、CoB膜が安定して成膜できる膜厚、NiPの非磁
性分の体積の許容範囲(非磁性膜としての膜厚はなるべ
く薄くすることが望ましい)、全膜厚、層数を考慮して
適宜決定すれば良い。但し、NiP膜の厚さはCoB膜
の分断に最小限必要な10nmとし、CoB膜は少なく
ともその2倍以上とする。
In the above embodiment, the thickness of the CoB film and the thickness of the NiP film are 0.5 μm and 0.1 μm, respectively. The allowable range (the thickness of the non-magnetic film is preferably as thin as possible), the total thickness, and the number of layers may be taken into consideration. However, the thickness of the NiP film is set to 10 nm, which is the minimum required to divide the CoB film, and the thickness of the CoB film is at least twice that.

【0019】図2は本発明の第2の実施例を示す断面図
である。本実施例は基本的には前実施例と同様であり、
異なるところは、非磁性基板11と軟磁性裏打ち層12
との間に硬磁性又は半硬磁性の膜31を設けたことであ
る。この硬磁性又は半硬磁性の膜31には例えば厚さ
0.1μmのCoCr膜を用いることができる。このC
oCr膜はスパッタ法により、パワー密度5.5w/cm
2 、ガス圧5mTorr、基板温度150℃で成膜できる。
そして、成膜中、もしくは成膜後に該膜に残留磁化を均
一方向に残す。
FIG. 2 is a sectional view showing a second embodiment of the present invention. This embodiment is basically the same as the previous embodiment,
The difference is that the non-magnetic substrate 11 and the soft magnetic backing layer 12 are
That is, a hard magnetic or semi-hard magnetic film 31 is provided between and. As the hard magnetic or semi-hard magnetic film 31, for example, a CoCr film having a thickness of 0.1 μm can be used. This C
The oCr film has a power density of 5.5 w / cm by the sputtering method.
2. A film can be formed at a gas pressure of 5 mTorr and a substrate temperature of 150 ° C.
Then, the residual magnetization is left in a uniform direction during or after the film formation.

【0020】残留磁化の付与方法は図3又は図4に示す
ような永久磁石を用いる。図3に示す方法は、ヨーク4
3によって磁気的に結合された円環状のマグネット42
と円柱状のマグネット41とを組合わせたもので、同図
に示すように成膜中もしくは成膜後のディスク基板をマ
グネットに対向させ、半径方向に磁化し、残留磁化を付
与する。図4に示す方法は、ヨーク53によって磁気的
に結合された2つの直方体のマグネット51,52を用
い、ディスク基板の一部が対向するように位置させ、デ
ィスク基板を回転させることで基板の円周方向に残留磁
化の付与を行う。
A permanent magnet as shown in FIG. 3 or FIG. 4 is used as the method of giving the residual magnetization. The method shown in FIG.
An annular magnet 42 magnetically coupled by 3
And a columnar magnet 41 are combined. As shown in the figure, the disk substrate during or after film formation is opposed to the magnet and magnetized in the radial direction to give residual magnetization. The method shown in FIG. 4 uses two rectangular parallelepiped magnets 51 and 52 that are magnetically coupled by a yoke 53, and positions the disk substrates so that parts of them face each other. Remanent magnetization is applied in the circumferential direction.

【0021】このように残留磁化を付与した硬磁性又は
半硬磁性膜31の上に、第1の実施例と同様にCoB膜
21とNiP等の非磁性膜22の多層膜を形成する。こ
のように成膜した本実施例のモジュレーション波形は一
周にわたって均一で、良好なものとなる。なお本実施例
は、硬磁性又は半硬磁性膜の例として硬磁性のCoCr
膜を用いたが、そのほか、Co合金、γ−酸化鉄、酸化
クロム等の材料を用いても良い。また半硬磁性膜として
FeCo系合金などを用いても良い。
On the hard magnetic or semi-hard magnetic film 31 thus imparted with the residual magnetization, a multilayer film of the CoB film 21 and the non-magnetic film 22 such as NiP is formed as in the first embodiment. The modulation waveform of this embodiment formed in this way is uniform and good over the entire circumference. In this embodiment, as an example of a hard magnetic or semi-hard magnetic film, hard magnetic CoCr is used.
Although the film is used, other materials such as Co alloy, γ-iron oxide, and chromium oxide may be used. Alternatively, a FeCo-based alloy or the like may be used as the semi-hard magnetic film.

【0022】また、上記第1、第2実施例とも垂直磁化
記録層としてはスパッタCoCr系合金膜を用いたが、
その他の材料、特にめっきのCoNiRe系合金などを
用いてもよいことは言うまでもない。また、必要に応じ
てカーボン膜などの保護膜、潤滑膜を垂直磁化記録層上
に設けても良い。
Although a sputtered CoCr alloy film is used as the perpendicular magnetization recording layer in both the first and second embodiments,
It goes without saying that other materials such as CoNiRe alloy for plating may be used. If necessary, a protective film such as a carbon film and a lubricating film may be provided on the perpendicular magnetization recording layer.

【0023】[0023]

【発明の効果】本発明に依れば、軟磁性裏打ち層として
CoB膜を用い、該裏打ち層をNiP等の非磁性膜で少
なくとも2層以上に分断することで、μmオーダの膜厚
の裏打ち層を量産性の優れた無電解めっきで容易に得る
ことが可能となる。
According to the present invention, a CoB film is used as the soft magnetic backing layer, and the backing layer is divided into at least two layers with a non-magnetic film such as NiP, so that a backing film having a thickness on the order of μm can be obtained. The layer can be easily obtained by electroless plating with excellent mass productivity.

【0024】また、非磁性基板上に硬磁性又は半硬磁性
膜を形成し、この膜に非磁性基板の半径方向、もしくは
円周方向に残留磁化を付与した後、CoB膜をNiP等
の非磁性膜で分断した裏打ち層を形成することで、Co
B膜の磁気異方性を非磁性基板の円周方向もしくは半径
方向に揃えることができ、ディスクの一周内の磁気特性
を均一にして良好なモジュレーション特性を得ることが
できる。従って、量産性に優れ、かつ良好な記録再生特
性を有する垂直磁気記録媒体が得られる。
Further, after forming a hard magnetic or semi-hard magnetic film on a non-magnetic substrate and giving residual magnetization to this film in the radial direction or the circumferential direction of the non-magnetic substrate, the CoB film is made of non-magnetic material such as NiP. By forming a backing layer divided by a magnetic film, Co
The magnetic anisotropy of the B film can be aligned in the circumferential direction or the radial direction of the non-magnetic substrate, and the magnetic characteristics within one circumference of the disk can be made uniform to obtain good modulation characteristics. Therefore, it is possible to obtain a perpendicular magnetic recording medium which is excellent in mass productivity and has good recording and reproducing characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す断面図である。FIG. 1 is a sectional view showing a first embodiment of the present invention.

【図2】本発明の第2の実施例を示す断面図である。FIG. 2 is a sectional view showing a second embodiment of the present invention.

【図3】垂直磁気記録媒体に均一方向に残留磁化を付与
するマグネットの例を示す図である。
FIG. 3 is a diagram showing an example of a magnet that applies remanent magnetization to a perpendicular magnetic recording medium in a uniform direction.

【図4】垂直磁気記録媒体に均一方向に残留磁化を付与
するマグネットの他の例を示す図である。
FIG. 4 is a diagram showing another example of a magnet that applies remanent magnetization to a perpendicular magnetic recording medium in a uniform direction.

【図5】従来の垂直磁気記録媒体の一例を示す断面図で
ある。
FIG. 5 is a cross-sectional view showing an example of a conventional perpendicular magnetic recording medium.

【符号の説明】 11…非磁性基板 12…軟磁性裏打ち層 13…垂直磁化記録層 21…CoB膜 22…非磁性膜(NiP膜) 31…硬磁性又は半硬磁性膜[Explanation of reference numerals] 11 ... Non-magnetic substrate 12 ... Soft magnetic backing layer 13 ... Perpendicular recording layer 21 ... CoB film 22 ... Non-magnetic film (NiP film) 31 ... Hard magnetic or semi-hard magnetic film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 非磁性基板(11)と、その上に設けら
れた軟磁性裏打ち層(12)及び垂直磁化記録層(1
3)とからなる垂直磁気記録媒体において、 上記軟磁性裏打ち層(12)は、CoB膜(21)を用
い、該膜を非磁性膜(22)で少なくとも2層以上に分
断して成ることを特徴とする垂直磁気記録媒体。
1. A non-magnetic substrate (11), a soft magnetic backing layer (12) and a perpendicular magnetization recording layer (1) provided thereon.
In the perpendicular magnetic recording medium of 3), the soft magnetic backing layer (12) comprises a CoB film (21), which is divided into at least two layers by a non-magnetic film (22). Characteristic perpendicular magnetic recording medium.
【請求項2】 上記非磁性膜(22)の膜厚を10nm以
上とし、CoB膜(21)との膜厚比率を少なくとも1
/2以下となるように各膜厚を設定したことを特徴とす
る請求項1の垂直磁気記録媒体。
2. The nonmagnetic film (22) has a film thickness of 10 nm or more, and a film thickness ratio to the CoB film (21) is at least 1.
2. The perpendicular magnetic recording medium according to claim 1, wherein each film thickness is set to be ½ or less.
【請求項3】 上記非磁性基板(11)の上に硬磁性膜
または半硬磁性膜(31)を形成し、該膜に一軸方向の
残留磁化を付与した後に軟磁性裏打ち層(12)を形成
したことを特徴とする請求項1の垂直磁気記録媒体。
3. A hard magnetic film or a semi-hard magnetic film (31) is formed on the non-magnetic substrate (11), and uniaxial residual magnetization is applied to the film, and then a soft magnetic backing layer (12) is formed. The perpendicular magnetic recording medium according to claim 1, wherein the perpendicular magnetic recording medium is formed.
JP23326193A 1993-09-20 1993-09-20 Vertical magnetic recording medium Withdrawn JPH0785442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23326193A JPH0785442A (en) 1993-09-20 1993-09-20 Vertical magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23326193A JPH0785442A (en) 1993-09-20 1993-09-20 Vertical magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH0785442A true JPH0785442A (en) 1995-03-31

Family

ID=16952313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23326193A Withdrawn JPH0785442A (en) 1993-09-20 1993-09-20 Vertical magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0785442A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5711680A (en) * 1996-03-19 1998-01-27 Hokuriku Electric Industry Co., Ltd. Socket type electric device unit
US5991149A (en) * 1998-10-16 1999-11-23 Hokuriku Electric Industry Co., Ltd. Operation shaft receiving-type electric
JP2002358618A (en) * 2000-12-28 2002-12-13 Showa Denko Kk Magnetic recording medium, manufacturing method therefor, and magnetic recording and reproducing device
US6686070B1 (en) 1999-11-26 2004-02-03 Hitachi, Ltd. Perpendicular magnetic recording media, magnetic recording apparatus
WO2004019322A1 (en) * 2002-08-26 2004-03-04 Fujitsu Limited Lining magnetic film
US6926974B2 (en) 2000-05-23 2005-08-09 Hitachi Global Storage Technologies Japan, Ltd. Perpendicular magnetic recording medium and magnetic storage apparatus
US7166375B2 (en) 2000-12-28 2007-01-23 Showa Denko K.K. Magnetic recording medium utilizing a multi-layered soft magnetic underlayer, method of producing the same and magnetic recording and reproducing device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5711680A (en) * 1996-03-19 1998-01-27 Hokuriku Electric Industry Co., Ltd. Socket type electric device unit
US5991149A (en) * 1998-10-16 1999-11-23 Hokuriku Electric Industry Co., Ltd. Operation shaft receiving-type electric
US6686070B1 (en) 1999-11-26 2004-02-03 Hitachi, Ltd. Perpendicular magnetic recording media, magnetic recording apparatus
US7147941B2 (en) 1999-11-26 2006-12-12 Hitachi, Ltd. Perpendicular magnetic recording media, magnetic recording apparatus
US7399540B2 (en) 1999-11-26 2008-07-15 Hitachi Global Storage Technologies Japan, Ltd. Perpendicular magnetic recording media, magnetic recording apparatus
US6926974B2 (en) 2000-05-23 2005-08-09 Hitachi Global Storage Technologies Japan, Ltd. Perpendicular magnetic recording medium and magnetic storage apparatus
US7348078B2 (en) 2000-05-23 2008-03-25 Hitachi Global Storage Technologies Japan, Ltd. Perpendicular magnetic recording medium and magnetic storage apparatus
JP2002358618A (en) * 2000-12-28 2002-12-13 Showa Denko Kk Magnetic recording medium, manufacturing method therefor, and magnetic recording and reproducing device
US7166375B2 (en) 2000-12-28 2007-01-23 Showa Denko K.K. Magnetic recording medium utilizing a multi-layered soft magnetic underlayer, method of producing the same and magnetic recording and reproducing device
WO2004019322A1 (en) * 2002-08-26 2004-03-04 Fujitsu Limited Lining magnetic film
US7144641B2 (en) 2002-08-26 2006-12-05 Fujitsu Limited Magnetic backlayer

Similar Documents

Publication Publication Date Title
JP2911050B2 (en) Perpendicular magnetic recording medium and method of manufacturing the same
US20050123805A1 (en) Perpendicular magnetic recording medium
JPH06103553A (en) Perpendicular magnetic recording medium and its production
JPH0785442A (en) Vertical magnetic recording medium
JP2004227618A (en) Disk substrate for perpendicular magnetic recording medium, perpendicular magnetic recording disk and their manufacturing method
JPH06180834A (en) Perpendicular magnetic recording medium
JPH07105027B2 (en) Perpendicular magnetic recording medium
JP4917200B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JPH0323972B2 (en)
JPH05258274A (en) Perpendicular magnetic recording medium and its production
JP2010108587A (en) Method for producing magnetic transfer master carrier, magnetic transfer master carrier and magnetic transfer method
JP3999677B2 (en) Method for manufacturing magnetic recording medium
JP3582435B2 (en) Perpendicular magnetic recording medium
JPWO2004019322A1 (en) Backed magnetic film
JPS61177633A (en) Production of vertical magnetic recording medium
JP4342793B2 (en) Method for manufacturing disk substrate for perpendicular magnetic recording medium and perpendicular magnetic recording disk
JP2001250223A (en) Magnetic recording medium and magnetic recorder
JPH05258275A (en) Perpendicular magnetic recording medium and its production
JPH0750009A (en) Magnetic recording medium
JPH10261520A (en) Magnetic recording medium and its manufacture
JP2001209933A (en) Method for manufacturing perpendicular magnetic recording medium
JP2000276731A (en) Vertical magnetic recording medium
JPS61115244A (en) Production of magnetic recording medium
JP2006059453A (en) Manufacturing method of perpendicular magnetic recording medium
JP2000268342A (en) Magnetic recording medium

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001128