JPS61108171A - Thin film field effect transistor - Google Patents

Thin film field effect transistor

Info

Publication number
JPS61108171A
JPS61108171A JP22901584A JP22901584A JPS61108171A JP S61108171 A JPS61108171 A JP S61108171A JP 22901584 A JP22901584 A JP 22901584A JP 22901584 A JP22901584 A JP 22901584A JP S61108171 A JPS61108171 A JP S61108171A
Authority
JP
Japan
Prior art keywords
source
gate
drain
deposited
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22901584A
Other languages
Japanese (ja)
Inventor
Mitsushi Ikeda
光志 池田
Osamu Ichikawa
修 市川
Toyoki Higuchi
樋口 豊喜
Masayuki Dojiro
堂城 政幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22901584A priority Critical patent/JPS61108171A/en
Publication of JPS61108171A publication Critical patent/JPS61108171A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41733Source or drain electrodes for field effect devices for thin film transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78663Amorphous silicon transistors
    • H01L29/78669Amorphous silicon transistors with inverted-type structure, e.g. with bottom gate

Abstract

PURPOSE:To make circuit constants definite and to obtain a thin film FET characterized by easy design of a picture element circuit and a driving circuit, by extending source and drain electrodes in parallel in reverse directions to each other, and arranging a gate electrode in perpendicular to said electrodes. CONSTITUTION:Mo with a thickness of 1,000Angstrom is sputtered, and a gate 21 is formed. As a gate insulating film, SiO2 is deposited to 2,000Angstrom by plasma CVD. Then a-Si and n<+> type a-SiO2 are deposited to 3,000Angstrom and 5,000Angstrom , respectively. After an a-Si film 24 is etched, Mo is deposited to 502Angstrom and Al is deposited to 1mum by sputtering and evapaporation. Source and drain electrodes 22 and 23 are formed. With the electrodes 22 and 23 as masks, the n<+> type a-Si is etched away. The source and drain electrodes are formed in parallel at the same width in the reverse directions to each other. The gate electrode is formed in perpendicular to said electrode at a constant width. The allowances of the patterns in the gate and source directions are made to be about the values of aligning errors in respective directions. In this constitution, even if the pattern is deviated, the channel length and the overlapping of the source and drain are not changed, and the circuit constants become definite.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は液晶表示装置駆動用トランジスタ等の大面積基
板上で用いられる薄膜電界効果トランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a thin film field effect transistor used on a large area substrate such as a transistor for driving a liquid crystal display device.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、トランジスタをマトリックスアレイに構成して駆
動装置とした薄型表示装置が注目されている。この表示
方法では、基板上に蓄積容量とスイッチングトランジス
タを接続した画素回路をマトリックス状に構成し、トラ
ンジスタをスイッチング素子として蓄積容量に画像情報
を蓄積しておき、この画像情報をマトリックス上に設け
られた液晶層EL層又はEL層等のドツト状表示素子で
表示して画像を得ようとするものであゆ、CRTに比べ
はるかに薄型の表示装置が実現できる。
In recent years, thin display devices in which transistors are arranged in a matrix array and used as a driving device have been attracting attention. In this display method, a pixel circuit in which a storage capacitor and a switching transistor are connected on a substrate is configured in a matrix, image information is stored in the storage capacitor using the transistor as a switching element, and this image information is provided on the matrix. This device attempts to obtain images by displaying images using dot-shaped display elements such as a liquid crystal layer (EL layer) or an EL layer, and it is possible to realize a display device that is much thinner than a CRT.

第4図に単位画素回路を示す。トランジスタQl)のゲ
ートをアドレス電圧V(Xi)によりスイッチングし、
ソースに接続されたデータ電圧V(Yj)を蓄積容量C
sHに書き込む。ゲートをオフすることにより画像情報
は蓄積容量に保持され、所定のフレーム時間保持される
。この画像電圧によ抄液晶セル峙が駆動され画像情報を
表示する。端子電圧Vcは液d%セルの対向電極の電圧
である。画素回路の動作において、ゲート・ドレイン間
の浮遊容量Cgd Q4の存在により、蓄積容量への書
き込み電圧Vsの低下△Vsが生ずる。ゲートのオン電
圧がVG。
FIG. 4 shows a unit pixel circuit. The gate of the transistor Ql) is switched by the address voltage V(Xi),
The data voltage V (Yj) connected to the source is stored in the storage capacitor C
Write to sH. By turning off the gate, the image information is held in the storage capacity for a predetermined frame time. This image voltage drives the liquid crystal cell to display image information. The terminal voltage Vc is the voltage at the counter electrode of the liquid d% cell. In the operation of the pixel circuit, the existence of the stray capacitance Cgd Q4 between the gate and drain causes a decrease ΔVs in the write voltage Vs to the storage capacitor. Gate on voltage is VG.

オフ電圧が00ときの△Vsの値は となり、 CgdO値により変化し1画素回路の駆動条
件が変化し、回路設計を困難にする。
The value of ΔVs when the off-voltage is 00 is: It changes depending on the CgdO value, and the driving conditions of one pixel circuit change, making circuit design difficult.

第5図(a) 、 (b)に画素回路の平面図を示す。FIGS. 5(a) and 5(b) show plan views of the pixel circuit.

画素回路は、ゲート電極(2]) 、ソース電極(2功
、ドレイン電極(ハ)、アモルファスシリコン−1画素
電極(ハ)により構成されている。第5図(a)にこれ
らのパターンが正しく形成している場合を示す。第5図
(b)に、パターンずれが生じゲートとソース・ドレイ
ンのパターンが正しく整合されなかった場合を示す。
The pixel circuit is composed of a gate electrode (2), a source electrode (2), a drain electrode (c), and an amorphous silicon pixel electrode (c). Figure 5 (a) shows these patterns correctly. FIG. 5(b) shows a case where a pattern shift occurs and the gate and source/drain patterns are not properly aligned.

第5図(b)の場合には、ゲートとドレインの車なりが
大きいためゲート・ドレイン間の容−:Cgdが増大し
ている。又、ソース・ドレインがゲート領域よりはみ出
しているため、チャンネル長の減少が生じている。
In the case of FIG. 5(b), since the distance between the gate and the drain is large, the capacitance between the gate and the drain: Cgd increases. Furthermore, since the source and drain protrude beyond the gate region, the channel length is reduced.

液晶ディスプレイは、従来のIC,LSIと異なり大面
積で用いられるため、基板ガラスの熱膨張、マスクパタ
ーンの変換差等のパターン誤差が容易に生ずるだめパタ
ーン合わせがより困難であり第5図缶)のようなパター
ンずれが容易に発生する。
Unlike conventional ICs and LSIs, liquid crystal displays are used over a large area, so pattern errors such as thermal expansion of the substrate glass and conversion differences in mask patterns easily occur, making pattern alignment more difficult (see Figure 5). Pattern deviations such as these easily occur.

このようなパターンずれにより、画素容疑への1き込み
電流(トランジスタのON電流)の減少、ゲート・ドレ
イン間の浮遊容量Cgdの増大が生じ、回路の駆動条件
を変化させ、正しい回路1作を困難にする。この問題は
1画素回路及びM]^動回路の設計を困難にする。
Such pattern misalignment causes a decrease in the current flowing into the pixel (transistor ON current) and an increase in the stray capacitance Cgd between the gate and drain, changing the circuit driving conditions and making it difficult to create the correct circuit. make it difficult This problem makes the design of single pixel circuits and M]^ motion circuits difficult.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点に鑑み、パターンずれが生じてもトラ
ンジスタのON電流、ゲート91747間の浮遊容量が
変化しない構造を有する薄膜電界効畷トランジスタを提
供するものである。
In view of the above points, the present invention provides a thin film field effect transistor having a structure in which the ON current of the transistor and the stray capacitance between the gates 91747 do not change even if a pattern shift occurs.

〔発明の概要〕[Summary of the invention]

ゲート及びソースのドレイン電極の間の位置関係を一定
の形とすることにより、パターンずれを生じてもチャン
ネル長及びソース・ドレイン間の重なりが変化しない構
造の薄膜電界効果トランジスタを得るものである。
By making the positional relationship between the gate and source drain electrodes constant, a thin film field effect transistor having a structure in which the channel length and the overlap between the source and drain do not change even if a pattern shift occurs can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、パターンずれを生じても、チャンネル
長及びソース・ドレイン間の重なりが変化しないだめ、
回路定数を一定にでき、画素回路及び駆動回路の設計が
容易な薄膜電界効果トランジスタを得るものである。
According to the present invention, even if a pattern shift occurs, the channel length and the overlap between the source and drain do not change.
The present invention provides a thin film field effect transistor whose circuit constants can be kept constant and whose pixel circuits and drive circuits can be easily designed.

〔発明の実施例〕[Embodiments of the invention]

第1図に本発明の実施例を示す。Mo1000Aをスパ
ッターにより堆積(ゲート(21)な形成する。
FIG. 1 shows an embodiment of the present invention. Mo1000A is deposited by sputtering (gate (21) is formed).

ゲート絶縁膜として5i02をプラズマCVDで200
 OA堆積L、次にアモルファスシリコン(a−8t)
及びPをドープしたn形アモルファスシリコン(n+a
 −8t )を−すれぞれaoooX、5ooX4iす
る。
As a gate insulating film, 5i02 was deposited at 200 nm using plasma CVD.
OA deposition L, then amorphous silicon (a-8t)
and P-doped n-type amorphous silicon (n+a
-8t) are aoooX and 5ooX4i, respectively.

アモルファスシリコンc24) i CDEテエッチン
クシタ後にMoを50 OA 、 Alを1μmをスパ
ッター及び蒸着により堆積し、ソース・ドレイン電極を
形成する。ソース・ドレイン電極(221、?3をマス
クとじてn十a−8tをエツチングする。第1図のよう
に、ソース及びドレインを同一幅で平行に形成し、ゲー
トを同一幅でソース及びドレインに垂直にパターン形成
することにより、ゲート及びソース−ドレイン′醒極の
たて方向、横方向の20μmのずれが生じても同一の’
rPr特性が得られた。
After amorphous silicon c24) i CDE etching, 50 OA of Mo and 1 μm of Al are deposited by sputtering and evaporation to form source and drain electrodes. Using the source/drain electrodes (221, ?3 as a mask, etching n10a-8t. As shown in Figure 1, the source and drain are formed in parallel with the same width, and the gate is formed with the same width between the source and drain. By forming the pattern vertically, even if the gate and source-drain polarities are shifted by 20 μm in the vertical and lateral directions, the same polarity can be achieved.
rPr characteristics were obtained.

尚、ゲート方向のみにパターンずれが生ずる場合には第
2図に示すようにゲート方向のみにパターン余裕をもた
せた構造とすれば良い。父、ソース方向のみにパターン
ずれが生ずる鳴合には絹3図に示すようにソース方向の
みにパターン余裕をもたせた構造とすれば良い。即ち、
ゲート方向及びソース方向のパターン余裕はそれぞれの
方向の合せ誤差程度の値とすれば良い。
Incidentally, if pattern deviation occurs only in the gate direction, a structure may be adopted in which pattern margin is provided only in the gate direction, as shown in FIG. In the case where a pattern deviation occurs only in the source direction, a structure with a pattern margin only in the source direction as shown in Figure 3 may be used. That is,
The pattern margins in the gate direction and the source direction may be set to values approximately equal to alignment errors in each direction.

尚、薄膜トランジスタに用いられる半青体はアモルファ
スシリコンに限定されス、ポリシリコン。
Note that the semi-blue bodies used in thin film transistors are limited to amorphous silicon and polysilicon.

CdSe、Te等でも良い。又、ゲート絶縁膜はS i
02に限らず、Si3N4.Ta205.Al2O3で
も良いし、電極はAl、Moに限らず低い抵抗率の材料
であれば何でも良い。
CdSe, Te, etc. may also be used. Also, the gate insulating film is Si
Not limited to Si3N4.02. Ta205. Al2O3 may be used, and the electrode is not limited to Al or Mo, but any material with low resistivity may be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本願発明の第1の実施例を示す図、第2図及び
第3図は第2及び第3の実施例を示す図、第4図及び第
5図は従来例を示す図である。 21・・・ゲート、22・・・ソース、23・・・ドレ
イン、24・・・アモルファスシリコン。 第1図 第  2 図
FIG. 1 shows the first embodiment of the present invention, FIGS. 2 and 3 show the second and third embodiments, and FIGS. 4 and 5 show the conventional example. be. 21...gate, 22...source, 23...drain, 24...amorphous silicon. Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)ソース電極とドレイン電極が互いに同一の幅で且
つ平行に配線されており、ゲート電極が前記ソース電極
及び前記ドレイン電極の長手方向に対して垂直となる方
向に配線されたことを特徴とする薄膜電界効果トランジ
スタ。
(1) The source electrode and the drain electrode are wired in parallel and have the same width, and the gate electrode is wired in a direction perpendicular to the longitudinal direction of the source electrode and the drain electrode. Thin film field effect transistor.
(2)前記ソース電極と前記ドレイン電極は互いに逆向
きに延びる電極であることを特徴とする特許請求の範囲
第1項記載の薄膜電界効果トランジスタ。
(2) The thin film field effect transistor according to claim 1, wherein the source electrode and the drain electrode are electrodes extending in opposite directions.
(3)前記ソース電極、前記ドレイン電極及び前記ゲー
ト電極を有する半導体はアモルファスシリコンであるこ
とを特徴とする特許請求の範囲第1項記載の薄膜電界効
果トランジスタ。
(3) The thin film field effect transistor according to claim 1, wherein the semiconductor having the source electrode, the drain electrode, and the gate electrode is amorphous silicon.
JP22901584A 1984-11-01 1984-11-01 Thin film field effect transistor Pending JPS61108171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22901584A JPS61108171A (en) 1984-11-01 1984-11-01 Thin film field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22901584A JPS61108171A (en) 1984-11-01 1984-11-01 Thin film field effect transistor

Publications (1)

Publication Number Publication Date
JPS61108171A true JPS61108171A (en) 1986-05-26

Family

ID=16885418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22901584A Pending JPS61108171A (en) 1984-11-01 1984-11-01 Thin film field effect transistor

Country Status (1)

Country Link
JP (1) JPS61108171A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287666A (en) * 1986-06-03 1987-12-14 ゼネラル・エレクトリツク・カンパニイ Thin film field effect transistor allowing discrepancy of electrode position
JPS6468968A (en) * 1987-09-09 1989-03-15 Seiko Epson Corp Thin film transistor
EP0333151A2 (en) * 1988-03-18 1989-09-20 Seiko Epson Corporation Thin film transistor
JPH02275672A (en) * 1989-03-30 1990-11-09 Nippon Steel Corp Thin film transistor
US6797982B2 (en) 2000-08-28 2004-09-28 Sharp Kabushiki Kaisha Active matrix substrate and display device
JP2006245557A (en) * 2005-02-03 2006-09-14 Semiconductor Energy Lab Co Ltd Semiconductor device, electronic device, and method of manufacturing semiconductor device
EP2086011A2 (en) * 2008-02-04 2009-08-05 Samsung Electronics Co., Ltd. Thin film transistor and display device having the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287666A (en) * 1986-06-03 1987-12-14 ゼネラル・エレクトリツク・カンパニイ Thin film field effect transistor allowing discrepancy of electrode position
JPS6468968A (en) * 1987-09-09 1989-03-15 Seiko Epson Corp Thin film transistor
EP0333151A2 (en) * 1988-03-18 1989-09-20 Seiko Epson Corporation Thin film transistor
JPH02275672A (en) * 1989-03-30 1990-11-09 Nippon Steel Corp Thin film transistor
US7126157B2 (en) 2000-08-28 2006-10-24 Sharp Kabushiki Kaisha Active matrix substrate, method of making the substrate, and display device
US6797982B2 (en) 2000-08-28 2004-09-28 Sharp Kabushiki Kaisha Active matrix substrate and display device
US7459723B2 (en) 2000-08-28 2008-12-02 Sharp Kabushiki Kaisha Active matrix substrate, method of making the substrate, and display device
US7696516B2 (en) 2000-08-28 2010-04-13 Sharp Kabushiki Kaisha Active matrix substrate, method of making the substrate, and display device
US7829391B2 (en) 2000-08-28 2010-11-09 Sharp Kabushiki Kaisha Active matrix substrate, method of making the substrate, and display device
US8304297B2 (en) 2000-08-28 2012-11-06 Sharp Kabushiki Kaisha Active matrix substrate, method of making the substrate, and display device
JP2006245557A (en) * 2005-02-03 2006-09-14 Semiconductor Energy Lab Co Ltd Semiconductor device, electronic device, and method of manufacturing semiconductor device
EP2086011A2 (en) * 2008-02-04 2009-08-05 Samsung Electronics Co., Ltd. Thin film transistor and display device having the same
EP2086011A3 (en) * 2008-02-04 2010-01-13 Samsung Electronics Co., Ltd. Thin film transistor and display device having the same
US8179491B2 (en) 2008-02-04 2012-05-15 Samsung Electronics Co., Ltd. Thin film transistor having improved fabrication and performance characteristics and display device having the same

Similar Documents

Publication Publication Date Title
US5097297A (en) Thin film transistor
JP2999271B2 (en) Display device
US7550308B2 (en) Transistor and display and method of driving the same
JPH03163529A (en) Active matrix display device
JP2584290B2 (en) Manufacturing method of liquid crystal display device
JPH0982969A (en) Thin-film transistor and liquid-crystal display
KR960014824B1 (en) Active matrix liquid crystal display apparatus
JP2735070B2 (en) Active matrix liquid crystal display panel
JPS61108171A (en) Thin film field effect transistor
JPH06317812A (en) Active matrix element and its production
KR101136296B1 (en) Thin Film Transistor Of Poly Silicon Type, Thin Film Transistor Substrate Having Thereof, And Method of Fabricating The Same
JPH04362616A (en) Active matrix panel
JP2755683B2 (en) Active matrix liquid crystal display
JPH02244125A (en) Active matrix substrate
KR100219504B1 (en) Thin-film transistor liquid crystal display device and its manufacturing method with double gate structure
JPH03293641A (en) Active matrix display device
JPH0748563B2 (en) Thin film transistor device
JPH10209452A (en) Thin film transistor and its manufacture
JPH07270821A (en) Active matrix system tft-lcd and its production
KR101001430B1 (en) Thin film transistor and fabricating method thereof
JP2002006341A (en) Liquid crystal device and manufacturing method therefor
JP2656555B2 (en) Thin film transistor, active matrix circuit substrate using the same, and image display device
JPH05183165A (en) Thin film transistor
JPS6053082A (en) Thin-film transistor
JP2817176B2 (en) Method for manufacturing thin film transistor