JPS61243942A - Manufacture of vertical magnetic recording medium - Google Patents

Manufacture of vertical magnetic recording medium

Info

Publication number
JPS61243942A
JPS61243942A JP8513485A JP8513485A JPS61243942A JP S61243942 A JPS61243942 A JP S61243942A JP 8513485 A JP8513485 A JP 8513485A JP 8513485 A JP8513485 A JP 8513485A JP S61243942 A JPS61243942 A JP S61243942A
Authority
JP
Japan
Prior art keywords
soft magnetic
recording medium
magnetic recording
magnetic
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8513485A
Other languages
Japanese (ja)
Inventor
Taro Nanbu
太郎 南部
Ryuji Sugita
龍二 杉田
Kiyokazu Touma
清和 東間
Kazuyoshi Honda
和義 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8513485A priority Critical patent/JPS61243942A/en
Publication of JPS61243942A publication Critical patent/JPS61243942A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To manufacture a double layer vertical magnetic recording medium having a soft magnetic lined layer which is made isotropic by applying a magnetic field in the direction being roughly vertically to the film surface of a long-sized substrate, in the vicinity of the part where the soft magnetic lined layer is formed. CONSTITUTION:The long-sized non-magnetic substrate 1 runs along the peripheral surface of a cylindrical can 2 and on its way, the vapor-deposited film of a soft magnetic material flying from an evaporation source 5 through the gap of a shielding plate 6 is formed on the surface of the substrate 1. Also, a soft magnetic material target is placed in the evaporation source 5 and sputtered by the ion of Ar(1), etc. In this state, by conducting current to a coil 7 which is placed on the shielding plate 6, a magnetic field is applied in the direction being roughly vertical to the film surface of the substrate 1 in the vicinity of the part where the soft magnetic lined layer is formed. In this way, a double layer vertical magnetic recording medium containing the soft magnetic lined layer which is made isotropic is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高密度記録特性に優れた垂直磁気記録媒体、特
に二層膜垂直磁気記録媒体の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a perpendicular magnetic recording medium having excellent high-density recording characteristics, particularly a double-layer perpendicular magnetic recording medium.

従来の技術 短波長記録特性に優れた磁気記録方式として、垂直磁気
記録方式がある。この方式においては、媒体の膜面に略
垂直方向が磁化容易軸である垂直磁気記録媒体が必要と
なる。このような媒体に信号を記録すると、残留磁化は
媒体の膜面に略垂直方向を向き、従って信号が短波長に
なる程媒体内の反磁界は減少し、帰れた再生出力が得ら
れる。
2. Description of the Related Art A perpendicular magnetic recording method is known as a magnetic recording method with excellent short wavelength recording characteristics. This method requires a perpendicular magnetic recording medium whose axis of easy magnetization is approximately perpendicular to the film surface of the medium. When a signal is recorded on such a medium, the residual magnetization is oriented in a direction substantially perpendicular to the film surface of the medium, and therefore, the shorter the wavelength of the signal, the smaller the demagnetizing field within the medium, and a better reproduction output can be obtained.

中でも、この垂直異方性膜と非磁性材料より成る基板と
の間に軟磁性裏打ち層を設けた、いわゆる二層膜垂直磁
気記録媒体(以後二層膜媒体と略す)と呼ばれる構造に
することにより、記録効率及び再生出力が向上すること
が知られている。特に公知の補助磁極励磁型垂直ヘッド
を用いて記録再生を行う際には、記録効率が約20d 
B改゛善され、再生出力が約20d B向上する。
Among these, a structure called a so-called two-layer perpendicular magnetic recording medium (hereinafter abbreviated as a two-layer film medium) in which a soft magnetic underlayer is provided between this perpendicular anisotropic film and a substrate made of a non-magnetic material is adopted. It is known that recording efficiency and reproduction output can be improved by this method. In particular, when recording and reproducing using a known auxiliary pole excitation type vertical head, the recording efficiency is approximately 20 d.
B is improved, and the reproduction output is improved by about 20 dB.

発明が解決しようとする問題点 上記二層m媒体においては、その記録再生効率には軟磁
性裏打ち層の磁気特性が大きく影響を及ぼす。第6図は
従来の真空蒸着装置の概略構成図を示し、1は非磁性基
板、2は円筒状キャン、3は入側ローラ、4は出側ロー
ラ、5は蒸発線、6は遮蔽板である。第6図の如く、長
尺の非磁性基板1上に連続してスパッタリング法や蒸着
法(イオンブレーティング法のように蒸発原子の一部を
イオン化して蒸着する方法も含む)で保磁力の小さい高
透磁率の軟磁性裏打ち層を形成すると、自己陰影効果に
より、第7図(a)のように基板1の長手方向(MO)
が磁化困難軸、第7図(b)のように幅方向(TD)が
磁化容易軸となるような膜面内−軸異方性がついてしま
う。すなわち、形成された軟磁性裏打ち層の初透磁率μ
IはMD力方向は大きく、TD方向には小さい。
Problems to be Solved by the Invention In the above two-layer m-medium, the magnetic properties of the soft magnetic underlayer have a large influence on its recording and reproducing efficiency. Figure 6 shows a schematic configuration diagram of a conventional vacuum evaporation apparatus, in which 1 is a non-magnetic substrate, 2 is a cylindrical can, 3 is an inlet roller, 4 is an outlet roller, 5 is an evaporation line, and 6 is a shielding plate. be. As shown in Fig. 6, the coercive force is increased continuously on a long non-magnetic substrate 1 by a sputtering method or a vapor deposition method (including a method in which a part of evaporated atoms is ionized and vapor deposited like the ion blating method). When a small soft magnetic underlayer with high magnetic permeability is formed, due to the self-shading effect, the longitudinal direction (MO) of the substrate 1 as shown in FIG.
This results in in-plane-axis anisotropy such that the axis of hard magnetization is the axis of magnetization, and the axis of easy magnetization is the width direction (TD) as shown in FIG. 7(b). In other words, the initial magnetic permeability μ of the formed soft magnetic underlayer
I is large in the MD force direction and small in the TD direction.

更に、この上に垂直異方性膜を形成した二層膜媒体から
円板を打ち抜いてディスク状媒体とすると、軟磁性裏打
ち層の異方性により一周の間で出力変動を生じる。この
様子を第8図及び第9図を用いて説明する。図中、9は
長尺の非磁性基板1に軟磁性裏打ち層、垂直異方性膜の
二層膜媒体がら打ち抜いたディスク状媒体である。ヘッ
ドがデ、 イスク状媒体10上に同心円上の点であるA
点、B点、0点、D点を順次通過し記録再生した時の再
生出力の変化の様子を第9図に示す。横軸は時間経過を
示し、縦軸は出力を示し、出力エンベローブと呼ばれる
ものである。図中A、B、C,Dはディスク状媒体10
上のA点、B点、0点、D点にそれぞれ対応している。
Furthermore, when a disk-shaped medium is punched out from a double-layered film medium on which a vertically anisotropic film is formed, output fluctuations occur during one revolution due to the anisotropy of the soft magnetic underlayer. This situation will be explained using FIGS. 8 and 9. In the figure, 9 is a disk-shaped medium punched out from a double-layered medium consisting of a long nonmagnetic substrate 1, a soft magnetic backing layer, and a perpendicular anisotropic film. The head is A, which is a point on a concentric circle on the disk-shaped medium 10.
FIG. 9 shows how the reproduction output changes when recording and reproduction are performed after passing through point B, point B, point 0, and point D in sequence. The horizontal axis shows the passage of time, and the vertical axis shows the output, which is called an output envelope. In the figure, A, B, C, and D are disk-shaped media 10.
These correspond to point A, point B, point 0, and point D above, respectively.

ヘッドはA点、0点では軟磁性裏打ち層の初透磁率μi
の低い方向と平行に、B点、D点では逆に初透磁率μI
の高い方向と平行に走行する。その結果、第9図に示さ
れる様に、A点、0点では出力が低く、B点、D点では
出力が高くなる。このような出力変動はディスク状媒体
では不都合である。従って、出力変動をなくすため、軟
磁性裏打ち層の等方化が必要とされていた。
The head is at point A, and at point 0 the initial magnetic permeability of the soft magnetic underlayer μi
In parallel to the low direction of , at points B and D, the initial permeability μI
Run parallel to the higher direction. As a result, as shown in FIG. 9, the output is low at points A and 0, and high at points B and D. Such output fluctuations are disadvantageous for disk-shaped media. Therefore, in order to eliminate output fluctuations, it has been necessary to make the soft magnetic underlayer isotropic.

本発明は簡単に、等方化された軟磁性裏打ち層を有せし
めることができる二層膜垂直磁気記録媒体の製造方法を
提供することを目的とするものである。
An object of the present invention is to provide a method for easily manufacturing a two-layer perpendicular magnetic recording medium that can have an isotropic soft magnetic underlayer.

問題点を解決するための手段 この問題点を解決するために、本発明は、長尺基板上に
軟磁性裏打ち層を蒸着法もしくはスパッタ法によって連
続的に形成する工程において、前記軟磁性裏打ち層形成
部近傍に、前記長尺基板の膜面に略垂直方向に磁界を印
加するものである。
Means for Solving the Problem In order to solve this problem, the present invention provides a process for continuously forming a soft magnetic under layer on a long substrate by vapor deposition or sputtering. A magnetic field is applied near the formation portion in a direction substantially perpendicular to the film surface of the elongated substrate.

作用 このように、軟磁性裏打ち層形成部近傍にて長尺基板の
膜面に略垂直方向に磁界が印加されることにより、軟磁
性裏打ち層に垂直異方性が誘起され、面内で等方化され
る。
Effect As described above, by applying a magnetic field in a direction substantially perpendicular to the film surface of the elongated substrate near the soft magnetic under layer forming part, perpendicular anisotropy is induced in the soft magnetic under layer, and it is uniformly distributed in the plane. be standardized.

実施例 以下、本発明の一実施例を図面に基づいて説明する。第
1図は本発明の一実施例を説明するための軟磁性裏打ち
層を蒸着又はスパッタリング装置の概略構成図である。
EXAMPLE Hereinafter, an example of the present invention will be described based on the drawings. FIG. 1 is a schematic diagram of an apparatus for depositing or sputtering a soft magnetic underlayer to explain an embodiment of the present invention.

第1図において、長尺の非磁性基板性1は円筒状キャン
2の周面に沿って走行しつつあり、その途中で基板1表
面上に遮蔽板6のすき間を通して蒸発源5から飛んで来
る軟磁 ′栓体の蒸Il膜が形成される。スパッタリン
グの時は5には軟磁性体ターゲットが置かれ、Ar(1
)等のイオンでスパッタされる。7は遮蔽板6上に置か
れたコイルであり、これに電流を流すことにより、軟磁
性裏打ら1層形成部近傍にて基板1の膜面に対して略垂
直方向の磁界が印加される。なお、この場合電流とては
流す向きを問わない。実際の磁束の流れ11は第3図(
a)に示す。
In FIG. 1, a long non-magnetic substrate 1 is traveling along the circumferential surface of a cylindrical can 2, and along the way, it flies from an evaporation source 5 onto the surface of the substrate 1 through a gap between a shielding plate 6. A vaporized Il film of a soft magnetic stopper is formed. During sputtering, a soft magnetic target is placed at 5, and Ar(1
) and other ions. Reference numeral 7 denotes a coil placed on the shielding plate 6, and by passing a current through it, a magnetic field is applied in a direction approximately perpendicular to the film surface of the substrate 1 in the vicinity of the soft magnetic backing layer forming part. . In this case, the direction of the current does not matter. The actual magnetic flux flow 11 is shown in Figure 3 (
Shown in a).

又、第2図(a)(b)の如く、磁界を発生するものと
して同権を対向させた磁68(永久W115、電磁石を
含む)を一対又は複数対配置しても良い。
Further, as shown in FIGS. 2(a) and 2(b), one or more pairs of magnets 68 (permanent W115, including electromagnets) having the same power facing each other may be arranged to generate a magnetic field.

何故なら、同極を対向させた磁石対8から発生する磁界
は殆んどが基板1の略垂直方向にかかり、面内成分は少
ないからである。実際の磁束の流れ11は第3図(b)
に示す。
This is because most of the magnetic field generated from the pair of magnets 8 with the same poles facing each other is applied in a substantially perpendicular direction to the substrate 1, and the in-plane component is small. The actual magnetic flux flow 11 is shown in Figure 3(b).
Shown below.

又、円筒状キャン2のすくなくとも周面近傍が強磁性体
で出来ているものを使用すると、基板1に対して略垂直
方向にかかる磁界が強められ、より大きな効果が期待で
きる。
Furthermore, if the cylindrical can 2 is made of a ferromagnetic material at least near the circumferential surface, the magnetic field applied in a direction substantially perpendicular to the substrate 1 will be strengthened, and a greater effect can be expected.

かくの如く軟磁性体裏打ち層形成時に形成部近傍で基板
1に対して略垂直方向に磁界が印加されると、軟磁性裏
打ち層に垂直異方性が誘起され、第4図(a)(b)に
示すような長手方向(MD)及び幅方向(TD)に等化
な等方膜を得ることが可能となる。
As described above, when a magnetic field is applied in a direction substantially perpendicular to the substrate 1 near the formation part when forming a soft magnetic backing layer, perpendicular anisotropy is induced in the soft magnetic backing layer, as shown in FIG. 4(a). It becomes possible to obtain an isotropic film that is equal in the longitudinal direction (MD) and width direction (TD) as shown in b).

次に、等方化された軟磁性裏打ち層の上にC0−Cr 
I直異方性膜を形成した二層膜媒体を、第8図に示した
のと同じように、ディスク状に打ち抜いてディスク状媒
体10を得る。ヘッドがディスク状媒体10上の同心円
上の点であるA点、B点、0点、D点を順次通過し記録
再生した時の再生出力の変化を第5図に示す。横軸は時
間経過を示し、縦軸は出力を示し、出力エンベローブと
呼ばれるものである。図中A、B、C,Dはディスク状
媒体10上のA点、8点、0点、D点にそれぞれ対応し
ている。第5図を見ると出力変動は殆lυど見られず、
軟磁性裏打ち層の等方化の効果が認められる。又、軟磁
性裏打ち層の主成分がCo、Fe及びNiである時、本
発明の効果は大きい。中でもCoを5〜32重量%含有
し、しかもGoを10〜25重量%含有する軟磁性体で
ある時、本発明の効果は特に大きくなる。
Next, C0-Cr is placed on the isotropic soft magnetic underlayer.
The two-layer film medium on which the I-orthotropic film is formed is punched out into a disk shape in the same manner as shown in FIG. 8 to obtain a disk-shaped medium 10. FIG. 5 shows changes in the reproduction output when the head successively passes through points A, B, 0, and D, which are concentric points on the disk-shaped medium 10, and performs recording and reproduction. The horizontal axis shows the passage of time, and the vertical axis shows the output, which is called an output envelope. In the figure, A, B, C, and D correspond to points A, 8, 0, and D on the disk-shaped medium 10, respectively. Looking at Figure 5, there is almost no output fluctuation,
The effect of making the soft magnetic underlayer isotropic is observed. Further, the effect of the present invention is great when the main components of the soft magnetic underlayer are Co, Fe, and Ni. Among these, the effects of the present invention are particularly great when the soft magnetic material contains 5 to 32% by weight of Co and 10 to 25% by weight of Go.

次に具体的な一実施例を述べる。軟磁性裏打ち層として
Ga2O,Fe15.Ni65  (添字は重]%)を
用い第1図のように磁界をかけた中で蒸着を行ない80
00≦の軟磁性裏打ち層を形成した。その上に連続して
Go−Cr垂直異方性膜を2000<:の膜厚で形成し
た。その結果、軟磁性裏打ち層の8−日ループとして第
4図のものが得られ、保磁力としては60eとなり、出
力エンベローブとしては第5図のものが得られ、きわめ
て出力変動の小さい良好な垂直磁気記録用二層膜媒体が
得られた。
Next, a specific example will be described. Ga2O, Fe15. Ni65 (subscript is weight]%) was evaporated under a magnetic field as shown in Figure 1.
A soft magnetic underlayer of 00≦ was formed. A Go--Cr vertically anisotropic film was continuously formed thereon to a thickness of 2000<:. As a result, the 8-day loop of the soft magnetic backing layer as shown in Figure 4 was obtained, the coercive force was 60e, and the output envelope was as shown in Figure 5, with a good vertical A two-layer magnetic recording medium was obtained.

発明の効果 本発明の方法によれば、垂直磁気記録用二層膜媒体の出
力変動を、従来大きかったものが小さく抑えられるよう
になる。
Effects of the Invention According to the method of the present invention, the output fluctuations of a double-layer film medium for perpendicular magnetic recording, which were conventionally large, can be suppressed to a small level.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明するための真空蒸着装
置内部の概略構成図、第2図は第1図の要部の拡大部分
図、第3図は本発明により発生した磁束の流れを示す図
、第4図は本発明により得られた軟磁性裏打ち層の磁気
特性を示すグラフ、第5図は本発明により得られた二層
膜媒体の出力変動を示すグラフ、第6図は従来の真空蒸
着装置内部の概略構成図、第7図は従来の軟磁性裏打ち
層のみの磁気特性を示すグラフ、第8図は従来の二層膜
媒体の問題点を説明するための図、第9図は従来の二l
l!pA媒体の出力変動を示すグラフである。 1・・・非磁性基板、2・・・円筒状キ1?ン、5・・
・蒸発源、6・・・遮蔽板、7・・・コイル、8・・・
磁石、9・・・二層膜媒体、10・・・ディスク状媒体 代理人   森  本  義  弘 第1図 第2図 第3図 第6図 第7図 (2し)Φを石ニジVジ麹礒吾方匈(HD)のB−Hル
フ0tb> 歓A’?L8*a>’PLbtq(TO)
 のB−Htt−y′第に図 第q図
FIG. 1 is a schematic diagram of the inside of a vacuum evaporation apparatus for explaining one embodiment of the present invention, FIG. 2 is an enlarged partial view of the main part of FIG. 1, and FIG. 3 is a diagram of the magnetic flux generated by the present invention. FIG. 4 is a graph showing the magnetic properties of the soft magnetic underlayer obtained by the present invention. FIG. 5 is a graph showing the output fluctuation of the two-layer film medium obtained by the present invention. FIG. is a schematic diagram of the internal structure of a conventional vacuum evaporation apparatus, FIG. 7 is a graph showing the magnetic characteristics of only the conventional soft magnetic underlayer, and FIG. 8 is a diagram for explaining the problems of the conventional two-layer film medium. Figure 9 shows the conventional 2L
l! It is a graph showing the output fluctuation of pA medium. 1...Nonmagnetic substrate, 2...Cylindrical key 1? N, 5...
・Evaporation source, 6... Shielding plate, 7... Coil, 8...
Magnet, 9...Double-layer film medium, 10...Disc-shaped medium Agent Yoshihiro MorimotoFigure 1Figure 2Figure 3Figure 6Figure 7 (2) B-H Ruff 0tb of Isho Wafang (HD) > Huan A'? L8*a>'PLbtq(TO)
B-Htt-y' of Figure q

Claims (1)

【特許請求の範囲】 1、長尺基板上に軟磁性裏打ち層を蒸着法もしくはスパ
ッタ法によつて連続的に形成する工程において、前記軟
磁性裏打ち層形成部近傍に、前記長尺基板の膜面に略垂
直方向に磁界を印加する垂直磁気記録媒体の製造方法。 2、軟磁性裏打ち層はCo、Fe及びNiを主成分とす
る軟磁性体であることを特徴とする特許請求の範囲第1
項記載の垂直磁気記録媒体の製造方法。 3、軟磁性体は5〜32重量%のCoを含有することを
特徴とする特許請求の範囲第2項記載の垂直磁気記録媒
体の製造方法。 4、軟磁性体10〜25重量%のCoを含有することを
特徴とする特許請求の範囲第2項記載の垂直磁気記録媒
体の製造方法。 5、長尺基板は、少なくとも周面近傍が強磁性体で出来
ている円筒状キャンの周面に沿わせて走行され、その途
中で軟磁性裏打ち層が蒸着法もしくはスパッタ法によつ
て連続的に形成されることを特徴とする特許請求の範囲
第1項〜第4項のいずれかに記載の垂直磁気記録媒体の
製造方法。 6、磁界は、軟磁性裏打ち層形成部近傍に配置されたコ
イルに電流を流すことにより発生させることを特徴とす
る特許請求の範囲第1項〜第5項のいずれかに記載の垂
直磁気記録媒体の製造方法。 7、磁界は、軟磁性裏打ち層形成部近傍に配置された同
極対向の一対以上の磁石により発生させることを特徴と
する特許請求の範囲第1項〜第5項のいずれかに記載の
垂直磁気記録媒体の製造方法。
[Scope of Claims] 1. In the step of continuously forming a soft magnetic backing layer on a long substrate by vapor deposition or sputtering, a film of the long substrate is formed in the vicinity of the soft magnetic backing layer formation portion. A method for manufacturing a perpendicular magnetic recording medium in which a magnetic field is applied in a direction substantially perpendicular to the surface. 2. Claim 1, characterized in that the soft magnetic underlayer is a soft magnetic material whose main components are Co, Fe, and Ni.
A method for manufacturing a perpendicular magnetic recording medium as described in . 3. The method for manufacturing a perpendicular magnetic recording medium according to claim 2, wherein the soft magnetic material contains 5 to 32% by weight of Co. 4. The method for manufacturing a perpendicular magnetic recording medium according to claim 2, wherein the soft magnetic material contains 10 to 25% by weight of Co. 5. The long substrate is run along the circumferential surface of a cylindrical can made of ferromagnetic material at least near the circumferential surface, and a soft magnetic backing layer is continuously applied along the way by vapor deposition or sputtering. A method of manufacturing a perpendicular magnetic recording medium according to any one of claims 1 to 4, characterized in that the perpendicular magnetic recording medium is formed as follows. 6. Perpendicular magnetic recording according to any one of claims 1 to 5, characterized in that the magnetic field is generated by passing a current through a coil arranged near the soft magnetic underlayer forming part. Method of manufacturing media. 7. The perpendicular magnetic field according to any one of claims 1 to 5, characterized in that the magnetic field is generated by a pair or more of magnets with the same poles facing each other and arranged in the vicinity of the soft magnetic underlayer forming part. A method for manufacturing a magnetic recording medium.
JP8513485A 1985-04-20 1985-04-20 Manufacture of vertical magnetic recording medium Pending JPS61243942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8513485A JPS61243942A (en) 1985-04-20 1985-04-20 Manufacture of vertical magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8513485A JPS61243942A (en) 1985-04-20 1985-04-20 Manufacture of vertical magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS61243942A true JPS61243942A (en) 1986-10-30

Family

ID=13850177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8513485A Pending JPS61243942A (en) 1985-04-20 1985-04-20 Manufacture of vertical magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS61243942A (en)

Similar Documents

Publication Publication Date Title
US6151193A (en) Thin film magnetic head
US6278579B1 (en) Dual-element thin-film magnetic head including a composite lower core
JPH0411625B2 (en)
US5403457A (en) Method for making soft magnetic film
JPH06103553A (en) Perpendicular magnetic recording medium and manufacturing method thereof
JPH0423325B2 (en)
JP2001167420A (en) Magnetic recording medium and its manufacturing method
JP2780588B2 (en) Stacked magnetic head core
JPS6257111A (en) Magnetic head
JPS61243942A (en) Manufacture of vertical magnetic recording medium
JPS6052919A (en) Vertical magnetic recording medium and its production
JPS61120349A (en) Manufacture of double layer film vertical magnetic recording medium
JPS59107417A (en) Permanent magnet bias type magneto-resistance effect head
JP3617400B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP3132254B2 (en) Soft magnetic film and method for manufacturing soft magnetic multilayer film
JP2710048B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JPS58179921A (en) Magnetic head
JPS61104431A (en) Production of vertical recording magnetic medium
JPH05101385A (en) Production of magnetic recording medium having axis of easy magnetization unified in circumferential direction
JPH06349662A (en) Forming method of magnetoresistance effect film
KR100259386B1 (en) Thin film magnetic head
JPH0476176B2 (en)
JPS61129726A (en) Magnetic recording medium
JPH05128515A (en) Manufacture of sputtered thin film
JPH05258275A (en) Perpendicular magnetic recording medium and manufacturing method thereof