JPS61110018A - Measuring apparatus for emissivity and temperature of object - Google Patents

Measuring apparatus for emissivity and temperature of object

Info

Publication number
JPS61110018A
JPS61110018A JP59232131A JP23213184A JPS61110018A JP S61110018 A JPS61110018 A JP S61110018A JP 59232131 A JP59232131 A JP 59232131A JP 23213184 A JP23213184 A JP 23213184A JP S61110018 A JPS61110018 A JP S61110018A
Authority
JP
Japan
Prior art keywords
radiation
emissivity
temperature
measured
radiation sources
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59232131A
Other languages
Japanese (ja)
Other versions
JPH0511252B2 (en
Inventor
Isao Hishikari
功 菱刈
Toshihiko Ide
敏彦 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chino Corp
Original Assignee
Chino Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chino Works Ltd filed Critical Chino Works Ltd
Priority to JP59232131A priority Critical patent/JPS61110018A/en
Publication of JPS61110018A publication Critical patent/JPS61110018A/en
Publication of JPH0511252B2 publication Critical patent/JPH0511252B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0022Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation of moving bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J5/064Ambient temperature sensor; Housing temperature sensor; Constructional details thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0831Masks; Aperture plates; Spatial light modulators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0896Optical arrangements using a light source, e.g. for illuminating a surface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/80Calibration
    • G01J5/802Calibration by correcting for emissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0074Radiation pyrometry, e.g. infrared or optical thermometry having separate detection of emissivity

Abstract

PURPOSE:To enable measurement handily and in a wide range, by determining the ratio and difference between contribution rates of radiation sources which are difined as the ratio of difference between detection values of a scan type radiation thermometer as given when two radiation energies are incident on the thermometer from the radiation sources and when none is. CONSTITUTION:A scan type radiation thermometer 2 scans over an object 1 to be measured and feeds a output signal to an arithmetic means 6 corresponding to measuring positions. Here, output signals of radiation sources 31 and 32 when radiation thereof is reflected from the object 1 being measured are represented by E1 and E2 and those below them E0. Output signals of a temperature detector 5 which detects temperature signals Tr of the radiation sources 31 and 32 and a temperature signal Ta of a background radiation plate 4 are also fed to the arithmetic means 6. Then, the arithmetic means 6 determines the ratio of contribution rates of the radiation sources from the signals E0 and E1 and E2 to match a specified formula and further the emissivity epsilon by computation. The emissivity epsilon is used to determine the temperature T of the object 1 being measured by computation. In this manner, the emissivity epsilonof the object 1 being measured is determined from the contribution rates of the radiation sources 31 and 32 to obtain temperatures T at points.

Description

【発明の詳細な説明】 (1)発明の分野 この発明は、走査形放射温度計を用いた鋼板等の放射率
および温度の測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (1) Field of the Invention The present invention relates to an apparatus for measuring the emissivity and temperature of steel plates and the like using a scanning radiation thermometer.

(2)従来技術 出願人は、たとえば特開昭57−161521号公報に
あるように、比較熱板と測定物体との距離を変化させた
ときの放射検出器の出力変化から測定物体の放射率を求
める方法を提案している。
(2) Prior art As disclosed in Japanese Patent Laid-Open No. 57-161521, for example, the applicant has determined that the emissivity of the object to be measured is based on the change in the output of the radiation detector when the distance between the comparison hot plate and the object to be measured is changed. We are proposing a method to find the .

しかしながら、この方法では、比較熱板を駆動する装置
が大型なものとなり、また、一点測定のため測定物体の
広い範囲での放射率、温度パターンの測定が困難である
等の問題点を生じている。
However, this method requires a large device to drive the comparative heating plate, and also has problems such as the difficulty of measuring emissivity and temperature patterns over a wide range of the measurement object because of the single-point measurement. There is.

(3)発明の目的 iコ、の発明の目的は、以上の点に鑑み、より簡便、/ (?測定物体の広い範囲での放射率、温度の測定を可能
とした物体の放射率および温度の測定装置を提供するこ
とである。
(3) Purpose of the Invention In view of the above, the purpose of the invention is to make it easier to measure the emissivity and temperature of an object over a wide range. The purpose of the present invention is to provide a measuring device for

(4)発明の概要 この発明は、走査形放射温度計に放射源からの異った開
口を介して2つの放射エネルギーが入射したときとしな
いときのそれぞれの検出値の差の比である寄与率の比と
寄与率の差とが所定の関係にあることに基いて1ll1
1定物体の放射率を求め、この放射率から測定物体の温
度を測定するようにした物体の故!)I率および温度の
測定装置である。
(4) Summary of the Invention This invention provides a contribution that is the ratio of the difference between detected values when two radiant energies are incident on a scanning radiation thermometer through different apertures from a radiation source and when not. Based on the fact that the ratio of the ratio and the difference in the contribution rate have a predetermined relationship, 1ll1
1. The reason for the object is to find the emissivity of a constant object and measure the temperature of the object from this emissivity! ) I rate and temperature measuring device.

(5)発明の実施例 第1図は、この発明の一実施例を示す構成説明図である
(5) Embodiment of the Invention FIG. 1 is an explanatory diagram showing an embodiment of the invention.

図において、1は、紙面に対して垂直に走行する鋼板の
ような測定物体、2は、測定物体の幅方向を垂直に走査
して測定物体1からの放射エネルギーを検出するCOD
または走査鏡等を用いた走査形放射温度計、31.32
は、走査形放射温度−’i!i 2の走査線上の両側に
位置し走査形放射温度計2′の走査領域の測定物体1に
放射エネルギーを放飼し測定物体1を反射した放飼エネ
ルギーが走査形成cF1温度計2に入射するよう設けら
れた放射源、4は、走査形放射温度計2、放射源31.
32を支持し、異った大きさの開口41.42から放射
源31.32の放射エネルギーを測定物体1に放射する
背景放射板(壁)、5は、背景放射板4の温度を検出す
る温度検出器、6は、走査形放射温度計2の出力信号、
放射源31.32、温度検出器5の出力信号が供給され
、所定の演11処理を行うアナログ回路、マイクロコン
ピュータ1.パーソナルコンピュータ等の演算手段であ
る。
In the figure, 1 is a measurement object such as a steel plate that runs perpendicular to the paper surface, and 2 is a COD that scans the width direction of the measurement object perpendicularly to detect the radiant energy from the measurement object 1.
or a scanning radiation thermometer using a scanning mirror, etc., 31.32
is the scanning radiation temperature −'i! Radiant energy is released to the measurement object 1 located on both sides of the scanning line of i 2 in the scanning area of the scanning radiation thermometer 2', and the released energy reflected from the measurement object 1 enters the scanning-forming cF1 thermometer 2. The radiation source 4 provided in this manner includes a scanning radiation thermometer 2, a radiation source 31.
a background radiation plate (wall) supporting 32 and radiating the radiant energy of the radiation source 31.32 to the measurement object 1 through apertures 41.42 of different sizes; 5 detects the temperature of the background radiation plate 4; Temperature detector 6 is an output signal of scanning radiation thermometer 2;
A radiation source 31, 32, an analog circuit to which the output signal of the temperature detector 5 is supplied, and a microcomputer 1, which performs predetermined processing. It is a calculation means such as a personal computer.

測定物体1の温度を王、放射率をε、放18131.3
2の温度をTr 、 IIl射率をεr、背景放射板4
の温度をTa、走査形放射温度計2の出力信号をE ’
 、黒体相当の放射エネルギーをE (T)とする。
The temperature of the measurement object 1 is 1, the emissivity is ε, and the radiation is 18131.3.
2 temperature is Tr, IIl emissivity is εr, background radiation plate 4
The temperature is Ta, and the output signal of the scanning radiation thermometer 2 is E'
, let the radiant energy equivalent to a black body be E (T).

走査形放射温度計2が、測定物体1を走査すると、第2
図で示すように、放射源31.32から省放射エネルギ
ーが入射したときに高い出力信号E1.E2が得られ、
入射しないときに低い出力信号Eoが得られ、次式が成
り立つ。
When the scanning radiation thermometer 2 scans the measurement object 1, the second
As shown in the figure, a high output signal E1. E2 is obtained,
A low output signal Eo is obtained when no light is incident, and the following equation holds.

Eo−εE (T)+ (1−ε) E (Ta )・
・・(1) El−εE(T)+F+  <1−ε)εrE(Tr 
)+ (1−Fl )  (1−ε) E (Ta )
・・・(2) El−εE(T)+F2(1−ε)εr E (Tr)
+(1−F2)(1−ε)E(Ta)・・・ (3) ここで、Fl、F2は、放射源31.32からの放射エ
ネルギーが測定物体1を反射して、走査形成!)j温度
計に入射する寄与率で、たとえばFl> F 2である
Eo−εE (T)+ (1−ε) E (Ta)・
...(1) El-εE(T)+F+ <1-ε)εrE(Tr
)+ (1-Fl) (1-ε) E (Ta)
...(2) El-εE(T)+F2(1-ε)εrE(Tr)
+(1-F2)(1-ε)E(Ta)... (3) Here, Fl and F2 are scanning formations caused by the radiation energy from the radiation sources 31 and 32 reflecting off the measurement object 1! )j is the contribution factor incident on the thermometer, for example Fl > F 2.

つまり、(1)式右辺第1項は測定物体1自体からの放
射エネルギー、第2項は背景放射板4からの放射エネル
ギー、(2)、(3)式右辺第2項は放射源31.32
からの寄与分、第3項は背景放射板4からの寄与分であ
る。
That is, the first term on the right side of equation (1) is the radiant energy from the measurement object 1 itself, the second term is the radiant energy from the background radiation plate 4, and the second term on the right side of equations (2) and (3) is the radiation source 31. 32
The third term is the contribution from the background radiation plate 4.

、2)式から(1)式を減算し、〈3)式から・)式を
減算すると次式が得られる。
, by subtracting equation (1) from equation (2) and subtracting equation (.) from equation (3), the following equation is obtained.

El−Eo−Fl  (1−ever E (Tr )
−Fl  (1−6)E (Ta ) El−EQ−F2 (1−ε)εr E (Tr )−
F2 (1−6) E (Ta ) その比Rをとると次式が得られる。
El-Eo-Fl (1-ever E (Tr)
-Fl (1-6)E (Ta) El-EQ-F2 (1-ε)εr E (Tr)-
F2 (1-6) E (Ta) Taking the ratio R, the following formula is obtained.

R= F + / F 2           ・・
・(4)また、(2)、(3)式を辺々差し引くと次式
が得られる。
R=F+/F2...
・(4) Also, by subtracting equations (2) and (3), the following equation is obtained.

El  −E 2=(Fl−F2>  (1−6>  
(εrE  (Tr  )  −E  (Ta  ) 
 )これより、放射率εは、次式となる。
El −E 2=(Fl−F2>(1−6>
(εrE (Tr) −E (Ta)
) From this, the emissivity ε becomes the following formula.

ε−1−(El−22)/[(Fl−F2)・[:r 
E (Tr ) −E (Ta > ) )・・・ く
 5 ) ここで、D=F+−F2とR−Fl/’F2との関係は
、第2図で示すようにD−f  (R)で、所定お関数
関係にあることが実験的に児い出された。
ε-1-(El-22)/[(Fl-F2)・[:r
E (Tr) -E (Ta > ))... Ku 5) Here, the relationship between D=F+-F2 and R-Fl/'F2 is D-f (R) as shown in Figure 2. It was experimentally determined that there is a predetermined functional relationship.

ンまり、RからDを求めることができ、(5)式の右辺
のその他の値は測定等により求まるので、放射率εを求
めることができる。
Therefore, D can be found from R, and the other values on the right side of equation (5) can be found by measurement, etc., so the emissivity ε can be found.

そして、(1)式より E(T)−(Eo−(1−ε)E(Ta))/ε・・・
(6) であるから、この(6)式に、(5)式より求めた放射
率ε等を代入して、1ll11定物体1のTX温度が求
まる。
From equation (1), E(T)-(Eo-(1-ε)E(Ta))/ε...
(6) Therefore, the TX temperature of the 1ll11 constant object 1 is found by substituting the emissivity ε obtained from the equation (5) into the equation (6).

つまり、測定前、あらかじめ第2図で示すような測定に
より求めたD−Fl−F2とR−F 1 /F2どの関
数関係()−f  (R1,放′#4源31.32の放
射率εr等を演算手段6に記憶する。
In other words, before the measurement, the functional relationship between D-Fl-F2 and R-F 1 /F2 obtained by measurements as shown in Figure 2 is εr, etc. are stored in the calculation means 6.

次に、測定時、走査形故躬濡度計2は、1111定物体
1を走査し、各測定位置X1に対応した出力信@Eiを
演算手段6に供給する。このとき、放射源31.32の
測定物体1を反射したときの出力信号をEI、F2.そ
れ以外での出力信号をE。
Next, during measurement, the scanning wetness meter 2 scans the 1111 fixed object 1 and supplies an output signal @Ei corresponding to each measurement position X1 to the calculation means 6. At this time, the output signals when the radiation sources 31 and 32 reflect the measurement object 1 are EI, F2. E for the output signal in other cases.

とする。また、放射源31.32の温度信号Tr11R
景放射板4の温度信号Taを検出する温度検出器5の出
力信号も演算手段6に供給される。
shall be. In addition, the temperature signal Tr11R of the radiation source 31.32
The output signal of the temperature detector 5 which detects the temperature signal Ta of the view radiation plate 4 is also supplied to the calculation means 6.

清算手段は、(1)、(2)、(3)式に対応0た信号
Ea、El、F2より〈4)式の比Rを求め、これによ
りDを求め、また、信@Tr 、 TaよりE (Tr
 ) 、 E (Ta )を演算し、(5)式の右辺の
演算を行って放射率εを求める。また、この放射率εを
用いて(6)式の演算を行って測定物体1の温度Tを求
めることができる。
The clearing means calculates the ratio R of the equation (4) from the signals Ea, El, and F2 which correspond to 0 in the equations (1), (2), and (3), thereby obtaining the ratio D, and also calculates the ratio R of the equation (1), (2), and (3). From E (Tr
), E (Ta), and calculate the right side of equation (5) to find the emissivity ε. Furthermore, the temperature T of the measurement object 1 can be determined by calculating the equation (6) using this emissivity ε.

このようにして、放D1a31.32の寄与率から測定
物体1の放射率εを求め、各点の温度Tを求めることが
できる。あらかじめ放射率εを求めた後は、放射源31
.32の開口にシキ・ツタをし、連続測定を行ってもよ
い。
In this way, the emissivity ε of the measurement object 1 can be determined from the contribution rate of the radiation 1a31.32, and the temperature T at each point can be determined. After determining the emissivity ε in advance, the radiation source 31
.. It is also possible to make continuous measurements by placing an ivy in the opening of No. 32.

第4図は、他の実施例を示し、第1図と同一’h1号は
同一構成要素を示す。この例では、1個の放射源3は、
測定物体1の法線に対して走査形放射温度計2と所定の
角度をもたせて設けられており背景放射板4は、異なる
大きさの開口41.42を介して1個の放射源3の放飼
エネルギーを測定物体1に放射している。
FIG. 4 shows another embodiment, in which the same reference numeral 'h1 as in FIG. 1 indicates the same component. In this example, one radiation source 3 is
The background radiation plate 4 is provided at a predetermined angle with the scanning radiation thermometer 2 with respect to the normal to the measurement object 1, and the background radiation plate 4 is connected to one radiation source 3 through apertures 41 and 42 of different sizes. Release energy is radiated to the measurement object 1.

(6)発明の効果 あらかじめ、寄与率の差が寄与率の比と所定の関係にあ
ることを利用し、走査形成射ン昌度計を用いて放射率、
温度を測定するようにしているので、簡単な構成で、測
定物体の広い範囲についての放射率補正された正しい温
度分布をヨ11定することができる。
(6) Effects of the invention Utilizing the fact that the difference in contribution rates has a predetermined relationship with the ratio of contribution rates, emissivity,
Since the temperature is measured, it is possible to determine the correct emissivity-corrected temperature distribution over a wide range of the measurement object with a simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第4図は、この発明の一実施例を示す構成訳明
図、第2図は、動作説明用波形図、第3図は寄与率の差
と比の関係図である。
1 and 4 are configuration diagrams showing an embodiment of the present invention, FIG. 2 is a waveform diagram for explaining the operation, and FIG. 3 is a diagram showing the relationship between the difference and ratio of contribution rates.

Claims (1)

【特許請求の範囲】[Claims] 1、測定物体を走査して測定物体からの放射エネルギー
を検出する走査形放射温度計と、この走査形放射温度計
の走査領域内の測定物体に異つた大きさの開口を介して
放射エネルギーを放射する放射源と、走査形放射温度計
に放射源からの2つの放射エネルギーが入射したときと
しないときのそれぞれの検出値の差の比である寄与率の
比と寄与率の差とが所定の関係にあることに基いて測定
物体の放射率を求め、この放射率から測定物体の温度を
測定することを特徴とする物体の放射率および温度の測
定装置。
1. A scanning radiation thermometer that scans the measurement object to detect the radiant energy from the measurement object, and a scanning radiation thermometer that detects the radiant energy from the measurement object through apertures of different sizes to the measurement object within the scanning area of this scanning radiation thermometer. The contribution rate ratio and the contribution rate difference, which are the ratios of the differences between the detection values of the emitting radiation source and the scanning radiation thermometer when two radiant energies from the radiation source are incident and not, are predetermined. 1. An apparatus for measuring the emissivity and temperature of an object, characterized in that the emissivity of the object to be measured is determined based on the relationship , and the temperature of the object to be measured is measured from this emissivity.
JP59232131A 1984-11-02 1984-11-02 Measuring apparatus for emissivity and temperature of object Granted JPS61110018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59232131A JPS61110018A (en) 1984-11-02 1984-11-02 Measuring apparatus for emissivity and temperature of object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59232131A JPS61110018A (en) 1984-11-02 1984-11-02 Measuring apparatus for emissivity and temperature of object

Publications (2)

Publication Number Publication Date
JPS61110018A true JPS61110018A (en) 1986-05-28
JPH0511252B2 JPH0511252B2 (en) 1993-02-15

Family

ID=16934482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59232131A Granted JPS61110018A (en) 1984-11-02 1984-11-02 Measuring apparatus for emissivity and temperature of object

Country Status (1)

Country Link
JP (1) JPS61110018A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115265825A (en) * 2022-07-06 2022-11-01 东北大学 Inner surface temperature measuring method and device, storage medium and terminal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115265825A (en) * 2022-07-06 2022-11-01 东北大学 Inner surface temperature measuring method and device, storage medium and terminal
CN115265825B (en) * 2022-07-06 2024-04-16 东北大学 Method and device for measuring temperature of inner surface, storage medium and terminal

Also Published As

Publication number Publication date
JPH0511252B2 (en) 1993-02-15

Similar Documents

Publication Publication Date Title
US3796099A (en) Method for measuring the surface temperature of a metal object
US5351126A (en) Optical measurement system for determination of an object&#39;s profile or thickness
KR970077431A (en) Method and apparatus for substrate temperature measurement
JPS57149927A (en) Measuring method for temperature distribution
JPS61110018A (en) Measuring apparatus for emissivity and temperature of object
JPH0521412B2 (en)
JPS636428A (en) Measuring method for surface temperature of body
JPS634651B2 (en)
JPH0548405B2 (en)
JPS5565143A (en) Measuring method for heat capacity
JPH05507356A (en) Object temperature measurement method and device and heating method
JPH0232207A (en) Roughness measuring method for metal surface
JP3291781B2 (en) Method and apparatus for measuring temperature of steel sheet
JPH0514852B2 (en)
SU412496A1 (en) METHOD OF RELATIVE MEASUREMENT OF THE DEGREE OF BLACKNESS OF SOLID TELTIJObi &#34;l ;; .- ^! - &#39;:? -?; ^ * ^?&#34;. WIJ in S, -&#39; • &lt;. -, - &#39;.- ^ r ^ V •• fi &#39;L&#39; ^ - * r-; • ..-- • .-.; ^ N ,. &#34;s (f&#39;J
JPS6225973B2 (en)
JPS59111026A (en) Temperature measurement for steel plate
JPS6219947Y2 (en)
JPH05203497A (en) Measuring method for temperature of steel plate
KR100940741B1 (en) An apparatus for measuring emissivity of stainless steel
JPH01169328A (en) Temperature measuring apparatus of metal strip
SU763699A1 (en) Method for contactless measurement of temperature
JPH0682045B2 (en) Oxide film measuring device in heat treatment furnace for steel strip
Stein Laser pyrometry
JPH0521491B2 (en)