JPH04362616A - Active matrix panel - Google Patents

Active matrix panel

Info

Publication number
JPH04362616A
JPH04362616A JP3165185A JP16518591A JPH04362616A JP H04362616 A JPH04362616 A JP H04362616A JP 3165185 A JP3165185 A JP 3165185A JP 16518591 A JP16518591 A JP 16518591A JP H04362616 A JPH04362616 A JP H04362616A
Authority
JP
Japan
Prior art keywords
active matrix
film
base
tft
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3165185A
Other languages
Japanese (ja)
Other versions
JP3005918B2 (en
Inventor
Shinichi Shimomaki
伸一 下牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP16518591A priority Critical patent/JP3005918B2/en
Publication of JPH04362616A publication Critical patent/JPH04362616A/en
Application granted granted Critical
Publication of JP3005918B2 publication Critical patent/JP3005918B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1237Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a different composition, shape, layout or thickness of the gate insulator in different devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1251Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs comprising TFTs having a different architecture, e.g. top- and bottom gate TFTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To sufficiently lower the cut-off current of TFTs for an active matrix part without lowering the on-current of the TFTs for a driving circuit part. CONSTITUTION:A silicon oxide film 12 for a substrate is formed atop a transparent substrate 11 and a silicon nitride film 13 for a substrate is formed on the required part atop this silicon oxide film 12 for the substrate. A polysilicon film 31 for the driving circuit part is formed atop the silicon oxide film 12 for the substrate by noticing that both the on current and cut-off current of the TFTs are lower in the case of the silicon nitride than in the case of the silicon oxide. In addition, a polysilicon film 32 for the active matrix part is formed atop the silicon nitride film 13 for the substrate.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は駆動回路部を備えたア
クティブマトリクスパネルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an active matrix panel equipped with a drive circuit section.

【0002】0002

【従来の技術】例えばアクティブマトリクス型の液晶デ
ィスプレイ装置には、ガラス等からなる透明基板上にア
クティブマトリクス部用TFT(薄膜トランジスタ)の
ほかに駆動回路部用TFTを形成してなるアクティブマ
トリクスパネルを備えたものがある。図8は従来のこの
ようなアクティブマトリクスパネルの回路構成の一例を
示したものである。このアクティブマトリクスパネルで
は、行方向に走査電極1が列方向に表示電極2がそれぞ
れ設けられ、走査電極1と表示電極2との各交点に対応
する各画素(液晶)3ごとにアクティブマトリクス部用
TFT4が設けられ、走査電極1の一端部にゲート駆動
回路部用TFT5が設けられ、1本おきの表示電極2の
一端部および残りの表示電極2の他端部にデータ駆動回
路部用TFT6、7がそれぞれ設けられ、そしてアクテ
ィブマトリクス部用TFT4がオンになると、画素3の
静電容量部に表示データが電荷の形で書き込まれ、アク
ティブマトリクス部用TFT4がオフになると、書き込
まれた電荷により画素3が駆動されるようになっている
。ところで、アクティブマトリクス部用TFT4および
駆動回路部用TFT5〜7は、半導体層を構成するポリ
シリコンの下地として酸化シリコンが設けられている。
[Prior Art] For example, an active matrix type liquid crystal display device includes an active matrix panel in which TFTs (thin film transistors) for the active matrix section and TFTs for the drive circuit section are formed on a transparent substrate made of glass or the like. There is something. FIG. 8 shows an example of the circuit configuration of such a conventional active matrix panel. In this active matrix panel, scanning electrodes 1 are provided in the row direction and display electrodes 2 are provided in the column direction, and each pixel (liquid crystal) 3 corresponding to each intersection of the scanning electrode 1 and the display electrode 2 is provided with an active matrix portion. A TFT 4 is provided, a TFT 5 for a gate drive circuit section is provided at one end of the scanning electrode 1, and a TFT 6 for a data drive circuit section is provided at one end of every other display electrode 2 and the other end of the remaining display electrodes 2. When the TFT 4 for the active matrix section is turned on, display data is written in the form of charges in the capacitance section of the pixel 3, and when the TFT 4 for the active matrix section is turned off, the written charge causes the display data to be written in the form of charges. Pixel 3 is now driven. Incidentally, the active matrix portion TFT 4 and the drive circuit portion TFTs 5 to 7 are provided with silicon oxide as a base for polysilicon forming the semiconductor layer.

【0003】0003

【発明が解決しようとする課題】しかるに、従来のこの
ようなアクティブマトリクスパネルでは、アクティブマ
トリクス部用TFT4と駆動回路部用TFT5〜7とで
要求される特性に違いがあり、駆動回路部用TFT5〜
7の場合、移動度を高めるためにオン電流を十分高くし
なければならないが、カットオフ電流についてはアクテ
ィブマトリクス部用TFT4ほど低くする必要はなく、
一方、アクティブマトリクス部用TFT4の場合、リー
ク電流を小さくするためにカットオフ電流を十分低くし
なければならないが、オン電流については駆動回路部用
TFT5〜7ほど高くする必要はない。しかしながら、
TFTの半導体層がポリシリコンでその下地が酸化シリ
コンであると、駆動回路部用TFT5〜7のオン電流を
十分に高くすることができるが、アクティブマトリクス
部用TFT4のカットオフ電流を十分に低くすることが
できず、このため表示品質が低下するという問題があっ
た。この発明の目的は、駆動回路部用TFTのオン電流
を低下させることなく、アクティブマトリクス部用TF
Tのカットオフ電流を十分に低くすることのできるアク
ティブマトリクスパネルを提供することにある。
However, in such a conventional active matrix panel, there are differences in required characteristics between the TFT 4 for the active matrix section and the TFTs 5 to 7 for the drive circuit section. ~
In the case of 7, the on-current must be sufficiently high to increase the mobility, but the cut-off current does not need to be as low as the active matrix TFT 4.
On the other hand, in the case of the TFT 4 for the active matrix section, the cutoff current must be made sufficiently low to reduce leakage current, but the on-current does not need to be as high as the TFTs 5 to 7 for the drive circuit section. however,
If the semiconductor layer of the TFT is polysilicon and its base is silicon oxide, the on-current of TFTs 5 to 7 for the drive circuit section can be made sufficiently high, but the cut-off current of TFT 4 for the active matrix section can be made sufficiently low. Therefore, there was a problem that the display quality deteriorated. An object of the present invention is to provide a TFT for an active matrix section without reducing the on-current of the TFT for a drive circuit section.
An object of the present invention is to provide an active matrix panel in which the cutoff current of T can be made sufficiently low.

【0004】0004

【課題を解決するための手段】この発明は、TFTのオ
ン電流およびカットオフ電流が共に下地が酸化シリコン
の場合よりも窒化シリコンの場合の方が低くなることに
着目し、アクティブマトリクス部用TFTの下地を窒化
シリコン膜とし、且つ駆動回路部用TFTの下地を酸化
シリコン膜としたものである。
[Means for Solving the Problems] The present invention focuses on the fact that both the on-current and cut-off current of a TFT are lower when the base is made of silicon nitride than when the base is silicon oxide. The base of the TFT is a silicon nitride film, and the base of the TFT for the drive circuit portion is a silicon oxide film.

【0005】[0005]

【作用】この発明によれば、アクティブマトリクス部用
TFTの下地を窒化シリコン膜としているので、アクテ
ィブマトリクス部用TFTのカットオフ電流を下地が酸
化シリコン膜の場合と比較して十分に低くすることがで
き、しかも駆動回路部用TFTの下地を酸化シリコン膜
としているので、駆動回路部用TFTのオン電流が低下
しないようにすることができる。
[Operation] According to the present invention, since the base of the TFT for the active matrix section is a silicon nitride film, the cutoff current of the TFT for the active matrix section can be made sufficiently lower than when the base is a silicon oxide film. Moreover, since the base of the TFT for the drive circuit section is a silicon oxide film, it is possible to prevent the on-state current of the TFT for the drive circuit section from decreasing.

【0006】[0006]

【実施例】図1〜図6はそれぞれこの発明の一実施例に
おけるアクティブマトリクスパネルの各製造工程を示し
たものである。そこで、これらの図を順に参照しながら
、アクティブマトリクスパネルの構造についてその製造
方法と併せ説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1 to 6 each show the manufacturing process of an active matrix panel according to an embodiment of the present invention. Therefore, referring to these figures in order, the structure of the active matrix panel will be explained along with its manufacturing method.

【0007】まず、図1に示すように、ガラス等からな
る透明基板11の上面にスパッタリング装置を用いて下
地用酸化シリコン膜12を1000Å程度の厚さに形成
する。次に、下地用酸化シリコン膜12の上面にプラズ
マCVD法により下地用窒化シリコン膜13を1000
Å程度の厚さに形成する。
First, as shown in FIG. 1, a base silicon oxide film 12 is formed to a thickness of about 1000 Å on the upper surface of a transparent substrate 11 made of glass or the like using a sputtering device. Next, on the upper surface of the silicon oxide film 12 for the base, a silicon nitride film 13 for the base is formed with a thickness of 1000 nm by plasma CVD.
It is formed to a thickness of about 100 Å.

【0008】次に、図2に示すように、フォトリソグラ
フィ技術により、アクティブマトリクス部用TFT形成
領域に対応する部分以外の不要な部分の下地用窒化シリ
コン膜13をエッチングして除去する。次に、全表面に
プラズマCVD法によりアモルファスシリコン膜14を
1000Å程度の厚さに形成する。次に、XeClエキ
シマレーザを照射することによりアモルファスシリコン
膜14を結晶化してポリシリコン膜15とする。この場
合、高いエネルギ密度でいきなりレーザ照射すると膜破
壊が生じるので、これを避けるために、3段階に分けて
、すなわちまず180mJ/cm2のエネルギ密度で、
次いで220mJ/cm2のエネルギ密度で、最後に2
70mJ/cm2のエネルギ密度でレーザ照射を行う。
Next, as shown in FIG. 2, unnecessary portions of the underlying silicon nitride film 13 other than the portion corresponding to the active matrix TFT forming region are etched and removed by photolithography. Next, an amorphous silicon film 14 with a thickness of about 1000 Å is formed on the entire surface by plasma CVD. Next, the amorphous silicon film 14 is crystallized into a polysilicon film 15 by irradiation with XeCl excimer laser. In this case, sudden laser irradiation at a high energy density will cause film destruction, so in order to avoid this, we divided it into three stages: first, at an energy density of 180 mJ/cm2;
Then, at an energy density of 220 mJ/cm2, finally 2
Laser irradiation is performed at an energy density of 70 mJ/cm2.

【0009】次に、図3に示すように、フォトリソグラ
フィ技術により、駆動回路部用の各TFTのチャネル領
域21およびアクティブマトリクス部用の各TFTのチ
ャネル領域22に対応する部分のポリシリコン膜15の
上面にフォトレジスト膜23、24をパターン形成する
。次に、フォトレジスト膜23、24をマスクとしてイ
オンインプラ装置またはイオンシャワ装置によりリンイ
オンを注入し、各チャネル領域21、22に対応する部
分以外のポリシリコン膜15を不純物領域化する。次に
、フォトレジスト膜23、24を剥離し、この後XeC
lエキシマレーザを220mJ/cm2のエネルギ密度
で照射し、活性化を行う。
Next, as shown in FIG. 3, a portion of the polysilicon film 15 corresponding to the channel region 21 of each TFT for the drive circuit section and the channel region 22 of each TFT for the active matrix section is etched by photolithography. Photoresist films 23 and 24 are patterned on the upper surface of the photoresist film. Next, using the photoresist films 23 and 24 as masks, phosphorus ions are implanted using an ion implantation device or an ion shower device to convert the polysilicon film 15 other than the portions corresponding to the channel regions 21 and 22 into impurity regions. Next, the photoresist films 23 and 24 are peeled off, and then the XeC
Activation is performed by irradiating with an excimer laser at an energy density of 220 mJ/cm2.

【0010】次に、フォトリソグラフィ技術により、駆
動回路部用TFT形成領域およびアクティブマトリクス
部用TFT形成領域に対応する部分以外の不要な部分の
ポリシリコン膜15をエッチングして除去し、図4に示
すように、下地用酸化シリコン膜12の上面に駆動回路
部用ポリシリコン膜31を形成すると共に、下地用窒化
シリコン膜13の上面にアクティブマトリクス部用ポリ
シリコン膜32を形成する。この状態では、既に説明し
たように、図3に示す工程においてリンイオンを注入し
ているので、駆動回路部用ポリシリコン膜31のチャネ
ル領域21の両側にソース・ドレイン領域34が形成さ
れ、またアクティブマトリクス部用ポリシリコン膜32
のチャネル領域22の両側にソース・ドレイン領域35
が形成されている。
Next, using photolithography, unnecessary portions of the polysilicon film 15 other than those corresponding to the TFT formation region for the drive circuit section and the TFT formation region for the active matrix section are etched and removed, as shown in FIG. As shown, a polysilicon film 31 for the drive circuit portion is formed on the upper surface of the silicon oxide film 12 for the base, and a polysilicon film 32 for the active matrix portion is formed on the upper surface of the silicon nitride film 13 for the base. In this state, as already explained, since phosphorus ions are implanted in the step shown in FIG. Polysilicon film 32 for matrix section
Source/drain regions 35 are provided on both sides of the channel region 22 of the
is formed.

【0011】次に、図5に示すように、全表面にスパッ
タリング装置を用いて酸化シリコンからなるゲート絶縁
膜41を1000Å程度の厚さに形成する。次に、駆動
回路部用ポリシリコン膜31のチャネル領域21に対応
する部分のゲート絶縁膜41の上面およびアクティブマ
トリクス部用ポリシリコン膜32のチャネル領域22に
対応する部分のゲート絶縁膜41の上面にスパッタリン
グ装置を用いてアルミニウムからなるゲート電極42、
43を2000Å程度の厚さにパターン形成する。
Next, as shown in FIG. 5, a gate insulating film 41 made of silicon oxide is formed on the entire surface using a sputtering device to a thickness of about 1000 Å. Next, the upper surface of the gate insulating film 41 in the portion corresponding to the channel region 21 of the polysilicon film 31 for the drive circuit portion and the upper surface of the gate insulating film 41 in the portion corresponding to the channel region 22 of the polysilicon film 32 for the active matrix portion. gate electrode 42 made of aluminum using a sputtering device,
43 is patterned to a thickness of about 2000 Å.

【0012】次に、図6に示すように、全表面にプラズ
マCVD法により窒化シリコンからなる層間絶縁膜51
を5000Å程度の厚さに形成する。次に、層間絶縁膜
51の上面にスパッタリング装置を用いてITOからな
る透明電極(走査電極および表示電極)52を1000
Å程度の厚さにパターン形成する。次に、駆動回路部用
ポリシリコン膜31のソース・ドレイン領域34に対応
する部分の層間絶縁膜51およびゲート絶縁膜41にコ
ンタクトホール53を形成すると共に、アクティブマト
リクス部用ポリシリコン膜32のソース・ドレイン領域
35に対応する部分の層間絶縁膜51およびゲート絶縁
膜41にコンタクトホール54を形成する。次に、コン
タクトホール53を通して駆動回路部用ポリシリコン膜
31のソース・ドレイン領域34と接続されるアルミニ
ウムからなるソース・ドレイン電極55を層間絶縁膜5
1等の上面に6000Å程度の厚さにパターン形成する
と共に、コンタクトホール54を通してアクティブマト
リクス部用ポリシリコン膜32のソース・ドレイン領域
35と接続される同じくアルミニウムからなるソース・
ドレイン電極56を層間絶縁膜51等の上面に6000
Å程度の厚さにパターン形成する。かくして、駆動回路
部を備えたアクティブマトリクスパネルが製造される。
Next, as shown in FIG. 6, an interlayer insulating film 51 made of silicon nitride is formed on the entire surface by plasma CVD.
is formed to a thickness of about 5000 Å. Next, transparent electrodes (scanning electrodes and display electrodes) 52 made of ITO are formed on the upper surface of the interlayer insulating film 51 using a sputtering device in a thickness of 1000 nm.
A pattern is formed to a thickness of about Å. Next, a contact hole 53 is formed in the interlayer insulating film 51 and the gate insulating film 41 in a portion corresponding to the source/drain region 34 of the polysilicon film 31 for the drive circuit part, and the source of the polysilicon film 32 for the active matrix part is formed. - A contact hole 54 is formed in the interlayer insulating film 51 and gate insulating film 41 in a portion corresponding to the drain region 35. Next, a source/drain electrode 55 made of aluminum that is connected to the source/drain region 34 of the polysilicon film 31 for the drive circuit section through the contact hole 53 is connected to the interlayer insulating film 55.
A source/drain region made of aluminum is formed on the top surface of the first layer to a thickness of approximately 6000 Å, and is connected to the source/drain region 35 of the polysilicon film 32 for the active matrix portion through the contact hole 54.
The drain electrode 56 is placed on the upper surface of the interlayer insulating film 51, etc.
A pattern is formed to a thickness of about Å. In this way, an active matrix panel including a drive circuit section is manufactured.

【0013】ところで、アモルファスシリコンを結晶化
してなるポリシリコンを用いたTFTにおいては、オン
電流およびカットオフ電流は共に下地が酸化シリコンの
場合よりも窒化シリコンの場合の方が低くなる。しかる
に、このアクティブマトリクスパネルでは、駆動回路部
用ポリシリコン膜31の下地を酸化シリコン膜12とし
ているので、駆動回路部用TFTのオン電流を下地が窒
化シリコン膜の場合と比較して十分に高くすることがで
き、一方、アクティブマトリクス部用ポリシリコン膜3
2の下地を窒化シリコン膜13としているので、アクテ
ィブマトリクス部用TFTのカットオフ電流を下地が酸
化シリコン膜の場合と比較して十分に低くすることがで
きる。
By the way, in a TFT using polysilicon made by crystallizing amorphous silicon, both the on-current and the cut-off current are lower when the base is silicon nitride than when the base is silicon oxide. However, in this active matrix panel, since the base of the polysilicon film 31 for the drive circuit section is the silicon oxide film 12, the on-current of the TFT for the drive circuit section is sufficiently higher than when the base is a silicon nitride film. On the other hand, the polysilicon film 3 for the active matrix section
Since the base of 2 is the silicon nitride film 13, the cutoff current of the TFT for the active matrix portion can be made sufficiently lower than when the base is a silicon oxide film.

【0014】ちなみに、透明基板の上面に酸化シリコン
膜を形成し、この酸化シリコン膜の上面にTFTを形成
した下地酸化シリコンTFTと、透明基板の上面に窒化
シリコン膜を形成し、この窒化シリコン膜の上面にTF
Tを形成した下地窒化シリコンTFTとをそれぞれ数十
個用意し、オン電流およびカットオフ電流を測定したと
ころ、次のような結果が得られた。なお、TFTのチャ
ネルの幅および長さをそれぞれ100μm、10μmと
した。まず、オン電流については、ゲート電圧が20V
でドレイン電圧が5Vのときのドレイン電流を測定した
ところ、下地酸化シリコンTFTのオン電流の平均値が
166μAであり、下地窒化シリコンTFTのオン電流
の平均値が119μAであった。したがって、駆動回路
部用ポリシリコン膜31の下地を酸化シリコン膜12と
すると、駆動回路部用TFTのオン電流を下地が窒化シ
リコン膜の場合と比較して十分に高くすることができる
。次に、カットオフ電流については、2種類の測定を行
った。第1のカットオフ電流については、ゲート電圧が
0Vでドレイン電圧が10Vのときのドレイン電流を測
定したところ、下地酸化シリコンTFTのオン電流の平
均値が459pAであり、下地窒化シリコンTFTのオ
ン電流の平均値が93.1pAであった。第2のカット
オフ電流については、ゲート電圧が0Vでドレイン電圧
が20Vのときのドレイン電流を測定したところ、下地
酸化シリコンTFTのオン電流の平均値が30.8nA
であり、下地窒化シリコンTFTのオン電流の平均値が
3.24nAであった。したがって、アクティブマトリ
クス部用ポリシリコン膜32の下地を窒化シリコン膜1
3とすると、アクティブマトリクス部用TFTのカット
オフ電流を下地が酸化シリコン膜の場合と比較して十分
に低くすることができる。
Incidentally, a silicon oxide film is formed on the upper surface of a transparent substrate, a base silicon oxide TFT is formed with a TFT formed on the upper surface of the silicon oxide film, and a silicon nitride film is formed on the upper surface of the transparent substrate. TF on the top surface of
Several tens of silicon nitride TFTs each having a T-formed base were prepared, and the on-current and cut-off current were measured, and the following results were obtained. Note that the width and length of the TFT channel were 100 μm and 10 μm, respectively. First, regarding the on-current, the gate voltage is 20V.
When the drain current was measured when the drain voltage was 5 V, the average on-current value of the base silicon oxide TFT was 166 μA, and the average value of the on-current value of the base silicon nitride TFT was 119 μA. Therefore, when the base of the polysilicon film 31 for the drive circuit section is the silicon oxide film 12, the on-current of the TFT for the drive circuit section can be made sufficiently higher than when the base is a silicon nitride film. Next, two types of measurements were performed regarding the cutoff current. Regarding the first cutoff current, when the drain current was measured when the gate voltage was 0 V and the drain voltage was 10 V, the average value of the on-current of the base silicon oxide TFT was 459 pA, and the on-current value of the base silicon nitride TFT was 459 pA. The average value was 93.1 pA. Regarding the second cutoff current, when the drain current was measured when the gate voltage was 0V and the drain voltage was 20V, the average value of the on-current of the underlying silicon oxide TFT was 30.8nA.
The average value of the on-current of the underlying silicon nitride TFT was 3.24 nA. Therefore, the base of the polysilicon film 32 for the active matrix portion is the silicon nitride film 1.
3, the cutoff current of the TFT for the active matrix portion can be made sufficiently lower than when the base is a silicon oxide film.

【0015】なお、上記実施例では、例えば図4に示す
ように、透明基板11の上面に下地用酸化シリコン膜1
2を設け、この下地用酸化シリコン膜12の上面の必要
な部分に下地用窒化シリコン膜13を設け、そして下地
用酸化シリコン膜12の上面に駆動回路部用ポリシリコ
ン膜31を設けると共に、下地用窒化シリコン膜13の
上面にアクティブマトリクス部用ポリシリコン膜32を
設けているが、これに限定されるものではない。例えば
、図7に示すように、透明基板11の上面に下地用窒化
シリコン膜13を設け、この下地用窒化シリコン膜13
の上面の必要な部分に下地用酸化シリコン膜12を設け
、そして下地用酸化シリコン膜12の上面に駆動回路部
用ポリシリコン膜31を設けると共に、下地用窒化シリ
コン膜13の上面にアクティブマトリクス部用ポリシリ
コン膜32を設けるようにしてもよい。また、図示して
いないが、透明基板の上面の駆動回路部用TFT形成領
域に下地用酸化シリコン膜を設けると共に、透明基板の
上面のアクティブマトリクス部用TFT形成領域に下地
用窒化シリコン膜を設け、そして下地用酸化シリコン膜
の上面に駆動回路部用ポリシリコン膜を設けると共に、
下地用窒化シリコン膜の上面にアクティブマトリクス部
用ポリシリコン膜を設けるようにしてもよい。また、こ
の発明は液晶表示パネルに限らず、TFTメモリやイメ
ージセンサ等のマトリクスパネルに幅広く適用できるも
のである。
Note that in the above embodiment, as shown in FIG.
2, a silicon nitride film 13 for the base is provided on the upper surface of the silicon oxide film 12 for the base, and a polysilicon film 31 for the drive circuit section is provided on the upper surface of the silicon oxide film 12 for the base. Although the active matrix portion polysilicon film 32 is provided on the upper surface of the silicon nitride film 13, the present invention is not limited thereto. For example, as shown in FIG. 7, a silicon nitride film 13 for the base is provided on the upper surface of the transparent substrate 11, and the silicon nitride film 13 for the base
A base silicon oxide film 12 is provided on the necessary portions of the upper surface, a polysilicon film 31 for the drive circuit section is provided on the upper surface of the base silicon oxide film 12, and an active matrix section is provided on the upper surface of the base silicon nitride film 13. A polysilicon film 32 may also be provided. Although not shown, a silicon oxide film for the base is provided in the TFT formation region for the drive circuit section on the upper surface of the transparent substrate, and a silicon nitride film for the base is provided in the TFT formation region for the active matrix section on the upper surface of the transparent substrate. , and a polysilicon film for a drive circuit section is provided on the upper surface of the underlying silicon oxide film, and
A polysilicon film for the active matrix portion may be provided on the upper surface of the silicon nitride film for the base. Further, the present invention is not limited to liquid crystal display panels, but can be widely applied to matrix panels such as TFT memories and image sensors.

【0016】[0016]

【発明の効果】以上説明したように、この発明によれば
、アクティブマトリクス部用TFTの下地を窒化シリコ
ン膜としているので、アクティブマトリクス部用TFT
のカットオフ電流を下地が酸化シリコン膜の場合と比較
して十分に低くすることができ、しかも駆動回路部用T
FTの下地を酸化シリコン膜としているので、駆動回路
部用TFTのオン電流が低下しないようにすることがで
き、ひいては表示品質を向上させることができる。
As explained above, according to the present invention, since the base of the TFT for the active matrix section is a silicon nitride film, the TFT for the active matrix section
The cutoff current can be made sufficiently lower than that when the base is a silicon oxide film.
Since the base of the FT is a silicon oxide film, it is possible to prevent the on-state current of the TFT for the drive circuit portion from decreasing, and as a result, the display quality can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の一実施例におけるアクティブマトリ
クスパネルの製造に際し、透明基板の上面に下地用酸化
シリコン膜および下地用窒化シリコン膜を形成した状態
の断面図。
FIG. 1 is a cross-sectional view of a state where a base silicon oxide film and a base silicon nitride film are formed on the upper surface of a transparent substrate in manufacturing an active matrix panel in an embodiment of the present invention.

【図2】同アクティブマトリクスパネルの製造に際し、
不要な部分の下地用窒化シリコン膜を除去し、次いでア
モルファスシリコン膜を形成した後このアモルファスシ
リコン膜をレーザ照射によりポリシリコン膜化した状態
の断面図。
[Figure 2] When manufacturing the same active matrix panel,
FIG. 3 is a cross-sectional view of a state in which unnecessary portions of the base silicon nitride film are removed, an amorphous silicon film is formed, and the amorphous silicon film is turned into a polysilicon film by laser irradiation.

【図3】同アクティブマトリクスパネルの製造に際し、
イオン注入マスク用のフォトレジスト膜を形成した後リ
ンイオン注入により不純物領域を形成した状態の断面図
[Figure 3] When manufacturing the same active matrix panel,
FIG. 3 is a cross-sectional view of a state in which an impurity region is formed by phosphorus ion implantation after forming a photoresist film for an ion implantation mask.

【図4】同アクティブマトリクスパネルの製造に際し、
不要な部分のポリシリコン膜を除去して駆動回路部用ポ
リシリコン膜とアクティブマトリクス部用ポリシリコン
膜を形成した状態の断面図。
[Figure 4] When manufacturing the same active matrix panel,
FIG. 3 is a cross-sectional view of a state in which unnecessary portions of the polysilicon film are removed to form a polysilicon film for a drive circuit section and a polysilicon film for an active matrix section.

【図5】同アクティブマトリクスパネルの製造に際し、
ゲート絶縁膜およびゲート電極を形成した状態の断面図
[Figure 5] When manufacturing the same active matrix panel,
FIG. 3 is a cross-sectional view of a state in which a gate insulating film and a gate electrode are formed.

【図6】同アクティブマトリクスパネルの製造に際し、
層間絶縁膜、透明電極およびコンタクトホールを形成し
た後ソース・ドレイン電極を形成した状態の断面図。
[Figure 6] When manufacturing the same active matrix panel,
FIG. 3 is a cross-sectional view of a state in which source/drain electrodes are formed after forming an interlayer insulating film, a transparent electrode, and a contact hole.

【図7】この発明の他の実施例におけるアクティブマト
リクスパネルの図4同様の状態の断面図。
FIG. 7 is a cross-sectional view of an active matrix panel in a state similar to FIG. 4 in another embodiment of the invention.

【図8】従来のアクティブマトリクスパネルの回路構成
の一例を示す図。
FIG. 8 is a diagram showing an example of a circuit configuration of a conventional active matrix panel.

【符号の説明】[Explanation of symbols]

11  透明基板 12  下地用酸化シリコン膜 13  下地用窒化シリコン膜 21  駆動回路部用ポリシリコン膜 11 Transparent substrate 12 Base silicon oxide film 13 Base silicon nitride film 21 Polysilicon film for drive circuit section

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  基板上にアクティブマトリクス部と駆
動回路部とを設けたアクティブマトリクスパネルにおい
て、前記アクティブマトリクス部をTFTで構成すると
共にその下地を窒化シリコン膜とし、且つ前記駆動回路
部をTFTで構成すると共にその下地を酸化シリコン膜
としたことを特徴とするアクティブマトリクスパネル。
1. An active matrix panel including an active matrix section and a drive circuit section provided on a substrate, wherein the active matrix section is composed of TFTs, the base thereof is a silicon nitride film, and the drive circuit section is composed of TFTs. An active matrix panel characterized in that it is composed of a silicon oxide film and its base is a silicon oxide film.
【請求項2】  前記窒化シリコン膜は前記酸化シリコ
ン膜上に形成されていることを特徴とする請求項1記載
のアクティブマトリクスパネル。
2. The active matrix panel according to claim 1, wherein the silicon nitride film is formed on the silicon oxide film.
【請求項3】  前記酸化シリコン膜は前記窒化シリコ
ン膜上に形成されていることを特徴とする請求項1記載
のアクティブマトリクスパネル。
3. The active matrix panel according to claim 1, wherein the silicon oxide film is formed on the silicon nitride film.
JP16518591A 1991-06-11 1991-06-11 Active matrix panel Expired - Lifetime JP3005918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16518591A JP3005918B2 (en) 1991-06-11 1991-06-11 Active matrix panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16518591A JP3005918B2 (en) 1991-06-11 1991-06-11 Active matrix panel

Publications (2)

Publication Number Publication Date
JPH04362616A true JPH04362616A (en) 1992-12-15
JP3005918B2 JP3005918B2 (en) 2000-02-07

Family

ID=15807459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16518591A Expired - Lifetime JP3005918B2 (en) 1991-06-11 1991-06-11 Active matrix panel

Country Status (1)

Country Link
JP (1) JP3005918B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111334A (en) * 1993-08-20 1995-04-25 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacture thereof
JPH07135323A (en) * 1993-10-20 1995-05-23 Semiconductor Energy Lab Co Ltd Thin film semiconductor integrated circuit and its fabrication
US5434433A (en) * 1992-08-19 1995-07-18 Seiko Instruments Inc. Semiconductor device for a light wave
US5585647A (en) * 1993-06-29 1996-12-17 Kabushiki Kaisha Toshiba Integrated circuit device having an insulating substrate, and a liquid crystal display device having an insulating substrate
US5633176A (en) * 1992-08-19 1997-05-27 Seiko Instruments Inc. Method of producing a semiconductor device for a light valve
WO1998013811A1 (en) * 1996-09-26 1998-04-02 Seiko Epson Corporation Display device
US5962897A (en) * 1992-06-18 1999-10-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US6479331B1 (en) * 1993-06-30 2002-11-12 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a semiconductor device
US6624477B1 (en) 1992-10-09 2003-09-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP2007148446A (en) * 1996-09-26 2007-06-14 Seiko Epson Corp Display apparatus

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5962897A (en) * 1992-06-18 1999-10-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US5633176A (en) * 1992-08-19 1997-05-27 Seiko Instruments Inc. Method of producing a semiconductor device for a light valve
US6187605B1 (en) 1992-08-19 2001-02-13 Seiko Instruments Inc. Method of forming a semiconductor device for a light valve
US5434433A (en) * 1992-08-19 1995-07-18 Seiko Instruments Inc. Semiconductor device for a light wave
US6455875B2 (en) 1992-10-09 2002-09-24 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor having enhanced field mobility
US6624477B1 (en) 1992-10-09 2003-09-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US6790749B2 (en) 1992-10-09 2004-09-14 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US5585647A (en) * 1993-06-29 1996-12-17 Kabushiki Kaisha Toshiba Integrated circuit device having an insulating substrate, and a liquid crystal display device having an insulating substrate
US6479331B1 (en) * 1993-06-30 2002-11-12 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a semiconductor device
JPH07111334A (en) * 1993-08-20 1995-04-25 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacture thereof
JPH07135323A (en) * 1993-10-20 1995-05-23 Semiconductor Energy Lab Co Ltd Thin film semiconductor integrated circuit and its fabrication
WO1998013811A1 (en) * 1996-09-26 1998-04-02 Seiko Epson Corporation Display device
US6542137B2 (en) * 1996-09-26 2003-04-01 Seiko Epson Corporation Display device
EP1465257A1 (en) * 1996-09-26 2004-10-06 Seiko Epson Corporation Display apparatus
US6862011B2 (en) 1996-09-26 2005-03-01 Seiko Epson Corporation Display apparatus
US7012278B2 (en) 1996-09-26 2006-03-14 Seiko Epson Corporation Light-emitting apparatus driven with thin-film transistor and method of manufacturing light-emitting apparatus
JP2007148446A (en) * 1996-09-26 2007-06-14 Seiko Epson Corp Display apparatus

Also Published As

Publication number Publication date
JP3005918B2 (en) 2000-02-07

Similar Documents

Publication Publication Date Title
KR100297868B1 (en) Active Matrix Display
US5734177A (en) Semiconductor device, active-matrix substrate and method for fabricating the same
KR970002119B1 (en) Thin film transistor device
JP3398453B2 (en) Method for manufacturing thin film transistor
JP2666103B2 (en) Thin film semiconductor device
JP4436469B2 (en) Semiconductor device
JPH05275452A (en) Thin film insulated-gate type semiconductor device and its manufacture
JPH05190568A (en) Manufacture of insulated-gate thin-film transistor
JP3224215B2 (en) Method for manufacturing thin-film insulated gate semiconductor device
JPH0982969A (en) Thin-film transistor and liquid-crystal display
JP3005918B2 (en) Active matrix panel
JPH10256554A (en) Thin film transistor and manufacture thereof
JP3452981B2 (en) Semiconductor integrated circuit and manufacturing method thereof
JPH0722627A (en) Thin film semiconductor device and active matrix liquid crystal display device
JP4017240B2 (en) Thin film transistor manufacturing method
JP2805590B2 (en) Method for manufacturing semiconductor device
JPH098311A (en) Fabrication and structure of thin film semiconductor device
JP2005311037A (en) Semiconductor device and manufacturing method thereof
JP3516166B2 (en) Method for manufacturing thin film transistor
JPH07263698A (en) Thin film transistor and its manufacture
JPH06314787A (en) Thin film semiconductor device and its manufacture
JPH1187721A (en) Thin-film transistor and liquid crystal display device comprising the same, and manufacture of tft array substrate
JP4197270B2 (en) Method for manufacturing semiconductor integrated circuit
JP3469183B2 (en) Liquid crystal display
JP3963663B2 (en) Semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 12